
International Journal of Computer and Internet Security.
ISSN 0974-2247 Volume 3, Number 1 (2011), pp. 9-16
© International Research Publication House
http://www.irphouse.com

Achieving Concurrent Information Security through
Monadic Control Technique of Effects

Geetika and Neelam Kumari

Research Scholar, Singharni University,
Pacheri Bari, Rajasthan, India

Abstract

In this paper the controlling information flow and maintaining integrity via
monadic encapsulation of effects. This approach is constructive, relying on
properties of monads and monad transformers to build, verify, and extend
secure software systems. We illustrate this approach by construction of
abstract operating systems called separation kernels. Starting from a
mathematical model of shared-state concurrency based on monads of
resumptions and state, we outline the development by stepwise refinements of
separation kernels supporting Unix-like system calls, inter domain
communication, and a formally verified security policy. Because monads may
be easily and safely represented within any pure, higher-order, typed
functional language, the resulting system models may be directly realized
within a language.

Introduction
Integrity and Confidentiality concerns within the setting of shared-state concurrency
are primarily addressed by controlling interference and interaction between threads.
Several investigators have attempted to achieve control of interference through
language mechanisms that systematically separate information. Most of these
approaches have been security-specific extensions to type systems for existing
languages. In this investigation we take a different approach. We do not use a domain-
specific extension to the type system. We use a standard pure functional language,
with its existing type system, as our base language. Within that language and type
system we characterize the effects that are at play in an operating system kernel using

10 Geetika and Neelam Kumari

the semantic technique of monadic encoding of effects. Most importantly, we
construct the effect model in a modular manner using constructions called monad
transformers. This modularity clearly distinguishes within the type system those
facets of the global effect system on which a program fragment acts.
 The development proceeds by developing three model kernels, the complete code
of which may be downloaded from our website. These kernels build on one another.
The first provides the reference point for thread behavior in isolation – the model of
integrity of thread execution. The second and third kernels provide more sophisticated
concurrency and communication primitives with sufficient power to be vulnerable to
exploitation if separation is not achieved.

Precise control of effects
This approach supports an “abstract data type approach” to language definition,
capturing distinct computational paradigms as algebras. A helpful metaphor is that a
monad is a programming language with sequencing and “no-op” (skip) constructs
where (;) is associative and has skip as its right and left unit. Monad “languages” may
contain other language features corresponding to their computational paradigms: the
state monad, for example, has assignment (:=) and resumption monads define
concurrent execution (||) and, in some formulations, “reactive” programming features
such as message passing, synchronization, etc. Monad transformers are monad
language “constructors” that add new features to a monad language with each monad
transformer application; such modularly-constructed monads are referred to as layered
monads. This metaphor is not a precise characterization of monads or monadic
semantics; it is imprecise in the following sense.
 We demonstrate this approach through the construction of abstract operating
systems called separation kernels. Separation kernels enforce a non-interference-
based security property by partitioning the state into separate user.

Figure 1: (Left) Separation kernel: threads within each domain can only access their
own state, and all inter-domain communication is mediated by the kernel. The kernel
enforces a “no write down” security policy. (Right) Layering monads for separation:
combining fine control of stateful effects with concurrency into Layered Monads have
important properties “by construction”.

Achieving Concurrent Info

Figure 2: Scalability: Ker
significant level of scalabi
modified and the impact o

Layered state monad
This section considers the
principle tool applied to t
construction” properties o
foundation for domain se
languages will be given p
uses in the denotation sem
and we assume of neces
section begins with a qu
transformers, and readers
background.

Definition 1: A state mon
₃M, η, ₃O is a monad, an
() and g : M s.

 We will refer to a sta
associated operations and

Definition 2: A state mon
following equations hold
(sequencing) g >> ϕ = ϕ
 The (sequencing) axio
same as updating by their

ormation Security

rnel specifications based on fine control of ef
ility in two important respects: they are easil

of such extensions on the security verification

ds and separation
e representation and construction of separated
hese tasks is the layered state monad. It is s
of layered state monads give rise naturally
eparation. Separation semantics for the pro
partly in terms of layered state monads. Mo
mantics of languages with effects are essenti
sity that the reader possesses familiarity w

uick review of the basic concepts of mona
s requiring more should consult the referen

nad structure is a quintuple ₃M , η, ₃, u, g, sO
nd the update and get operations on s are: u

ate monad structure ₃M , η, ₃, u, g, sO simp
state type are clear from context.

nad is a state monad structure ₃M , η, ₃, u, g, s
for any f , f ₃ : s → s and ϕ : Ma, u f >>
(cancellation)

om shows how updating by f and then updati
r composition (f ₃ ◦ f). The (cancellation) a

11

ffects achieve a
ly extended and

n is minimized.

d domains. The
shown how “by
to an algebraic

ocess and event
onads and their
ial to this work,
with them. This
ads and monad
nces for further

where
: (s → s) → M

ply as M if the

sO such that the
 u f ₃ = u (f ₃ f)

ing by f ₃ is the
axiom specifies

12

that g operations whose
computation.

Definition 3: A mask for
σ0) for any arbitrary fixed
of mask operators: uf >> m

The basic model of in
The confidentiality policie
integrity policies seek to
demonstrates how monadi
so, we present the basic m
are totally separate – they
separation is a direct c
developed. Before the ba
formulate its concurrency

Allowing secure inter
This section extends the b
interaction – in this case
events – that introduce t
interactions are mediated
original conception and it
enforced. This extension f
in that the text of the bas
enhanced kernel; the incre
to the underlying monad
message-passing primitive
isolating them from the oth

Geetika and N

e results are ignored have no effect on t

state monad ₃M , η, ₃, u, g, sO is defined as
d state σ0. The (clobber) rule captures the de
masks = masks (clobber)

Figure 3: Monadic architecture.

ntegrity
es seek to eliminate inappropriate disclosure
eliminate inappropriate modification of dat

ic fine control of effects addresses integrity c
model of integrity. In this kernel, threads in dif
y cannot modify storage in an-other domain.
consequence of the properties of layered
asic integrity model may be described, how
model, and for this, we use monads of resum

r domain interaction
basic integrity model to include primitives fo
e, asynchronous message broadcast and bl
the possibility of insecure information flow
d entirely through the separation kernel a
t is in the kernel that the “no write down” se
follows the pattern of modular language def
ic integrity model remains almost entirely in
eased system functionality comes about throu
ds. The encapsulation of the new reactive
es) by a monad transformer aids the security
her kernel building blocks.

Neelam Kumari

the rest of the

s: masks = u(λ_.
efining property

of information,
ta. This section
concerns. To do
fferent domains
. This complete

state monads
wever, we must

mptions.

for inter domain
locking receive

w. Inter domain
as in Rushby’s
ecurity policy is
finitions as well
ntact within the
ugh refinements
e features (i.e.,
y verification by

Achieving Concurrent Information Security 13

Reactive concurrency and separation
A reactive program is one that interacts continually with its environment and may be
designed to not terminate (e.g., an operating system). We coin the term reactivity to
mean the notion of computation given by reactive programs. We now consider a
refinement to the concurrency model that allows computations to signal requests to
the kernel and receive responses from it; we coin the term reactive resumption monad
to distinguish this structure from the previous one. Although the reactive resumption
monadic structure is mentioned in passing in the literature, it was never named to the
authors’ best knowledge. A reactive resumption monad has constructors for pausing
computations just as basic resumption monads do, and it also extends the basic
resumption structure with Unix-like system requests and responses.

Reactive resumption monad transformer
Reactive resumption monads have two non-proper morphisms. The first of these, step,
is defined analogously to its definition in ResT. The definition of step shows why we
require that Req and Rsp have a particular shape including Cont and Ack,
respectively; namely, there must be at least one request/response pair for the
definition of step. Another non-proper morphism provided by ReactT allows a
computation to raise a signal; its definition is given below. Furthermore, there are
certain cases where the response to a signal is intentionally ignored, for which we de-
fine signull:
 Re = ReactT Req Rsp M ,

 step : Ma → Re a,

 step x = P (Cont, λ Ack. x ₃M (ηM ◦ D)), signal : Req → Re Rsp,

 signal q = P (q, ηM ◦ ηRe), signull : Req → Re (),

 signull q = P (q, ηM ◦ ηRe ◦ (λ_. ())).

 In the definition of (signal q) above, the effect of the composition, ηM ◦ ηRe, is that
the system response ultimately passed to this function will be returned as the value of
the computation. The pre-composition of (λ_.()) in the definition of (signull q), in
contrast, will replace this system response by the nil value, ().
 Different versions of step with R and Re are used in this paper, but without
ambiguity as the version of step is determined by the type context of its use. Within
the atom (step x), a Cont request by a user thread expects the response Ack and this
expectation is encoded by the pattern “λ Ack”. This imposes constraint on the kernel
to always respond to a Cont request with an Ack acknowledgment. Each kernel in this
article obeys this simple, sensible constraint. It is a simple matter to design a
semantics in which processes handle any response from the kernel, al-though, for the
purposes of the present article; this was seen as a needless distraction.

14 Geetika and Neelam Kumari

Security-conscious reactive resumption monad transformer
We make the monad transformer (ReactT q r) security-conscious as before by
including a high and low security pause; this is the version used hereafter:

 data ReactT q rMa = Da

 PL(q, r → (M (ReactT q rMa)))

 PH (q, r → (M (ReactT q rMa))).

Inter-domain communication
This section considers point 2 in Fig. 2: the extension of the basic model of integrity
of Section 4.1 to express inter-domain communication. Any such extension requires
demonstration that Hi domain threads cannot affect Lo threads – in this case that the
system obeys a “no write down” security policy.
 The Event language is extended with two new events, bcast(l) and recv(l), and
accommodating them requires the introduction of reactivity. To this end, Req is
extended with broadcast and receive request tags (Bcst Int and Rcv, respectively) and
Rsp is extended with the response to a receive request, (Msg Int):

type Re = ReactT Req Rsp K, data Req = Cont | Bcst Int | Rcv, data
Rsp = Ack | Msg Int.

Achieving scalability
How are typical operating system behaviors (e.g., process creation, preemption,
synchronization, etc.) achieved in this layered monadic setting and what impact, if
any, do such enhancements to functionality have on the security verification? These
are questions to which it is difficult to give final, definitive answers; however, by
considering an example, one can get some indication as to what the relevant concerns
are. This section considers such an extension – a process creation primitive called
dupl – to the inter-domain communication kernel of the previous section.
 As it turns out, this additional functionality requires no change to the existing
resumption monadic framework and has little impact on the security verification. The
impact it does have on the verification is as limited as one could reasonably hope for
and boils down simply to considering an extra case corresponding to the added
functionality in each of the various proofs and definitions of Section 5.3. That is to
say, the verified properties in Section 5.3 required no re-verification at all. This
modularity and scalability in the verification would seem to arise from the fact that
the new functionality is an orthogonal concern to the security property. That is,
because the added functionality does not result in inter-domain information flow, it
has no impact on the system-wide security.

Achieving Concurrent Information Security 15

Conclusion
Type constructions and their properties are the foundation of this approach to
language-based security; this is fundamentally different from approaches based on
information flow control via type checking. The approach reflects the semantic
foundations of effects and effect interaction into a pure functional language in which
provably separable computations can be constructed. At the same time, it allows
explicit regions of the program in which the type system does not, by itself, guarantee
separation. In the monadic approach it is clear from the type construction when
information flow separation is established and when it is established by reasoning
about program behavior.
 This approach can be used either for direct implementation or as a modeling
language. As a modeling language, these techniques can explain the effect separation
provided by unprivileged execution modes in hardware, while at the same time
modeling the potential interference of privileged execution. As an implementation
language it provides, through the type constructions, ways to construct programs that
achieve information flow separation. In this sense this work is similar to language-
based security mechanisms based on type checking. However, such approaches are
domain-specific extensions of type systems to express information flow properties;
the monadic approach uses concepts easily expressed in existing type systems for pure
higher-order languages.
 We have not explored the formal relationship between domain-specific type
systems for information flow and monads. We suspect that in some cases it may be
possible to prove the soundness of information flow extensions to other languages by
embedding them into the monadic type systems presented here. This may be of
particular interest when applied to recent enhancements to information flow type
systems that allow for policy enabled downgrading functions to be defined.
 Confidentiality and integrity concerns within the setting of shared-state
concurrency are really about controlling interference and interaction between threads.
It is a natural and compelling idea, therefore, to apply the mathematics of effects –
monads – to this problem as monads provide precise control of such effects. In fact,
layering monads – i.e., modularly constructing monads with monad transformers –
yields fine-grained control of effects and their interactions. This paper demonstrates
how the fine-grained tailoring of effects possible with monad transformers promotes
integrity and information security concerns. As a proof of concept, we showed that a
classic design in computer security (the separation kernel of Rushby can be realized
and verified in a straightforward manner.

References

[1] M. Abadi, A. Banerjee, N. Heintze and J. Riecke, A core calculus of
dependency, in: Proceedings of the Twenty-Sixth ACM Symposium on
Principles of Programming Languages, San Antonio, TX, USA, January 1999,
pp. 147–160.

16 Geetika and Neelam Kumari

[2] D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis, J. Moore, C.
Gunder, S. Nettles and J. Smith, The switchware active network architecture,
IEEE Network (1998).

[3] M. Archer and C. Heitmeyer, TAME: A specialized specification and
verification system for timed automata, in: Work In Progress (WIP)
Proceedings of the 17th IEEE Real-Time Systems Symposium (RTSS’96), A.
Bestavros, ed., Washington, DC, USA, 1996, pp. 3–6.

[4] M. Barr and C. Wells, Category Theory for Computing Science, Prentice Hall,
1990.

[5] R. Bird, Introduction to Functional Programming using Haskell, 2nd edn,
Prentice-Hall Series in Computer Science, Prentice-Hall Europe, London, UK,
1998.

[6] K. Birman, R. Constable, M. Hayden, C. Kreitz, O. Rodeh, R. van Renesse and
W. Vogels, The Horus and Ensemble projects: Accomplishments and
limitations, in: Proceedings of the DARPA Informa-tion Survivability
Conference & Exposition (DISCEX’00), 2000.

[7] K. Claessen, A poor man’s concurrency monad, Journal of Functional
Programming 9(3) (1999), 313–323.

[8] D. Espinosa, Semantic Lego, PhD thesis, Columbia University, 1995.
[9] R. Giacobazzi and I. Mastroeni, Adjoining declassification and attack models

by abstract interpretation, in: European Symposium on Programming
(ESOP’05), LNCS, Vol. 3444, Springer-Verlag, 2005, pp. 295–310.

[10] D. Greve, R. Richards and M. Wilding, A summary of intrinsic partitioning
verification, in: Fifth International Workshop on the ACL2 Theorem Prover
and Its Applications (ACL2-2004), November 2004.

