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Abstract 
 

In this paper the controlling information flow and maintaining integrity via 
monadic encapsulation of effects. This approach is constructive, relying on 
properties of monads and monad transformers to build, verify, and extend 
secure software systems. We illustrate this approach by construction of 
abstract operating systems called separation kernels. Starting from a 
mathematical model of shared-state concurrency based on monads of 
resumptions and state, we outline the development by stepwise refinements of 
separation kernels supporting Unix-like system calls, inter domain 
communication, and a formally verified security policy. Because monads may 
be easily and safely represented within any pure, higher-order, typed 
functional language, the resulting system models may be directly realized 
within a language. 

 
 
Introduction 
Integrity and Confidentiality concerns within the setting of shared-state concurrency 
are primarily addressed by controlling interference and interaction between threads. 
Several investigators have attempted to achieve control of interference through 
language mechanisms that systematically separate information. Most of these 
approaches have been security-specific extensions to type systems for existing 
languages. In this investigation we take a different approach. We do not use a domain-
specific extension to the type system. We use a standard pure functional language, 
with its existing type system, as our base language. Within that language and type 
system we characterize the effects that are at play in an operating system kernel using 
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the semantic technique of monadic encoding of effects. Most importantly, we 
construct the effect model in a modular manner using constructions called monad 
transformers. This modularity clearly distinguishes within the type system those 
facets of the global effect system on which a program fragment acts.  
 The development proceeds by developing three model kernels, the complete code 
of which may be downloaded from our website. These kernels build on one another. 
The first provides the reference point for thread behavior in isolation – the model of 
integrity of thread execution. The second and third kernels provide more sophisticated 
concurrency and communication primitives with sufficient power to be vulnerable to 
exploitation if separation is not achieved.  
 
 
Precise control of effects  
This approach supports an “abstract data type approach” to language definition, 
capturing distinct computational paradigms as algebras. A helpful metaphor is that a 
monad is a programming language with sequencing and “no-op” (skip) constructs 
where (;) is associative and has skip as its right and left unit. Monad “languages” may 
contain other language features corresponding to their computational paradigms: the 
state monad, for example, has assignment (:=) and resumption monads define 
concurrent execution (||) and, in some formulations, “reactive” programming features 
such as message passing, synchronization, etc. Monad transformers are monad 
language “constructors” that add new features to a monad language with each monad 
transformer application; such modularly-constructed monads are referred to as layered 
monads. This metaphor is not a precise characterization of monads or monadic 
semantics; it is imprecise in the following sense.  
 We demonstrate this approach through the construction of abstract operating 
systems called separation kernels. Separation kernels enforce a non-interference-
based security property by partitioning the state into separate user. 

 
 

 
 

Figure 1: (Left) Separation kernel: threads within each domain can only access their 
own state, and all inter-domain communication is mediated by the kernel. The kernel 
enforces a “no write down” security policy. (Right) Layering monads for separation: 
combining fine control of stateful effects with concurrency into Layered Monads have 
important properties “by construction”.  
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Reactive concurrency and separation  
A reactive program is one that interacts continually with its environment and may be 
designed to not terminate (e.g., an operating system). We coin the term reactivity to 
mean the notion of computation given by reactive programs. We now consider a 
refinement to the concurrency model that allows computations to signal requests to 
the kernel and receive responses from it; we coin the term reactive resumption monad 
to distinguish this structure from the previous one. Although the reactive resumption 
monadic structure is mentioned in passing in the literature, it was never named to the 
authors’ best knowledge. A reactive resumption monad has constructors for pausing 
computations just as basic resumption monads do, and it also extends the basic 
resumption structure with Unix-like system requests and responses.  
 
 
Reactive resumption monad transformer 
Reactive resumption monads have two non-proper morphisms. The first of these, step, 
is defined analogously to its definition in ResT. The definition of step shows why we 
require that Req and Rsp have a particular shape including Cont and Ack, 
respectively; namely, there must be at least one request/response pair for the 
definition of step. Another non-proper morphism provided by ReactT allows a 
computation to raise a signal; its definition is given below. Furthermore, there are 
certain cases where the response to a signal is intentionally ignored, for which we de-
fine signull:  
  Re = ReactT Req Rsp M ,  
 
 step : Ma → Re a,  

 step x = P (Cont, λ Ack. x ₃M (ηM ◦ D)), signal : Req → Re Rsp,  

 signal q = P (q, ηM ◦ ηRe), signull : Req → Re (),  

 signull q = P (q, ηM ◦ ηRe ◦ (λ_. ())).  
 
 In the definition of (signal q) above, the effect of the composition, ηM ◦ ηRe, is that 
the system response ultimately passed to this function will be returned as the value of 
the computation. The pre-composition of (λ_.()) in the definition of (signull q), in 
contrast, will replace this system response by the nil value, ().  
 Different versions of step with R and Re are used in this paper, but without 
ambiguity as the version of step is determined by the type context of its use. Within 
the atom (step x), a Cont request by a user thread expects the response Ack and this 
expectation is encoded by the pattern “λ Ack”. This imposes constraint on the kernel 
to always respond to a Cont request with an Ack acknowledgment. Each kernel in this 
article obeys this simple, sensible constraint. It is a simple matter to design a 
semantics in which processes handle any response from the kernel, al-though, for the 
purposes of the present article; this was seen as a needless distraction.  
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Security-conscious reactive resumption monad transformer 
We make the monad transformer (ReactT q r) security-conscious as before by 
including a high and low security pause; this is the version used hereafter: 

  data ReactT q rMa = Da 

  PL(q, r → (M (ReactT q rMa)))  

  PH (q, r → (M (ReactT q rMa))).  
 
 
Inter-domain communication 
This section considers point 2 in Fig. 2: the extension of the basic model of integrity 
of Section 4.1 to express inter-domain communication. Any such extension requires 
demonstration that Hi domain threads cannot affect Lo threads – in this case that the 
system obeys a “no write down” security policy.  
 The Event language is extended with two new events, bcast(l) and recv(l), and 
accommodating them requires the introduction of reactivity. To this end, Req is 
extended with broadcast and receive request tags (Bcst Int and Rcv, respectively) and 
Rsp is extended with the response to a receive request, (Msg Int): 

type Re = ReactT Req Rsp K, data Req = Cont | Bcst Int | Rcv, data 
Rsp = Ack | Msg Int. 
 
 
Achieving scalability  
How are typical operating system behaviors (e.g., process creation, preemption, 
synchronization, etc.) achieved in this layered monadic setting and what impact, if 
any, do such enhancements to functionality have on the security verification? These 
are questions to which it is difficult to give final, definitive answers; however, by 
considering an example, one can get some indication as to what the relevant concerns 
are. This section considers such an extension – a process creation primitive called 
dupl – to the inter-domain communication kernel of the previous section.  
 As it turns out, this additional functionality requires no change to the existing 
resumption monadic framework and has little impact on the security verification. The 
impact it does have on the verification is as limited as one could reasonably hope for 
and boils down simply to considering an extra case corresponding to the added 
functionality in each of the various proofs and definitions of Section 5.3. That is to 
say, the verified properties in Section 5.3 required no re-verification at all. This 
modularity and scalability in the verification would seem to arise from the fact that 
the new functionality is an orthogonal concern to the security property. That is, 
because the added functionality does not result in inter-domain information flow, it 
has no impact on the system-wide security.  
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Conclusion  
Type constructions and their properties are the foundation of this approach to 
language-based security; this is fundamentally different from approaches based on 
information flow control via type checking. The approach reflects the semantic 
foundations of effects and effect interaction into a pure functional language in which 
provably separable computations can be constructed. At the same time, it allows 
explicit regions of the program in which the type system does not, by itself, guarantee 
separation. In the monadic approach it is clear from the type construction when 
information flow separation is established and when it is established by reasoning 
about program behavior.  
 This approach can be used either for direct implementation or as a modeling 
language. As a modeling language, these techniques can explain the effect separation 
provided by unprivileged execution modes in hardware, while at the same time 
modeling the potential interference of privileged execution. As an implementation 
language it provides, through the type constructions, ways to construct programs that 
achieve information flow separation. In this sense this work is similar to language-
based security mechanisms based on type checking. However, such approaches are 
domain-specific extensions of type systems to express information flow properties; 
the monadic approach uses concepts easily expressed in existing type systems for pure 
higher-order languages.  
 We have not explored the formal relationship between domain-specific type 
systems for information flow and monads. We suspect that in some cases it may be 
possible to prove the soundness of information flow extensions to other languages by 
embedding them into the monadic type systems presented here. This may be of 
particular interest when applied to recent enhancements to information flow type 
systems that allow for policy enabled downgrading functions to be defined.  
 Confidentiality and integrity concerns within the setting of shared-state 
concurrency are really about controlling interference and interaction between threads. 
It is a natural and compelling idea, therefore, to apply the mathematics of effects – 
monads – to this problem as monads provide precise control of such effects. In fact, 
layering monads – i.e., modularly constructing monads with monad transformers – 
yields fine-grained control of effects and their interactions. This paper demonstrates 
how the fine-grained tailoring of effects possible with monad transformers promotes 
integrity and information security concerns. As a proof of concept, we showed that a 
classic design in computer security (the separation kernel of Rushby can be realized 
and verified in a straightforward manner.  
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