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Abstract 

 

The formation of Carbon cage clusters having regular and semi-regular 

polyhedral structures is studied from orbital hybridization considerations. It is 

found that only sp2 hybridized Carbon atoms are capable of forming closed 

cage structures. Three criteria, viz., bond, bond angle and solid angle criteria 

are applied. It is found that only one Platonic solid and four Archimedean 

solids are capable of supporting Carbon cage cluster structures. Specifically, 

the Dodecahedron, Truncated Octahedron, Great Rhombicuboctahedron, 

Truncated Icosahedron and Great Rhomicosidodecahedron are able to 

represent the structures of C20, C24, C48, C60 and C120 clusters, respectively. 

 

 

1. INTRODUCTION 

Since the discovery of the Buckyballs and Fullerenes, there has been an explosion of 

the study of Carbon clusters having cage-like structures [1, 2]. It has been suggested 

that small Carbon clusters can have linear and ring structures and only the larger 

clusters can have closed cage structures [3]. The possibility of smaller clusters having 

cage structures has put forward [4, 5]. It was suggested that the Platonic solids and 

Archimedean solids could provide potential structures for Carbon cage clusters [4, 5]. 

Bond limitations and sphericity were postulated to be the requirements for such 

possibilities [4, 5]. The present study re-examines this problem from the standpoint of 

atomic orbitals configurations, bond angles and solid angle considerations. 

 

 

2. ORBITAL HYBRIDIZATION 

The concept of atomic orbital hybridization was advanced by Pauling in order to 

explain the observed bonding patterns of the Carbon atom [6]. Carbon atoms undergo 

three types of orbital hybridizations as follows [7]. 
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First, sp hybridization, in which one s electron in the valence shell hybridizes with 

one p electron (px, say) to produce two hybrid sp orbitals, as expressed by 

[𝑠 + 𝑝𝑥] + 𝑝𝑦 + 𝑝𝑧 → [𝑠𝑝1 + 𝑠𝑝2] + 𝑝𝑦 + 𝑝𝑧 (1) 

The two hybrid orbitals are co-linear and oppositely directed. Their normalized wave 

functions are given by 

𝜓𝑠𝑝
1 =

1

√2
[𝜓𝑠 + 𝜓𝑝𝑥] (2) 

and 

𝜓𝑠𝑝
2 =

1

√2
[𝜓𝑠 − 𝜓𝑝𝑥] (3) 

When this atom undergoes chemical bonding, the two unmixed p electrons will form 

either a triple bond on one side and a single bond on the other, or one double bond on 

each side [8]. 

Second, sp2 hybridization, in which one s electron in the valence shell hybridizes with 

two p electrons (px and py, say) to produce three hybrid sp2 orbitals, as expressed by 

[𝑠 + 𝑝𝑥 + 𝑝𝑦] + 𝑝𝑧 → [𝑠𝑝2
1 + 𝑠𝑝2

2 + 𝑠𝑝2
3] + 𝑝𝑧 (4) 

The three hybrid orbitals are co-planar in the x-y plane with the nucleus at the origin 

and directed at angles of 120o apart. If one hybrid orbital is directed along the x-axis, 

then then normalized wave functions of the three orbitals are given by 

𝜓𝑠𝑝2
1 =

1

√3
[𝜓𝑠 + √2𝜓𝑝𝑥] (5) 

𝜓𝑠𝑝2
2 =

1

√3
[𝜓𝑠 −

1

√2
𝜓𝑝𝑥 +√

3

2
𝜓𝑝𝑦] (6) 

and 

𝜓𝑠𝑝2
3 =

1

√3
[𝜓𝑠 −

1

√2
𝜓𝑝𝑥 −√

3

2
𝜓𝑝𝑦] (7) 

When this atom undergoes chemical bonding, the unmixed pz electron produces one 

double bond. 

Third, sp3 hybridization, in which one s electron in the valence shell hybridizes with 

all three p electrons to produce four hybrid sp3 orbitals as expressed by 

[𝑠 + 𝑝𝑥 + 𝑝𝑦 + 𝑝𝑧] → [𝑠𝑝3
1 + 𝑠𝑝3

2 + 𝑠𝑝3
3 + 𝑠𝑝3

4] (8) 

The four hybrid orbitals are directed towards the corners of a regular tetrahedron with 

the nucleus of the atom at the centroid of the tetrahedron which is at the origin, and 

separated by angles of 𝑐𝑜𝑠−1 (−
1

3
) ≈109. 47o. If one of the hybrid orbitals (𝑠𝑝3

4, say) 

is directed along the vertical z-axis, the other orbitals lie below the x-y plane towards 

the corners of an equilateral triangle. Further, if 𝑠𝑝3
3 lies below the x-axis, the 

normalized wave functions of the hybrid orbitals are given by 

𝜓𝑠𝑝3
1 = √

2

5
[𝜓𝑠 + 𝜓𝑝𝑥 −

1

√3
𝜓𝑝𝑦 −

1

√6
𝜓𝑝𝑧] (9) 

𝜓𝑠𝑝3
2 = √

2

5
[𝜓𝑠 − 𝜓𝑝𝑥 −

1

√3
𝜓𝑝𝑦 −

1

√6
𝜓𝑝𝑧] (10) 

𝜓𝑠𝑝3
3 = √

2

5
[𝜓𝑠 +

2

√3
𝜓𝑝𝑦 −

1

√6
𝜓𝑝𝑧] (11) 

and 
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𝜓𝑠𝑝3
4 = √

2

5
[𝜓𝑠 + √

3

2
𝜓𝑝𝑧] (12) 

When this atom undergoes chemical bonding, all four bonds are single [6]. 

The following facts pertaining to Carbon cage clusters readily follow. Firstly, the sp 
hybridized carbon atoms can only form linear clusters and must therefore be excluded 

from cage cluster formation [8]. Secondly, each sp3 hybridized Carbon atom must be 

connected to four other carbon atoms, three of which can be possibly placed on the 

surface of a sphere. However, the fourth atom will lie perpendicular to that surface 

(cf. [9]) and the bending required to place the fourth atom on that would be greater 

than 90o. Covalent bonds formed from orbital overlaps can bend to a certain extent, 

but not to that degree. Thus, the sp3 hybridized carbon atoms must also be ruled out in 

cage cluster formation. That leaves us with only sp2 hybridized Carbon atoms, which 

must constitute as building blocks of Carbon cage clusters. 

 

 

3. CRITERIA FOR CARBON CAGE CLUSTER FORMATION 

Three criteria pertaining to the formation of Carbon cage clusters having Platonic and 

Archimedean solid structures logically follow. 

First, Bond criterion. Since only sp2 hybridized Carbon atoms can assemble a cage 

cluster, each atom must have three bonds, two of them single and one double. If each 

vertex of a Platonic or Archimedean solid is connected to four or five edges, that solid 

cannot accommodate a Carbon cage cluster. All atoms in the cage clusters must be 

connected to three neighbouring atoms. 

Second, Bond angle criterion. The Platonic and Archimedean solids are bounded by 

one to three regular polygons, which include the equilateral triangles, squares, regular 

pentagons, hexagons, octagons and decagons. The internal angle between two 

adjacent sides of a regular n-sided polygon is(𝑛 − 2)𝜋/𝑛. For the triangle, square, 

pentagon, hexagon, octagon and decagon, this angle is equal to 60o, 90o, 108o, 120o, 

135o and 144o, respectively. This angle will be the angle between two adjacent bonds 

at the boundary of a polygon should a cage cluster be formed. Since the angle 

between two sp2 atoms is 120o, the angular defect for the above polygons will be 60o, 

30o, 12o, 0o, 15o and 24o, respectively. Knowing that bonds do bend to a certain 

extent, a tolerance limit of 30o is allowed for the angular defect in this study. This will 

eliminate only the equilateral triangle amongst the polygons for cage cluster 

formation. 

Third, Solid angle criterion. Since the sp2 orbitals lie in a plane, the sp2 hybridized 

Carbon atoms most preferentially form Graphene sheets, where there is zero strain 

due to the absence of curvature and the solid angle at each atom is that subtended by 

an infinite plane or 2π. For the Platonic and Archimedean solids, the solid angle at 

any vertex is smaller than this value. For such solids to accommodate Carbon cage 

clusters, it is desirable to have this solid angle as close to the ideal value of 2π as 

possible. For the Archimedean solids, the values of this solid angle was available in 

the literature only recently [10]. 
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4. RESULTS 

The Platonic and Archimedean solids are regular and semi-regular polyhedra, 

respectively, made up of one or more kinds of regular polygons, respectively. The 

formation of Carbon cage structures having Platonic and Archimedean solid geometry 

has been studied from bond consideration and sphericity [4, 5]. In this study, we 

examine the same problem from the point of view of bond formation and bond angle 

considerations and solid angle considerations. 

The five Platonic and 13 Archimedean solids are depicted in Fig. 1. Table I specifies 

the polygons of which the solids are composed. Table I also lists the Carbon clusters 

these solids can potentially represent. The Carbon atoms would all be sp2 hybridized 

and located at the vertices of the solids, their numbers corresponding to the numbers 

of vertices of the solids. 

Table II lists the number of bonds each Platonic and Archimedean solid will prescribe 

should a Carbon cluster be formed. The number of bonds is the number of edges to 

which each vertex of the solid is connected. The bond criterion immediately rules out 

any solid requiring four or five bonds. This is the most stringent criterion for Carbon 

cage cluster formation and rules out nine of the 18 solids forthwith. 

Table III lists the bond angles each Platonic and Archimedean solid will prescribe if a 

Carbon cage cluster is formed out of the solid. In accordance with the bond angle 

criterion, only bond angles of 60o can be ruled out confidently. Quite amazingly, this 

single exclusion would rule out 12 out of 18, or two-thirds of the solids from Carbon 

cage cluster formation. 

Table IV pertains to the solid angle criterion. The solid angle at a vertex of each 

Platonic and Archimedean solids is taken from a recent study [10]. Also listed is the 

solid angle as a fraction of the ideal solid angle (2π). Since the largest Archimedean 

solid only attains 75% of this ideal solid angle, a cut-off value of one-half of that or 

37. 5% is taken as the minimum solid angle at vertex for Carbon cluster formation. 

This criterion only excludes three smallest Platonic solids and the smallest 

Archimedean solid from contention. 

We now proceed to the results for the individual Platonic and Archimedean solid to 

decide if they are capable of representing a Carbon cage cluster. 

(1) The Tetrahedron is the smallest of the 18 solids by all measures. It passes the 

important bond criterion to potentially represent the C4 cluster. However, it 

fails the bond angle criterion and miserably fails the solid angle criterion. 

Overall, a negative outcome is assessed for Carbon cage cluster formation. A 

tetrahedral core is actually formed in the synthetically made Tetrahedral 
derivatives [11], but such a core is made of sp3 hybridized Carbon atoms. 

(2) The Octahedron is the second smallest of the 18 solids which is a candidate 

for the C6 cluster formation. It requires four bonds for each Carbon atom, 

which is not achievable by sp2 hybridized atoms. It is therefore ruled out by 

the most important bond criterion. It also fails the bond angle and solid angle 

criteria. 

(3) The Hexahedron/Cube passes the bond criterion and also the bond angle 

criterion. However, it fails the solid angle criterion. The solid angle at a corner 

of the cube is that subtended by an octant or π/2, which is only a quarter of the 
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ideal solid angle. The outcome for supporting the C8 Carbon cluster is 

assessed as highly unlikely. It is interesting to note that the synthetically 

prepared Cubane molecule has a hexahedral structure [11], but that molecule 

is made of sp3 hybridized Carbon atoms. 

(4) The Icosahedron does not pass the bond criterion, requiring five bonds for 

each Carbon atom. It also fails the bond angle criterion. It however passes the 

solid angle criterion. Overall, the Icosahedron is incapable of supporting the 

C12 cluster. 

(5) The Dodecahedron passes all three criteria and is therefore capable of 

supporting the C20 cluster. It is the largest Platonic solid and the only Platonic 

solid larger than the two smallest Archimedean solids. The Dodecahedron 

emerges as the only Platonic solid capable of supporting a Carbon cage 

cluster. It has been referred to as the smallest Fullerene or a Fullerene without 

any hexagons. 

(6) The Truncated Tetrahedron is made up of hexagons and equilateral triangles. 

It passes the bond criterion, but fails the bond angle criterion and the solid 

angle criterion. It is therefore ruled out as a candidate for the C6 cluster 

formation. 

(7) The Cuboctahedron is made from squares and equilateral triangles. It fails the 

bond criterion and bond angle criterion, but passes the solid angle criterion. 

The failure to satisfy the bond criterion categorically rules it out from the 

contention of the C12 cluster formation. In view of the results for the solids (4), 

(6) and (7), no C12 cluster formation by Platonic or Archimedean solids is 

possible. 

(8) The Truncated Cube is made from equilateral triangles and octagons. It passes 

the bond criterion and the solid angle criterion, but fails the bond angle 

criterion. The possibility of this solid to support C24 cluster is assessed as 

extremely remote. 

(9) The Truncated Octahedron is made up of hexagons and squares. It passes all 

three criteria and is therefore able to represent the structure of the C24 cluster. 

The squares are bounded by single bonds, whereas the hexagons are bounded 

by alternate single and double bonds. 

(10) The Rhombicuboctahedron, like the Cuboctahedron is made of equilateral 

triangles and squares. Like the latter, it too fails the bond criterion and the 

bond angle criterion, but passes the solid angle criterion. Consequently, it is 

unable to represent the C24 cluster. 

(11) The Snub Cube is yet another solid made from equilateral triangles and 

squares. It too fails the bond criterion and the bond angle criterion, but passes 

the solid angle criterion. Consequently, it is unable to represent the C24 cluster. 

Thus, only one Archimedean solid is able support the C24 cluster structure. 

(12) The Icosidodecahedron is made from pentagons and equilateral triangles. It 

fails the bond criterion and bond angle criterion, passing only the solid angle 

criterion. It is therefore, unable to represent the C30 cluster. Being the lone 

candidate for C30 cluster, this assures that no Archimedean solid can support a 

C30 cage cluster. 
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(13) The Great Rhombicuboctahedron is made up of squares, hexagons and 

octagons. It passes all three criteria and is therefore eligible to represent the 

C48 cluster. The squares are bounded by single bonds, whereas the hexagons 

and octagons are bounded by alternate single and double bonds. 

(14) The Truncated Icosahedron represents the famed C60 Buckyball. It is 

structurally made of pentagons and hexagons like all fullerenes (barring the 

Dodecahedron). The pentagons are bounded by single bonds, whereas the 

hexagons are bounded by alternate single and double bonds. The Truncated 

Icosahedron passes all three criteria comfortably and its bond angles of 108o 

and 120o are the most favourable amongst all solids, which explains why it is 

formed so readily. 

(15) The Truncated Dodecahedron is made up of equilateral triangles and 

decagons. It fails the bond criterion and the bond angle criterion, passing only 

the solid angle criterion. It is unable to provide an alternative structure of the 

C60 cluster. 

(16) The Rhombicosidodecahedron is made of equilateral triangles, squares and 

pentagons. Like the previous candidate, it fails the bond criterion and bond 

angle criterion, passing only the solid angle criterion. Like the previous 

candidate, it is unable to provide an alternative structure of the C60 cluster. 

(17) The Snub Dodecahedron is made of equilateral triangles and pentagons. Like 

the two preceding candidates, it fails the bond criterion and bond angle 

criterion, passing only the solid angle criterion. Like the two preceding 

candidates, it is unable to provide an alternative structure of the C60 cluster. 

(18) The Great Rhobicosidodecahedron is made of squares, hexagons and 

decagons. It is the fifth and final solid which passes all three criteria for 

Carbon cage cluster formation and represents the giant C120 cluster whence 

formed. 

 

The five solids satisfying all three criteria and therefore able to accommodate Carbon 

cage clusters are shown in Fig. 2. In that figure, the Carbon atoms occupy the vertices, 

the solid lines represent double bonds and the broken lines represent single bonds. It 

is observed that the squares are always bounded by single bonds, whereas the 

hexagons, octagons and decagons are always bounded by alternate single and double 

bonds. It can be verified that the total number of bonds in each solid is always 

divisible by three and single bonds are twice as numerous as the double bonds – a 

consequence of sp2 hybridization. 
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Table I. General Properties of Platonic & Archimedean Solids 

 

Platonic/Archimedean Solid Polygon 1 Polygon 2 Polygon 3 C cluster if formed 

Tetrahedron Triangle   C4 

Octahedron Triangle   C6 

Cube Square   C8 

Icosahedron Triangle   C12 

Dodecahedron Pentagon   C20 

Truncated Tetrahedron Triangle Hexagon  C12 

Cuboctahedron Triangle Square  C12 

Truncated Cube Triangle Octagon  C24 

Truncated Octahedron Square Hexagon  C24 

Rhombicuboctahedron Triangle Square  C24 

Snub Cube Triangle Square  C24 

Icosidodecahedron Triangle Pentagon  C30 

Great Rhombicuboctahedron Square Hexagon Octagon C48 

Truncated Icosahedron Pentagon Hexagon  C60 

Truncated Dodecahedron Triangle Decagon  C60 

Rhombicosidodecahedron Triangle Square Pentagon C60 

Snub Dodecahedron Triangle Pentagon  C60 

Great Rhombicosidodecahedron Square Hexagon Decagon C120 

 

Table II. Number of Bonds in Platonic & Archimedean Solids 

 

Platonic/Archimedean Solid 3 Bonds 4 Bonds 5 Bonds If allowed 

Tetrahedron Yes   Yes 

Octahedron  Yes  No 

Cube Yes   Yes 

Icosahedron   Yes No 

Dodecahedron Yes   Yes 

Truncated Tetrahedron Yes   Yes 

Cuboctahedron  Yes  No 

Truncated Cube Yes   Yes 

Truncated Octahedron Yes   Yes 

Rhombicuboctahedron  Yes  No 

Snub Cube   Yes No 

Icosidodecahedron  Yes  No 

Great Rhombicuboctahedron Yes   Yes 

Truncated Icosahedron Yes   Yes 

Truncated Dodecahedron   Yes No 

Rhombicosidodecahedron  Yes  No 

Snub Dodecahedron   Yes No 

Great Rhombicosidodecahedron Yes   Yes 
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Table III. Bond Angles in Platonic & Archimedean Solids 

 

Platonic/Archimedean Solid Angle 1 Angle 2 Angle 3 If allowed 

Tetrahedron 60o   No 

Octahedron 60o   No 

Cube 90o   Yes 

Icosahedron 60o   No 

Dodecahedron 108o   Yes 

Truncated Tetrahedron 60o 120o  No 

Cuboctahedron 60o 90o  No 

Truncated Cube 60o 135o  No 

Truncated Octahedron 90o 120o  Yes 

Rhombicuboctahedron 60o 90o  No 

Snub Cube 60o 90o  No 

Icosidodecahedron 60o 108o  No 

Great Rhombicuboctahedron 90o 120o 135o Yes 

Truncated Icosahedron 108o 120o  Yes 

Truncated Dodecahedron 60o 144o  No 

Rhombicosidodecahedron 60o 90o 108o No 

Snub Dodecahedron 60o 108o  No 

Great Rhombicosidodecahedron 90o 120o 144o Yes 

 

Table IV. Vertex Solid Angles in Platonic & Archimedean Solids 

 

Platonic/Archimedean Solid Vertex Solid Angle Ω Ω/2π %of ideal If allowed 

Tetrahedron 0. 551 0. 088 8. 8 No 

Octahedron 1. 359 0. 216 21. 6 No 

Cube 1. 571 0. 250 25. 0 No 

Icosahedron 2. 635 0. 419 41. 9 Yes 

Dodecahedron 2. 962 0. 471 47. 1 Yes 

Truncated Tetrahedron 1. 911 0. 304 30. 4 No 

Cuboctahedron 2. 462 0. 392 39. 2 Yes 

Truncated Cube 3. 615 0. 575 57. 5 Yes 

Truncated Octahedron 3. 142 0. 500 50. 0 Yes 

Rhombicuboctahedron 3. 481 0. 554 55. 4 Yes 

Snub Cube 3. 590 0. 571 57. 1 Yes 

Icosidodecahedron 3. 674 0. 585 58. 5 Yes 

Great Rhombicuboctahedron 3. 927 0. 625 62. 5 Yes 

Truncated Icosahedron 4. 249 0. 676 67. 6 Yes 

Truncated Dodecahedron 3. 871 0. 616 61. 6 Yes 

Rhombicosidodecahedron 4. 446 0. 708 70. 8 Yes 

Snub Dodecahedron 4. 510 0. 718 71. 8 Yes 

Great Rhombicosidodecahedron 4. 712 0. 750 75. 0 Yes 
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Fig. 1. Platonic and Archimedean solids: Top to bottom, left to right: 

Tetrahedron, Cube, Octahedron, Dodecahedron and Icosahedron; Truncated 

Tetrahedron, Truncated Cube, Truncated Octahedron and Truncated 

Dodecahedron; Truncated Icosahedron, Cuboctahedron and Icosidodecahedron; 

Rhombicuboctahedron, Great Rhombicuboctahedron and Snub Cube; 

Rhombicosidodecahedron, Great Rhombicosidodecahedron and Snub 

Dodecahedron. 
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Fig. 2. Platonic and Archimedean solids suitable for cage Carbon cage clusters: 

Top to bottom, left to right: Dodecahedron, representing C20; Truncated 

Octahedron, representing C24; Great Rhombicuboctahedron, representing C48; 

Truncated Icosahedron, representing C60; and Great Rhombicosidodecahedron, 

representing C120. The solid lines represent double bonds whereas the broken 

lines represent single bonds. 
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5. DISCUSSION 

The formation of Carbon cage clusters having regular and semi-regular polyhedral 

structures has been examined. As a result of restrictions imposed by the bonds, bond 

angle and solid angle criteria, only one Platonic solid and four Archimedean solids are 

able to support Carbon cage structures. The results differ from our earlier studies [4, 

5] in which sp3 hybridized atoms were allowed to partake in the cage cluster 

formations. Considering the limitations imposed by hybridized orbital configurations, 

the result of the present study are deemed more credible. 
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