A Heterogeneous Precipitate based Sodium Membrane Ion Selective Electrode: Its Preparation and Analytical Application

J. Thamarai Selvi and P.R. Aiswarya Lakshmy

Department of Chemistry, Avinashilingam University for Women, Coimbatore- 641043, India
E-mail: thamraj2005@yahoo.co.in

Abstract

A heterogeneous precipitates have been as ion carriers for the preparation of Na (I) selective membrane sensor. The electrodes give near–nernstian responses in linear concentration range of 1M to 1x10−4M with detection limits of the order of 10−4M . The stable potentiometric signals are obtained with in a short time period of 3 minutes. The effect of pH, and the effect of medium have been studied found to give a better response. Selectively coefficient values (log Kpot) have been evaluated using fixed interference method. The sensors have also been as an indicator electrode in commercially available products.

Keywords: A heterogeneous precipitate, Na (I) ion, membrane sensor, Fixed interference method.

Introduction

Sodium hydroxide is a caustic metallic base. It is used in many industries, mostly as a strong chemical base in the manufacture of pulp and paper, textile drinking water, soaps detergents and a as a drain cleaner.

Food uses of sodium hydroxide include washing or chemical peeling of fruits and vegetables chocolate and cocoa processing caramel colouring production, poultry scalding and soft drink processing.

The field of Ion–selective electrodes (ISEs) bridge fundamental host guest chemistry, membrane science and its specific application. Because of their simplicity, low cost, sufficiently reliable and respectable measurement, ISEs are recognized as novel analytical tools for selective determination of analyte ions.
Many Na-ISE incorporating various ion carriers have been reported. In the present study, a simple heterogeneous precipitate-based membrane has been prepared along with the potentiometric performances of these sensors, effect of pH, effect of medium, response time and selectivity coefficients with respect to different interfering ions have also been studied.

Experimental Process

Preparation of S-Benzyl Isothiouuronium Chloride Precipitate

About 0.5 g of benzoic acid (HI-PURE, FINE CHEM INDUSTRIES) was added to 6 ml of aqueous NaOH (FINAR REAGENTS, Extra pure) of strength 0.9246 N. Mixed the resulting solution with an equal volume of S-Benzyl isothiouuronium chloride reagent (HIMEDIA Laboratories PVT Ltd). A white precipitate of S-benzyl isothiouuronium chloride was obtained.

Preparation of S-Benzyl Isothiouuronium Chloride based Membrane Electrode Using PVC and DOP

About 0.1 g of dried precipitate was thoroughly mixed with 0.1 g of polyvinyl chloride (KEMPHASOL Bombay) and added Dioctyl Phthalate plasticizer, (lobal Chemie laboratory Reagents & Fine Chemicals). The paste obtained was applied on whatmann filter paper no. 42. This was spread uniformly over the filter paper to obtain 0.5 thickness of the electro active materials with matrix. This was left in air to dry for 24 hours to get an electro active membrane. A circular piece of this membrane was cut and fixed with resin at one end of the hollow glass tube (diameter 0.6 cm and length 6 cm). This tube was filled with saturated solution of CuSO$_4$ and reference copper metal wire was inserted (diameter 0.5 mm & length 12 cm) through other end of CuSO$_4$ solution already filled in this glass tube. This complete assembly will work as an ion selective electrode for sodium ion determination. This ion selective electrode was kept in 1M solution of sodium chloride for one week to attain equilibrium.

The entire electrode system for the measurement can be represented as

| Internal reference electrode | Internal reference solution (saturated CuSO$_4$ solution) | Ion selective membrane | Sample solution | External reference electrode (Ag/AgCl) |

Result and Discussion

Response characteristics of the electrode

The electrode was first conditioned in 1M solution of sodium ion till it attained stable equilibrium after which it was used for the determination of characteristic study of the electrode. The electrode potential for a series of standard solution of Na(I) ion was
measured. The electrode gives linear response to Na(I) ion concentration in the range of 1.0M to 1x10^{-4}M (Table 1). The sodium - ISE revealed near nernstian slopes 27mV/decade. Graph-1

To find the response time, the electrode was first dopped in 1M of Na (I) solution and suddenly the concentration of solution was changed to 0.1 M. The variation in potential was noted at every 5 seconds till a constant potential value obtained at 3 seconds and remains constant

<table>
<thead>
<tr>
<th>Concentration of Sodium Chloride solution(M)</th>
<th>E.M.F volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.018</td>
</tr>
<tr>
<td>1x10^{-1}</td>
<td>-0.017</td>
</tr>
<tr>
<td>1x10^{-2}</td>
<td>-0.016</td>
</tr>
<tr>
<td>1x10^{-3}</td>
<td>-0.015</td>
</tr>
<tr>
<td>1x10^{-4}</td>
<td>-0.003</td>
</tr>
<tr>
<td>1x10^{-5}</td>
<td>-0.003</td>
</tr>
</tbody>
</table>

Effect of pH

To study the effect of pH, a standard solution containing 1M sodium ion were prepared in which a series of buffer solution 4.02 to 9.2 was added. It was found that the potential remains unchanged with in the pH range of 4.01-7.

To study the effect of medium, a standard solution containing 1M Na(I) ion in a series of 25%, 50%, 75% ethanol was added. It was found that the potential remains unaffected in ethanol medium.

Selectivity

The selectivity, which is an important characteristics of a membrane sensor is measured in terms of the potentiometric selectivity coefficient K_{pot}, it measures the response of the sensor towards the primary ion in the presence of secondary ion present in the sample solution. The selectivity coefficient has been determined by using fixed interference method (FIM) based on semi empirical Nicolskii-Eisenman equation. In this method the concentration of primary ion Na (I) ion is varied where as the concentration of secondary interfering ion is kept constant in the sample solution which is 1x10^{-4}M concentration in the present case. The potentiometric selectivity coefficient data of sensors for various interfering ions given in Table -2&3. These ions don’t disturb the normal functioning of the sensors and the sensors posses high sodium selectivity and respond weekly to these interfering ions.
Table 2: Interference by cations

<table>
<thead>
<tr>
<th>Cation (Interfering ion)</th>
<th>Electrode Log K^{pot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg$^{2+}$</td>
<td>-0.018</td>
</tr>
<tr>
<td>K$^+$</td>
<td>-0.019</td>
</tr>
<tr>
<td>NH$_4$</td>
<td>-0.019</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>-0.019</td>
</tr>
<tr>
<td>H$^+$</td>
<td>-0.017</td>
</tr>
</tbody>
</table>

Table 3: Interference by anions

<table>
<thead>
<tr>
<th>Anions (Interfering ion)</th>
<th>Electrode Log K^{pot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_4^{2-}$</td>
<td>-0.018</td>
</tr>
<tr>
<td>I$^-$</td>
<td>-0.019</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>-0.018</td>
</tr>
<tr>
<td>Br$^-$</td>
<td>-0.019</td>
</tr>
<tr>
<td>S$_2$O$_4^{2-}$</td>
<td>-0.019</td>
</tr>
<tr>
<td>NH$_2$CO$_2$NH$^-$</td>
<td>-0.017</td>
</tr>
<tr>
<td>C$_2$O$_4^{2-}$</td>
<td>-0.018</td>
</tr>
</tbody>
</table>

Electrode response sodium (electrode-III)

Graph: plot of E.M.F. versus log concentration of sodium (M)

Analytical Application

To assess the applicability of the sensors to real samples, an attempt was made to determine sodium ion in real samples like commercially baking powder and ala. The recovery of sodium ion in sample analysis was formed to be quantitative with the maximum recovery of 95%.
References

