Synthesis and Antimicrobial Activity of some new 1'-[1-Methyl-{(N-alkyl Phthalyl)-benzimidazolo}]-4'-(3''/4''/3'', 4''-substituted Benzylidene)-4', 5'dihydro-2'-alkyl-imidazol-5'-ones

Shipra Bhati

Department of Chemistry, the Oxford College of Engineering, Bommanahalli, Bangalore-560 068, Karnataka, (INDIA). E-mail: shiprabhati@yahoo.com

Abstract

1'–[1–methyl–{(N–alkyl phthalyl)–benzimidazolo}]–4'–(3''/4''/3'', 4''– substituted benzylidene)–4', 5'–dihydro–2'–alkyl–imidazol–5'–ones were synthesized by treating Equimolar mixture of 4-(3'/4'/3',4')–substituted benzylidene)–2–alkyl–oxazol–5–one (II) and N–methyl phthalyl–1–amino methyl benzimidazole(III).Chemical structures were elucidated by the spectral technique of IR and ¹H NMR. These compounds were screened for their antibacterial and antifungal activity in vitro. Some of the imidazolones were found to be active.

Keywords: Benzimidazoles, imidazoles, antimicrobial agents.

Introduction

Benzimidazole nucleus has a broad spectrum of biological activities¹⁻⁸ i.e. antibacterial, antifungal, anticancer, antitumor, HIV reverse transcriptase inhibitory activities. Heterocycles having two nitrogen atom oriented at 1,3–position in the ring show potent biological activity. Modification of the imidazole nucleus have resulted in a large number of compounds having diverse pharmacological activity⁹⁻¹⁶ such as antimicrobial, anticancer, analgesic, anti-inflammatory, antiepileptic and in the field of medicinal chemistry. Some novel imidazolone derivatives are inhibitors of the HIV reverse transcriptase enzyme which is involved in virus replication. These compounds can be used as therapeutic agents against HIV infection. Imidazolinones are also associated with a wide range of therapeutic activity. Similarly imidazolin–5–ones, which are the nitrogen analogs of azalactones, are also useful as antimicrobial agents

and in drugs. This prompted us to synthesize some new imidazolone derivatives and study their biological action.

Experimental

Melting points were taken in open capillaries in a simple 'neolab'electrical apparatus and are uncorrected.IR were recorded on a Schimadzu 8101A soectrophotometer.¹H NMR spectrometer in DMSO with chemical shift in δ ppm.

N-protected amino acid (I) and oxazole-5-ones (II) were synthesized by the reported method¹⁷.N-methyl-1-aminomethyl Benzimidazoles (III) were prepared by earlier published method³.

Synthesis of 1'–[1–methyl–{(N–methyl phthalyl)–benzimidazolo}]–4'–(4''– hydroxybenzylidene)–4', 5'–dihydro–2'–methyl–imidazol–5'–one (IVb)

Equimolar mixture (0.01 mole) of 4–(4'–hydroxy benzylidene)–2–methyl– oxazol–5–one (IIb) and N–methyl phthalyl–1–amino methyl benzimidazole (III) were heated on a sand bath for 5–6 hours in DMF (10 ml.) in the presence of few drops of glacial acetic acid. The contents were cooled and poured into crushed ice. A solid separated out which was then removed by filtrations, dried and recrystallized from ethanol.

IR (cm-1): 1775, 1715(>C=O, phthalimido), 1623(C=N), 3012(CH=C).

¹HNMR (δ):2.65(s,2H,N-CH₂-C),2.38(s,3H,CH₃),3.15(s,2H,N-CH₂-N),5.35(s,1H,CH=C),7.27-8.15(m,12H,ArH).

IVg; IR (cm-1): 1775, 1710(>C=O, phthalimido), 1625(C=N), 3012(CH=C), 2345,2348(C-H str.,OCH₃).

¹HNMR (δ):2.73(s,2H,N-CH₂-C), 3.21(s,2H,N-CH₂-N),5.41(s,1H,CH=C),7.29-7.89(m,17H,ArH).

The other derivatives were synthesized following same procedure. The physical and analytical data are given in Table1.

Compound	R ₁	R ₂	R_3	M.P.(°C)	Molecular	Nitrogen	Nitrogen
No.					Formula	Calculated	Found
IVa	CH_3	Н	OH	>250	$C_{28}H_{21}O_4N_5$	14.25	14.30
IVb	CH ₃	OCH_3	OH	250	$C_{29}H_{23}O_5N_5$	13.43	13.40
IVc	CH_3	Н	CI	245	$C_{28}H_{20}O_3N_5CI$	13.74	13.80
IVd	CH_3	NO_2	Η	>250	$C_{28}H_{20}O_5N_6$	16.15	16.12
IVe	C_6H_5	OCH_3	OH	230	$C_{34}H_{25}O_5N_5$	12.00	12.04
IVf	C_6H_5	Н	OH	>250	$C_{33}H_{23}O_4N_5$	12.65	12.62
IVg	C_6H_5	Н	CI	240	$C_{33}H_{22}O_3N_5CI$	12.25	12.20
IVh	C_6H_5	NO_2	Η	225	$C_{33}H_{22}O_5N_6$	14.43	14.42

 Table 1: Characterization data.

Antibacterial and Antifungal activity

$1'-[1-methyl-{(N-alkylphthalyl)-benzimidazolo}]-4'-(3''/4''/3'',4''-$

substitutedbenzylidene)– 4', 5'–dihydro–2'–alkyl–imidazol–5'–ones (IV_a – IV_h) were screened for their antibacterial activity against five different strains of bacteria at a concentration of 250 μ g/disc by Disc Diffusion Technique.(Table2). The dilution method was followed for the two fungal strains at a concentration of 500 μ g/ml for antifungal activity (Table3).

Results and Discussion

The antibacterial screening data have revealed that all the compounds except IV_c and IV_g showed remarkable activity against *B. subtilis*. Compounds IV_b , IV_d , IV_e , IV_f and IV_h were active against *S. mutans* and *E. coli* while rests of the compounds were found to be inactive. Against *A. tumifaciens* only two compounds IV_d and IV_h showed significant activity while against *S. aureus* compounds IV_a , IV_d and IV_h displayed zone of inhibition between 8–12 mm.

Among the imidazol–5'–ones (Table 1) compounds IV_c , IV_d , IV_g and IV_h showed some activity with the development of just 2–3 fungal colonies of the *Penicillium* species after 72 hours incubation. The other derivatives were inactive.

Against A. *nizer*, two derivatives IV_d and IV_h were active with the growth of only one fungal colony while the other derivatives i.e. IV_b , IV_c , IV_e , IV_f and IV_g were moderately active. Only one derivative IV_a was found to be inactive against A. *niger*.

Antibacterial Activity

Table 2: $1'-[1-methyl-{(N-alkylphthalyl)-benzimidazolo}]-4'-(3''/4''/3'', 4''-substitutedbenzylidene) - 4', 5'-dihydro-2'-alkyl-imidazol-5'-ones (IV_a - IV_h).$

Compound No.	S. aureus	S. mutans	E. coli	B. subtilis	A. tumifaciens
IVa	±	_	-	±	_
IVb	_	±	±	±	_
IVc	-	-	-	_	-
IVd	±	±	±	±	±
IVe	_	±	±	±	_
IVf	-	±	±	±	_
IVg	-	_	-	Ι	_
IVh	±	±	±	±	±

Concentration : 500 µg/ml Duration : 72 hours

Standard: Griseofulvin, Gentamycin Control : DMF

Medium: PDA (Potato Dextrose Agar)

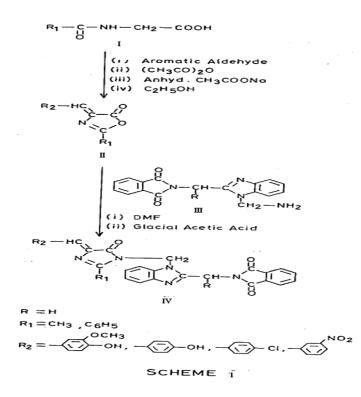
- -: Inactive (heavy fungal colony)
- ±: Moderately active (two-three fungal colony)
- +: Active (one fungal colony)
- ++: Highly active (no fungal colony)

Antifungal Activity

 $\label{eq:table 3: 1'-[1-methyl-{(N-alkylphthalyl)-benzimidazolo}]-4'-(3''/4''/3'', 4''-substitutedbenzylidene)-4', 5'-dihydro-2'-alkyl-imidazol-5'-ones (IV_a-IV_h).$

Compound No.	Penicillium sp.	Aspergillus niger	
IVa	-	-	
IVb	_	±	
IVc	±	±	
IV _d	±	+	
IVe	-	±	
IV _f	-	±	
IVg	±	±	
IV _h	±	+	

Concentration :	500 µg/ml	Duration	:	72 hours
Standard: Griseofuly	vin, Gentamycin	Control	:	DMF


Medium: PDA (Potato Dextrose Agar)

-: Inactive (heavy fungal colony)

±: Moderately active (two-three fungal colony)

+: Active (one fungal colony)

++: Highly active (no fungal colony)

Conclusion

On the basis of structure activity relationship it has been observed that among substituent presence of a nitro group played a significant role in determining the antibacterial and antifungal activity of the compounds as compared to the other substituent.

References

- Kavali,J.R.,Badami,B.V.,2003, "Mannich reaction using 3-arylsydnone derivatives, Synthesis and antimicrobial activity of 3-aryl-4-[2'-(1"-methylamino benzimidazole)-thiazol-4'-yl] sydnones and 1",3"-bis{3-aryl-4[(2'-aminomethyl)-thiazol-4'-yl]-sydonyl}-benzimidazole-2"-thiones",Indian Journal Heterocyclic Chemistry,12(3),pp.249-252.
- [2] Rajpurohit, S., and Sah, P., 2005, "Synthesis and antimicrobial activity of some Mannich bases of benzimidazolyl-substituted-1H-isoindole-1,3(2H)diones", Asian Journal Chemistry, 17(2), pp. 949-954.
- [3] Parmar, S.and Sah, P., 2007, "Synthesis and antimicrobial activity of some new 1-methyl-[(N-alkyl phthalyl)-benzimidazolo-3'-chloro-4'-(3'', 4''-substituted benzal amino)]-azetidin-2-ones", Indian Journal Heterocyclic Chemistry, 16(4), pp.367-370.
- [4] Wiesmueller, K-H, Bauer, J., Eickhoff, H., Kleymann, G.Rupp, S., Finkelmeier, D. and Burger-Kentischer, A., 2009, "Preparation of benzimidazole-2-yl-alkyl

amines as microbial agents."ger.Offen.De 102, 007, 037, 579, Chemical abstract, 2009, 150:237605e.

- [5] Wei,T.B.,Zhang,Z.R.,shi,H.X.,Cui,W.H.and Zhang,Y.M.,2008, "Synthesis of 2-[(phenoxy)methyl]-1H-benzimidazole-1-acetic acid,2-[2-hydroxy-phenyl] methylene hydrazide derivatives and determination of their biological activity as plant growth stimulants". Chemical abstract150:20038n, 150, pp145-150
- [6] Luo,X.,and Zhang,Z.2009, "Preparation of 2-pyridyl-1H-benzimidazole-4carboxamides as antiviral for treating c. Virus B3" Famingzhuanli shenquing Gongkai CN 101,353,342, Chemical abstract,2009,150:237601a.
- [7] Cheng, J., Xie, J., Luo, X., 2005, "Synthesis and antiviral activity against Coxsackie virus B3 of some novel benzimidazole derivatives", 15(2), pp 267-269.
- [8] O'Shaughnessy, J. Cunningham, D., Kavangh, P., Leech, D., McArdle, P., Aldabbagh .F., 2004, "Synthesis of Benzimidazole analogue of Cyclopropamitosene antitumor agents", Syn. Lett., 131, pp 2382.
- [9] Bishnoi.A., Srivastava, K.and Tripathi, C.K.M., 2006, "Antimicrobial activity of 1-[p{3'-2'-aryl-4-oxo-1', 3'-thiazolyl}}biphenyl]/ [3'-(2'-aryl-4-oxo-1',3'-thiazolyl)]-2-phenyl-4-cyclohexylidene imidazol-5-ones", Indian Journal Chemistry, 45B:2136-2139.
- [10] Drabu,S.,Kumar,N.,and Munirajan,S.,2005, "Synthesis and anti-inflammatory activity of some substituted indolo [2,3]-imidazoles", Indian Journal Heterocyclic Chemistry, 15(2), pp. 195-196.
- [11] Sah, P.and Kacchawaha, V., 2008, "Synthetic quinazolinyl substituted 1',3',4'oxadiazoles as insecticidal agents", Advances in Life Sciences,1(3&4),pp 87-89.
- [12] Joshi,H.,Upadhyay,P.Karia,D.and Baxi,A.J.,2003, "Synthesis of some novel imidazolines as potent anticonvulsant agents", European Journal Medicinal chemistry, 36, pp 837-840.
- [13] Garrett C.,Moraski,Lowell,D.,Markley,Philip,A.,Hipskind,Helena, B., Sanghyun Cho, Scott,G.,Franzblaw,and Marvin.J.M.,2011," Advent of imidazo[1,2-a]pyridine-3-carboxamides with potent multi and extended drug resistant antituberculosis activity",ACS Med.Chem. Lett. 2(6), pp 466-470.
- [14] Malhotra, V.,..Pathak, S.R., Nath, R., Mukherjee, D.and Shankar, K., 2011, " Substituted imidazole derivatives as novel cardiovascular agents," Bioorganic & Medicinal Chem.Lett., 21(3), pp. 936-939.
- [15] Taile, V.S., Hatzade, K.M., Gaidhane, P.K. and Ingle, V.N., 2010, "Synthesis & biological evaluation of novel 2-(4-o-β-D-glucosidoxyphenyl)-4,5-disubstituted imidazoles", Journal of Heterocyclic Chemistry, 47(4), pp.903-907.
- [16] Drabu,S.,Puratchikody,A.,Munirajan,S.and Kumar,N.,2006, "Synthesis & Pharmacological activity of some 2-substituted-4,5-diphenylimidazoles,"Indian Journal of Heterocyclic Chemistry,16,pp.63-64.
- [17] Vogel's, 1998, Text book of Practical Organic Chemistry, 5th edition, Westey Long Man, Inc, Engaland.