
International Journal of Computer and Internet Security.
ISSN 0974-2247 Volume 4, Number 1 (2012), pp. 1-7
© International Research Publication House
http://www.irphouse.com

Secure Socket Layer based Load Balancing
Algorithm for a Distributed Computer System

1K. Kungumaraj and 2Dr. T. Ravichandran

1Research Scholar, Karpagam University,
Coimbatore-641 021, India

2Principal, Hindusthan Institute of Technology,
Coimbatore-641 032, India

Abstract

This Load Balancing algorithm puts forward a new proposal to balance the
server load. The load balancing system is a set of substitute buffer to share the
server load, when their load exceeds its limit. The proposed technique gives an
effective way to overcome the load balancing problem. Serving to more
number of client requests is the main aim of every web server, but due to some
unexpected load, the server performance may degrade. To overcome these
issues, network provides an efficient way to distribute their work with the sub
servers which is also known as proxy servers. Allocating work to the sub
server by their response time is the proposed technique. The secure socket
layer with Load balancing scheme has been introduced to overcome those
server load problems. Storing and serving effectively and securely is more
important so that desired algorithm is going to implement for load distribution
and security enhancement named as SSL_LB and RSA respectively.
Calculating response time of each request from the clients has been done by
sending an empty packet over the networking to all the sub servers. In this
Load Balancing system, the SSL based load distribution schemes has been
introduced for better performance.

Keywords: Load Dispatcher, IP Spraying, Load Prediction, Latency time,
Throughput, Load reduction.

Introduction
Internet server applications must be able to run on multiple servers to accept an ever
increasing number of users and networks need the ability to scale performance to
handle large volumes of client requests without creating unwanted delays. So, load

2 K. Kungumaraj and Dr. T. Ravichandran

balancing algorithm must be implemented for better performance as well as to
increase the ability to handle more number of users. For these reasons, clustering is of
wide interest to the enterprise. Clustering enables a group of independent servers to be
managed as a single system for higher availability, easier manageability, and greater
scalability.

Figure 1: System Model

 The Above figure-1 represents the overall system model. End-user requests are
sent to a load-balancing system that determines which server is most capable of
processing the request. It then forwards the request to that server. Server load
balancing can also distribute workloads to firewalls and redirect requests to proxy
servers and caching servers.
 In order to achieve web server scalability, more servers need to be added to
distribute the load among the group of servers, which is also known as a server
cluster.
 When multiple web servers are present in a server group, the HTTP traffic needs
to be evenly distributed among the servers. These servers must appear as one web
server to the web client, for example an internet browser. The load balancing
mechanism used for spreading HTTP requests is known as IP Spraying. The
equipment used for IP spraying is also called the Load Dispatcher or Network
Dispatcher or simply, the Load Balancer. In this case, the IP sprayer intercepts each
HTTP request, and redirects them to a server in the server cluster. Depending on the
type of sprayer involved, the architecture can provide scalability, load balancing and
failover requirements.

Objectives
• Review the characteristic of the server and proxy servers.
• Review the different aspects of reducing the server load.

Secure Socket Layer based Load Balancing Algorithm 3

• Propose a new concept called SSL_LB Scheme.
• Analysis, design and find the new solution.

Need for the System
Network Load Balancing is superior to existing system such as round robin DNS
(RRDNS), which distributes workload among multiple servers but does not provide a
mechanism for server availability. If a server within the host fails, RRDNS, unlike
Network Load Balancing, will continue to send it work until a network administrator
detects the failure and removes the server from the DNS address list. This results in
service disruption for clients. This project also has advantages over other load
balancing solutions—both hardware- and software-based—that introduce single
points of failure or performance bottlenecks by using a centralized dispatcher.
Because the project Load Balancing has no proprietary hardware requirements, any
industry-standard compatible computer can be used. This provides significant cost
savings when compared to proprietary hardware load balancing solutions.

Problem Formulation
Complex systems make increasing Demands on web servers. Multiple Objects can
interfere, and high volumes can overwhelm Systems. Fixes need to be identified early
in this research, and Clients have scalability concerns, and must warrantee some level
of scalability with industry accepted metrics. The basic performance challenges for
both the browser and server sides of the equation and advises on an overall approach
for identifying and attacking performance bottlenecks. Identifying load of the servers
is more complicated process. The identification of load refers to the practice of
modeling the expected usage of a software program by simulating multiple users
accessing the program concurrently. As such load identification is most relevant for
multi-user systems; often one built using a client/server model, such as web servers.
However, other types of software systems can also be used for load testing.
 There are few simple symptoms shows network server load. If the server load
exceeds its limit then the application will automatically gets slow down and response
from the server will be very low.
 Single physical Origin or Proxy Server may not be able to handle its load. For
Web-based applications, a poor response time has significant financial implications
due to the long response time resulting from the Secure Sockets Layer (SSL), which is
commonly used for secure communication between clients and Web servers. Even
though SSL is the de facto standard for transport layer security, its high overhead and
poor scalability are two major problems in designing secure large-scale network
servers. Deployment of SSL can decrease a server’s capacity by up to two orders of
magnitude. In addition, the overhead of SSL becomes even more severe in application
servers. Application servers provide Dynamic contents and the contents require secure
mechanisms for protection. Generating dynamic content takes about 100 to 1,000
times longer than simply reading static content. Moreover, since static content is
seldom updated, it can be easily cached. Several efficient caching algorithms have

4 K. Kungumaraj and Dr. T. Ravichandran

been proposed to reduce latency and increase throughput of front-end Web services.
However, because dynamic content is generated during the execution of a program,
caching dynamic content is not an efficient option like caching static content. Server
load may increase slightly when more number clients requesting at a particular time.

Load Balancing Algorithm
The server, which receives the request from another node, generates and encrypts the
dynamic content using the forwarded session key. Finally, it returns the reply to the
initial node, which sends the response back to the client. We assume that all the intra
communications in a cluster are secure since these nodes are connected through the
user-level communication and are located very closely.
 If CR1 S then
 Check load of S.
 If LS exceeds then
 Calculate R and then Send P S1, S2, S3…Sn
 CR1 Si.

 The requests arriving at the Web switch of the network server are sent to either the
Web server layer or the application server layer according to the requested service by
the client. Since the SSL connection is served by a different type of HTTP server
(Hypertext Transfer Protocol Secure (HTTPS)) and a different port number, the
requests for the SSL connection are passed on to the distributor in the application
server layer. To solely focus on the performance of the application server, it ignores
the latency between the Web switch and the distributor and logically represents them
as one unit. When a request arrives at the distributor, it searches its lookup table to
determine whether there is a server that has the session information of the client and
then forwards the request to the server. Otherwise, it picks up a new server to forward
the request. The forwarded server establishes a new SSL connection with the client. If
the request is forwarded to a highly loaded server, the server in turn sends the request
with the session information to a lightly loaded server.
 The server identifies the available server by sending an empty packet. If the sub
server is free then it will responds immediately, through the response time it allocates
the clients to the proxy servers. End-user requests are sent to a load-balancing system
that determines which server is most capable of processing the request. It then
forwards the request to that server. Server load balancing can also distribute
workloads to firewalls and redirect requests to proxy servers and caching servers.
The above figure-1 represents the architecture of the proposed mechanism. The
requests from various clients are gathered in the server side, the server load will be
calculated using the SSL_LB scheme if the server load exceeds the sub servers’
details can be collected. After that the server sends as empty packet to all the sub
servers, depends on the response time the client request will be navigated to the
particular sub server. The client navigation will be considered

Secure Socket Layer based Load Balancing Algorithm 5

Figure 1: SSL_Load Balancing Architecture

SSL_Load Balancing (SSL-LB) Algorithm:
Step 1: Representing the server and its sub servers by defining the IP address and

Host name. This helps to allocate and construct the network structure with
main server and proxy server before proceeding.

Step 2: Save those Network construction with relevant details. This can be done
with proper authentication.

Step 3: Select the files to be shared with the proxy servers.
Step 4: Encrypt the files with the help of private and public keys. This can be done

with the help of RSA algorithm.
Step 5: Save those encrypted files on the sub servers. These files will be

automatically stored on the proxy’s, the proxy servers could be identified
by the network construction module, which stores the IP addresses.

Step 6: The uploaded files are sharable and the client can be download those files
which they needed.

Step 7: The next step is evaluating the server load. When client requests the
server, server calculates the load by the number of open connections. The
request of the clients will be categorized into 2 types such as dynamic and
static requests.

Step 8: The server distributes an empty packet to all sub servers and gathers the
response. The response time will be calculated through queuing method.

Step 9: The response time will be calculated and compared by using the total
number of requests and download time of the sub servers.

Step 10: The user request is redirected to the sub server and the user can download
the files and decrypt using the private key.

 The server load will be calculated by determining some elements such as number
of connections made in the network, proxy server allocation. The approximate server

6

weight consist with the nu
proposed to combine all re

Results and Discussio
Load balancing system
Throughput. Latency is th
completion of the reques
second. The latency and th
server. When the request
and, consequently, the lo
benefit in the domain of
load has increased the perf

The performance impact o
• Latency
• Throughput
• Coverage
• Security

F

 The above Figure-2 d
approaches such as RR an
shows the effectiveness o
latency, throughput and se

K. Kungumaraj and Dr. T.

umber of open connections, here the concept c
equesting clients for a particular server at a tim

on
consists of two performance metrics:

he time between the arrival of a request at a
st. Throughput is the number of requests
hroughput results three models are in a 16-n
distribution decreases, the request interval b

oad on the servers increases. Achieving thes
server load balancing concept is not a small
formance will be effectively analyzed.

of Load Balancing can be measured in four ke

Figure 2: Performance Comparison

describes the performance comparison betwe
nd SSL_with_session with the proposed syst
of the proposed system by using three para
ecurity.

 Ravichandran

cluster has been
me.

Latency and
a server and the

completed per
node application
becomes shorter
se performance
l task, even the

ey areas:

een the existing
tem. This result
ameters such as

Secure Socket Layer based Load Balancing Algorithm 7

Conclusion
Through this Research paper, assume that 80 percent of the requests are dynamic and
are automatically directed to the application servers. The remaining 20 percent are
serviced by the Web servers. It will be more adaptable to the 99 percent dynamic
requests in the future and effective load distribution will be made.
 This Research is carry out for pay load reduction of the web server when the
server being busy and investigated the performance implications of the SSL protocol
for providing a secure service in a cluster-based web application server. An ultimate
aim of this thesis is to stimulate this scenario as a real time project, analysis and
evaluate results. Using three proxy servers, proposed a back-end forwarding scheme
for distributing load to the lightly loaded server and improving server performance to
obtain the better results. In this system examined different aspects of using IP any cast
as a mechanism for load distribution and service location in the Internet.

References

[1] “SSLeay Description and Source,” http://www2.psy.uq.edu.au/ftp/Crypto/,
2007.

[2] S. Abbott, “On the Performance of SSL and an Evolution to Cryptographic
Coprocessors,” Proc. RSA Conf., Jan. 1997.

[3] C. Allen and T. Dierks, The TLS Protocol Version 1.0, IETF Internet draft,
work in progress, Nov. 1997.

[4] C. Amza, A. Chanda, A.L. Cox, S. Elnikety, R. Gil, E. Cecchet, J. Marguerite,
K. Rajamani, and W. Zwaenepoel, “Specification and Implementation of
Dynamic Web Site Benchmarks,” Proc. IEEE Fifth Ann. Workshop Workload
Characterization (WWC-5), Nov. 2002.

[5] M. Andreolini, E. Casalicchio, M. Colajanni, and M. Mambelli, “A Cluster-
Based Web System Providing Differentiated and Guaranteed Services,” Cluster
Computing, vol. 7, no. 1, pp. 7-19, 2004.

[6] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, and D. Saha, “Design,
Implementation and Performance of a Content- Based Switch,” Proc.
INFOCOM, 2000.

[7] G. Apostolopoulos, V. Peris, and D. Saha, “Transport Layer Security: How
Much Does It Really Cost?” Proc. INFOCOM, 1999.

[8] M.F. Arlitt and C.L. Williamson, “Internet Web Servers: Workload
Characterization and Performance Implications,” IEEE/ACM Trans.
Networking, vol. 5, Oct. 1997.

