
International Journal of Computer and Internet Security.
ISSN 0974-2247 Volume 3, Number 1 (2011), pp. 1-8
© International Research Publication House
http://www.irphouse.com

Implementation of Searchtree in the Multicast
Networks

Satisha1 and Paramesh2

1Research Scholar in JJT University, India
2Professor in AIT, India

E-mail: satishsatyalal@gmail.com, drparameshaitrd@rediffmail.com

Abstract

The successful deployment of multicast in the Internet requires the availability
of good network management solutions. Discovering multicast tree topologies
is an important component of this task. Network managers can use topology
information to monitor and debug potential multicast forwarding problems. In
addition, the collected topology has several other uses, for example, in reliable
multicast transport protocols, in multicast congestion control protocols, and in
discovering network characteristics. We present a mechanism for discovering
multicast tree topologies using the forwarding state in the network. We call
our approach Search tree. First, we present the basic operation of Search tree.
Then, we explore various issues related to its functionality. Next, we provide a
detailed evaluation by comparing it to the currently available alternatives.
Finally, we discuss a number of deployment issues. We believe that tracetree
provides an efficient and scalable mechanism for discovering multicast tree
topologies and therefore fills an important void in the area of multicast
network management.

Keywords: Forwarding state, management, monitoring, multicast, routing,
tree topology discovery.

Introduction
With the deployment of native multicast in commercial networks, multicast is getting
closer to becoming a ubiquitous service in the Internet. Before multicast can be used
as a revenue-generating service, its robust and flawless operation needs to be
established in the interdomain [1]. This requires the availability of management tools
to help network administrators configure and maintain multicast functionality within
and between multicast-enabled domains.

2 Satisha and Paramesh

 Discovering multicast tree topologies is an important component of multicast
network management [2]. Network managers can use the topology information as the
basis of group monitoring or can use it to identify potential multicast forwarding
problems that may occur due to routing protocol limitations, multicast network
misconfigurations, or routing policy decisions. In addition, topology information has
several other uses reliable multicast transport protocols [3], multicast
congestioncontrol protocols [4], and discovering network characteristics [5]. Finally,
end users can use topology information and traffic flow to monitor activity in a group,
or, if there is a problem, where to direct an inquiry [6].
 The organization of this paper is as follows. Section II gives a searchtree
Scalability. Section III describes the Deployment Issue; Section IV describes the
Software Analysis and design. In Section V, we present our conclusions.

Searchtree Scalability
Searchtree depends on each and every compliant on-tree router to send its response
back to the querier. Basic scalability is provided by dividing topology discovery into
rounds and discovering a controlled portion of the tree in each round. In addition to
this mechanism, based on the characteristics of multicast forwarding trees, we
propose a new response collection approach to further improve the scalability of
searchtree. We call this approach non-relay response collection (nr-response).
 The nr-response operates as follows: on receiving a request packet, each relay
router first creates its response packet. Then, instead of sending this response directly
to the querier, it appends it to the end of the request packet and forwards it to its
downstream neighbor. On receiving a request packet, each branching router first
creates its own response packet, and then appends it to the end of the accumulated
information. At this point, the collected response information corresponds to the
multicast path between this router and the previous compliant branching router on the
multicast tree. In the next step, this router separates the accumulated response
information from the request packet and sends it back to the querier. In the last step, it
forwards a fresh request packet (a request packet having no response information
appended) to its downstream neighbors. In addition, if a router has only one out-going
interface but this interface is on a shared LAN segment and if this router has more
than one multicast enabled
 Neighbor on this shared LAN segment, then the router considers itself a branching
router. In the case of leaf routers, they will perform similar steps as the branching
routers (except for the request forwarding step).
 One final modification related to nr-response is on the scope calculation of the
request packets. As we have mentioned previously, searchtree uses a modified-TTL
scoping mechanism for scalability and uses the duplication of IP TTL values (in the
TTLtt field) to detect non-compliant routers. In the original tracetree mechanism, at
each compliant router on the tree (whether it is a relay router or not), these values are
computed or decremented. In nr-response, we require only the branching routers and
the leaf routers to send responses back to the querier. Therefore, using the IP TTL
value alone is not very helpful for controlling the number of responses. For this

Implementation of Search Tree in the Multicast Networks 3

reason, we propose a slightly different TTL scoping mechanism for controlling the
scope of request packets. That is, we use a new field TTLnr in the tracetree protocol
header to indicate the number of responses expected to be received in this round from
the network. In this situation, the (TTLIP; TTLtt) pair is used to detect noncompliant
routers on the multicast tree.

Figure 1

 When a non-relay router receives the request packet, it uses the TTLnr value to
send its response back to the querier and modifies this value for the request packets
that it forwards on the tree. In addition, in order to prevent pre-mature scope
expiration (due to IP TTL expiration in the network) each compliant router on the
multicast tree adjusts TTLIP and TTLtt values according to TTLnr value.
 As an example, consider the tree topology in Fig 4. According to nr-response, the
querier will receive responses only from the root router (0), branching routers (nodes
6, 7, 13, 21, 27, and 36) and leaf routers (nodes 1, 12, 17, 28, 29, 33, 39, and 41).
Therefore, the querier will learn the exact same topology information but will receive
fewer responses (15 responses instead of 42 in this particular example). Thus, based
on branching characteristics, we can reduce both the number of rounds and the overall
discovery time.

Deployment Issues
In this section, we discuss potential tracetree deployment issues. One important issue
is security in terms of using tracetree for launching denial-of-service attacks. This is
possible if the tracetree functionality is accessible by any user. We presented
mechanisms to make launching attacks more difficult and discussed how to reduce the
effect of potential attacks. Ideally we expect these measures to provide sufficient
assurance for the deployment of searchtree in the Internet. However, these
mechanisms may not always be satisfactory for all users (ISPs). Considering this
possibility, instead of completely turning off searchtree functionality in routers,

4 Satisha and Paramesh

concerned users can use a more controlled operation environment for tracetree. In this
scenario, we use an agent based tracetree topology collection mechanism similar to
the Multicast Consolidated Proxy Monitor (MCPM). Fig 2 shows the steps. In this
approach, each domain allocates a well-known tracetree agent responsible for running
all tracetree queries in the local domain.

Figure 2

1. Querier sends a query packet to first hop router1.
2. First hop router1 responds with the address of the tracetree agent Agent A.
3. Querier sends its query to Agent A.
4. Agent A sends a query to first hop router 1 during topology discovery, on tree

routers in domain send their responses back to the Agent A.
5. When router 4 receives a request from router 3 it sends the address of Agent B

to request destination i.e. Agent A
6. Agent A forwards query to agent B.
7. Agent B sends query to router 4. During the topology discovery, on tree router

in domain B sends their responses back to the Agent B.
8. Agent A sends the collected responses back to the querier.
9. Agent B sends the collected responses back to the querier.

 All the routers are configured to accept searchtree query messages only from the
local tracetree agent in their domain. Since tracetree is limited to supporting requests
coming from a well-known agent site, secure communication primitives can be used
to provide authenticated message exchange between the agent site and the routers.
 Once a searchtree agent receives a query packet, it runs the query in the local
domain, collects the responses, and sends them back to the querier. In cases where a
tree topology spans multiple domains, tracetree agents in adjacent domains
communicate query messages between each other so that a searchtree agent in each
domain traces the portion of the multicast tree in its own domain and then sends a

Implementation of Search Tree in the Multicast Networks 5

response back to the original querier.
 In addition, in an agent-based deployment scenario, tracetree agents can cache the
collected topology and use this information for subsequent queries. Moreover, agents
can perform additional operations such as hiding the actual IP addresses of the routers
in order to protect privacy of the internal network topology.
 In summary, even though we prefer a native/standard deployment for search tree,
we expect the agent-based deployment to provide a reasonably good assurance for
ISPs to support this service in their networks.
 Another important issue is the interaction of tracetree with the multicast routing
protocols. searchtree uses existing multicast forwarding states in the routers. The
multicast routing protocol deployed in the network may be using unidirectional or
bidirectional trees and may be building source specific or shared trees.
 Searchtree is insensitive to packet encapsulations used in some of the multicast
routing protocols such as the Multicast Source Discovery Protocol (MSDP) and
Protocol Independent Multicast-Sparse Mode (PIM-SM). In MSDP, when a new
source starts sending to a multicast group, the Randezvous Point (RP) in the source
domain uses MSDP Source Announcement (SA) messages to announce this new
source to the RPs in remote domains. Later on, when the group receivers in these
remote domains learn the existence of this new source, they use PIM-SM to establish
a multicast forwarding path toward this new source. Therefore, searchtree cannot
effectively return the actual multicast tree topology between this new source and the
remote group receivers until the underlying forwarding tree is established.

Software Analysis and Design
Requirement analysis
Searchtree is simulated on a LAN network using TCP or IP sockets. This Querier
function here is designed in the server. When the multiple clients need to
communicate with each other, first the clients are analyzed by the querier, to
determine whether the clients existing or not, for tracing multicast route in the
network.
 Searchtree is analyzed and designed to consider both complete statistics of the
querier and clients’ model to make decision about multicast route.

Function oriented Design
Function oriented Design relies on decomposing the system into a set of interacting
functions with a centralized system state shared by these functions. Functions also
maintain local state information, but only for the duration of their execution. This
activity involves drawing and analyzing Request Flow Diagrams (RFD).
 A Request Flow diagram describes how the output is derived from the input
through a sequence of functional transformations. Request flow diagrams show
functional transformations but do not suggest how these might be implemented.
 A system described in this way might be implemented as a single program using
functions to implement each transformation. The programming has to be done for the
following events.

6 Satisha and Paramesh

Client-Server Connection
The Client-Server Communication model is used to realize the working of the
Traceetree mechanism in this project. Hence we are designing a server (querier) and
many clients (sending (request/response) and receiving (request/response)) processes,
socket mechanism is used for exchanging data between processes. These Processes
can be either is on the same machine, or on different machines connected via a
network. Once a socket connection is established, data can be sent in both directions
until one of the endpoint closes the connection.
 Generally, the process making the request is called client, and the process
servicing the request is called the server. Here the server creates two sockets one for
transmitting client and other for the receiving client.
 We will briefly go over the steps in a typical client-server connection. The
following table outlines these steps:

Table 1

Server Client
1. Establish a listening socket and wait for
connection from clients.

 2.Create a client socket and attempt to
connect to server

3.Accept the client’s connection attempt
4.Send and receive data 4.Send and receive data
5.Close the connection 5.Close the connection

 First, the server creates a listening socket, and waits for connection attempts from
clients. The clients create a socket on its side, and attempts to connect with the server.
The server then accepts the connection, and data exchange can begin. Once all data
has been passed through the socket connection, either endpoint can close the
connection.

Conclusion
In this work, we have proposed a mechanism, tracetree, for multicast tree topology
discovery. It requires relatively little additional router support and relies only on
forwarding state. We argued that the alternative approaches (SNMP and mtrace-based
approaches) have requirements or limitations that significantly limit their use for
topology discovery. A benefit of searchtree is that it provides tight control on the
number of request messages that are forwarded throughout the tree. In this respect, we
discussed a number of issues related to searchtree based topology discovery. In
addition, we have evaluated tracetree by comparing it to the alternative approaches.
We have shown that tracetree is comparable or superior to the alternative approaches
in terms of topology discovery overhead and topology discovery time. In addition,
searchtree can be used in both intra- and interdomain and it can tolerate the existence

Implementation of Search Tree in the Multicast Networks 7

of noncompliant routers in the multicast tree. We believe that our technique provides
a scalable and efficient way to discover a multicast tree’s topology in real time while
requiring marginal additional functionality in routers.

References

[1] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment
issues for the IP multicast service and architecture,” IEEE Network, vol. 14, pp.
10–20, Jan./Feb. 2000.

[2] K. Sarac and K. Almeroth, “Supporting multicast deployment efforts: A survey
of tools for multicast monitoring,” J. High Speed Networking-Special Issue on
Management of Multimedia Networking, Mar. 2001.

[3] S. Paul, K. K. Sabnani, J. C. Lin, and S. Bhattacharyya, “Reliable Multicast
transport protocol (RMTP),” IEEE J. Select. Areas Commun., vol.15, pp. 407–
421, Apr. 1997.

[4] S. Jagannathan, K. Almeroth, and A. Acharya, “Topology sesitive Congestion
control for real-time multicast,” inWorkshop Network Operating System
Support for Digital Audio and Video (NOSSDAV), Chapel Hill, NC, June
2000.

[5] A. Adams, R. Bu, R. Caceres, N. Duffield, T. Friedman, J. Horowitz, F. Lo
Presti, S. Moon, V. Paxson, and D. Towsley, “The use of end-to-end multicast
measurements for characterizing internal network behavior,” IEEE Commun.
Mag., vol. 38, pp. 152–159, May 2000.

[6] A. Kanwar, K. Almeroth, S. Bhattacharyya, and M. Davy, “Enabling end-user
network monitoring via the multicast consolidated proxy monitor,” in Proc.
SPIE ITCom Conf. Scalability Traffic Control in IP Networks,Denver, CO,
Aug. 2001.

[7] S. Ratnasamy and S. McCanne, “Inference of multicast routing trees And
bottleneck bandwidths using end-to-end measurements,” in Proc. IEEE
INFOCOM, New York, Mar. 1999, pp. 353–360.

[8] N. G. Duffield, J. Horowitz, and F. Lo Presti, “Adaptive multicast topology
inference,” in Proc. IEEE INFOCOM, Anchorage, AK, Apr. 2001, pp. 1636–
1645.

[9] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, “Protocol Operations for
version 2 of the simple network management protocol (SNMPv2),” Internet
Engineering Task Force (IETF), RFC 1905, Jan. 1996.

[10] D. Makofske and K. Almeroth, “Real-time multicast tree visualization and
monitoring,” Software-Practice Experience, vol. 30, no. 9, pp. 1047–1065, July
2000.

[11] W. Fenner and S. Casner, “A ‘traceroute’ facility for IP multicast,” Internet
Engineering Task Force (IETF), draft-ietf-idmr-traceroute-ipm- *.txt, July
2000.

[12] HP OpenView network management solution. [Online]. Available:
http://www.hpl.hp.com/ [13] P. Sharma, E. Perry, and R. Malpani, “IP

8 Satisha and Paramesh

multicast operational network management: Design, challenges, and
experiences,” IEEE Network, vol.17, pp. 49–55, Mar.–Apr. 2003.

[13] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport
protocol for real-time applications,” Internet Engineering Task Force (IETF),
RFC 1889, Jan. 1996.

[14] H. Holbrook and B. Cain, “Source-specific multicast for IP,” Internet
Engineering Task Force (IETF), draft-ietf-ssm-arch-*.txt, Nov. 2002.

[15] IP router alert option, Feb. 1997, RFC 2113.
[16] R. Chalmers and K. Almeroth, “On the topology of multicast trees,”

IEEE/ACM Trans. Networking, vol. 11, pp. 153–165, Feb. 2003.
[17] Y. Dalal and R. Metcalfe, “Reverse path forwarding of broadcast packets,”

Commun. ACM, vol. 21, no. 12, pp. 1040–1048, 1978.
[18] J. Pansiot and D. Grad, “On routes and multicast trees in the internet,” ACM

Comput. Commun. Rev., vol. 28, no. 1, Jan. 1998.
[19] K. Almeroth, “A long-term analysis of growth and usage patterns In the

multicast backbone (MBone),” in Proc. IEEE INFOCOM, Tel Aviv, Israel,
Mar. 2000, pp. 824–833.

[20] A. Ballardie, “Core based trees (CBT version 2) multicast routing,” Internet
Engineering Task Force (IETF), RFC 2189, Sept. 1997.

[21] D. Meyer and B. Fenner, “Multicast source discovery protocol (MSDP),”
Internet Engineering Task Force (IETF), draft-ietf-mboned-msdp-*.txt, Nov.
2002.

[22] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, G. Liu, and L. Wei, “PIM
architecture for wide-area multicast routing,” IEEE/ACM Trans. Networking,
vol. 4, pp. 153–162, Apr. 1996.

