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Abstract 
 

Oxidation of L-cysteine by tetrakis(2,2’-bipyridine)-μ-oxodiiron (III) ion has 
been investigated in aqueous acidic medium by measuring increase in the 
absorbance of the product solution at 520nm. The reaction displayed 1:1 
stoichiometry and obeyed the rate law: 
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The rate of the reaction was independent of changes in ionic strength and 

dielectric constant of the reaction media. The outersphere mechanism is 
suggested for this reaction. 

 
Keywords: Kinetics, mechanism, L-cysteine, tetrakis(2,2’-bipyridine)-μ-
oxodiiron (III) ion, outersphere. 

 
 
Introduction 
Oxobridged binuclear complexes of iron (III) provide good examples of Robin and 
Day classification of transition metal complexes where two metal centres linked by 
bridging ligand differ significantly in terms of metal-metal electronic interactions [1]. 
Recently, reactions of these complexes are being followed with keen interest as they 
could possibly provide a better understanding of the respiratory processes in 
mammals and some haem proteins [2-9]. 
 L-cysteine, an essential amino acid and also a thiol is of biochemical interest. It 
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serves as reactivator of fibrin stabilizing factor form an otherwise dormant form in 
blood clothing [10]. Literature has shown that in the oxidation of thiols, binuclear 
complex formation may [11,12] or may not by important [2,4,13]. Part of the 
motivation for this study is to find out which of the above mechanistic options is 
adopted by the reaction of interest. We here in report the mechanism of the electron 
transfer reaction between L-cysteine and tetrakis(2,2’-bipyridine)-μ-oxodiiron(III) ion 
in aqueous acidic medium. 
 
 
Experimental 
Detailed procedures for the preparation and standardization of the oxobridged 
compound, [(bpy)2ClFe-O-FeCl(bpy)2]Cl4 (where bpy is bipyridine) were described 
previously [9]. For convenience, we represented the ion of this complex by Fe2O

4+ 
throughout the text. On the other hand, L-cysteine hydrochloride (M&B) was 
designated as GSH and solutions of this were freshly prepared when required. HCl 
(M&B) was used to probe effect of [H+] on the reaction rate while NaCl was used to 
maintain the ionic strength, μ, of reaction medium constant at 0.01 mol dm-3. All the 
reagents used were of analytical grades and were used without further purification 
except otherwise stated. 
 Using different concentrations of reductant in the range 1.6 x 10-5 to 10 x 10-5 mol 
dm-3 and [Fe2O

4+] = 4 x10-5 mol dm-3 at μ = 0.05 mol dm-3, [H+] = 6 x 10-5 mol dm-3 
and T= 30ºC, the stoichiometry of the reaction was investigated [9]. The reaction rate 
was determined by following increase in the absorbance of the product solution using 
Chroma 254 Digital Colorimeter at 520 nm after having certified that none of the 
reactants absorbed at this wavelength. Pseudo-first order conditions were employed 
with the [GSH] in at least 30-fold excess over that of [Fe2O

4+]. Dielectric constant of 
the reaction medium (D) was investigated as reported earlier [9]. 
 NO-

3 and ClO4
- were used to investigate the possible catalysis of the reaction of 

interest. Presence of free radicals was determined by adding acrylamide to partially 
reacted mixture in excess the methanol. 
 
 
Result and Discussion 
Stoichiometric study indicated that for each mole of GSH oxidized, one mole of the 
complex, Fe2O

4+ is reduced in accordance with equation (1).  

  Fe2O
4+ + GSH + O2 → 2Fe2+ + GSO3H  (1) 

 
 The formation of sulphonic acid derivative as organic product of this reaction was 
confirmed by the similarity between the uv spectra of this product solution and that of 
the product solution and the that of the product solution of GSH and concentrated 
trioxonitrate (V) acid. Strong oxidants such as concentrated trioxonitrate (V) acid and 
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KMnO4 oxidize thiols to the corresponding sulphonic acid derivatives [14]. In 
principle, oxidation of GSH can occur via N. O or S. The above result shows that 
electron transfer occurred more readily at S atom, S being more nucleophilic than N 
or O. The inorganic product of the reaction, Fe2+ was identified spectroscopically [9]. 
 Pseudo-first order plots of log (A∞ -At) against time (where A∞ and At are 
absorbances at the end of the reaction and at time, t respectively) were linear to about 
20% extent of reaction. In line with the previous investigation, the deviation from 
linearity suggests product inhibition [15]. The observed rate constants (kobs) were 
evaluated from the slopes of the initial points on the curves. The invariance of kobs in 
Table 1, suggest zero order dependence on [GSH]. The rate of the reaction can 
therefore be represented by equation 2.  
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 At fixed [Fe2O

4+], [GSH], [H+] and temperature, the rate of the reaction was 
constant, with increase in ionic strength of the reaction medium (Table 1). This is an 
indication that the product of the charges on the activated complex is zero [16]. 
Alternatively, there is active participation ion-pair in the rate determining step [17]. 
These views are reinforced by the non-dependence of the rate of the reaction on the 
dielectric constant of the reaction medium (Table 2). 
 
 
Table 1: Pseudo–first order rate constants for the reaction of Fe2O

4+ and L– cysteine 
(GSH) at [Fe2O

4+] = 6.67 x 10-5 mol dm-3, λmax = 520 nm and T = 30oC. 
 

104[GSH],mol dm-3 106[H+],mol dm-3 102
μ,mol dm-3 103kobs,s

-1 
21.30 60 10 6.35 
28.0 60 10 6.06 
34.70 60 10 6.16 
41.30 60 10 6.18 
48.0 60 10 6.14 
28.0 10 10 6.14 
28.0 40 10 6.64 
28.0 80 10 6.20 
28.0 120 10 6.20 
28.0 160 10 6.28 
28.0 200 10 6.28 
28.0 60 5 6.20 
28.0 60 10 6.14 
28.0 60 15 6.04 
28.0 60 20 6.14 
28.0 60 25 6.14 
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Table 2: Dependence of rate constants on anions (X) and on dielectric constant (D) of 
the reaction medium for the reaction of Fe2O

4+ and L–cysteine(GSH) at [Fe2O
4+] = 

6.67 x 10-5 mol dm-3, [GSH] =28 x 10-4 mol dm-3,[H+] = 6 x 10-5 mol dm-3, μ = 
0.01mol dm-3, λmax = 520 nm and T = 30oC. 
 

X 104[X],mol dm-3 10kobs,s
-1 

NO3
- 20 6.28 

 60  6.21 
 100 6.28 
 120 6.28 
   
 
ClO4

- 
 
20 

 
6.14 

 40 6.05 
 60 6.21 
 120 6.05 
   
D   
81  6.05 
80.2  5.08 
79.4  5.25 
74.6  5.23 

 
 
 Fe2O

4+ was unstable in [H+] greater than 10-4 mol dm-3, hence kinetic studies was 
limited to 1x10-6 ≤ [H+] ≤ 2x10-4 mol dm-3. Lack of H+ dependence on reaction rate 
has characterized this reaction in the range indicated in Table 1. We have earlier 
reported similar observation in the reactions of the oxidant with organic [5,7,9] and 
inorganic (6) substrates. 
 Based on the above results, the following mechanistic scheme is proposed for the 
reaction. 

    (3) 

   (4) 

   (5) 

   (6) 

  Rate = k3 [Fe2OH5+, GS-]  (7) 
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 According to steady state hypothesis, 
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 Substitution of equation (8) into (7) gives 
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 Equation (9) reduces to (11) after substituting (10) into (9). 
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 Equation (11) is similar to equation (2) where:  
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The pathway for this reaction can be addressed by considering the following points. 

a. Absence of spectrophotometric evidence for the presence of intermediates 
when partially reacted mixture was scanned shows that a precursor complex is 
probably not formed prior electron transfer step. 

b. Direct bond formation between Fe moiety and GSH would involve destruction 
of Fe-O-Fe framework and is therefore unlikely, an indication that presence of 
binuclear intermediate is remote. In this vein, the reaction of Fe2O

4+ resembles 

that of Ru2O
4+ with L-cysteine and mercaptoacetic acid where the reactions 

were suggested to occur by outersphere mechanism [18,19].  
c. The views in (a) and (b) point to the outersphere mechanism. However, there 

is absence of anions catalysis (Table 2). This is expected because the rate 
determining step (equation 5) is characterized by dissociation of the ion-pair 
complex. This species is not likely to interact with added anions. 

 
 The above point is in favour of the outersphere mechanism and is hereby proposed 
for the title reaction.  
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