
International Journal of Computer and Internet Security.

ISSN 0974-2247 Volume 15, Number 1 (2023), pp. 7-19

© International Research Publication House

https://dx.doi.org/10.37624/IJCIS/15.1.2023.7-19

Report on Automation of SDLC Using Devops in

Cloud Environment

Ch. Sravanthi

Asst. Prof, Information Technology, (JNTUH)

G.Narayanamma Institute of Technology and science(for women), Hyderabad, India

E-mail: sravanthi.cvr@gnits.ac.in

G. Tanmayi, M. Hemika, N. Harshitha, P. Bahula and R. Sushma

Information Technology, (JNTUH)

G.Narayanamma Institute of Technology and science(for women), Hyderabad, India

E-mail: tanmayigajadi29@gmail.com, mamillahemika@gmail.com

nimmalaharshitha2002@gmail.com, bahulapatharlapalli25@gmail.com

sushma.ent2@gmail.com

Abstract

Lately, the efficiency of the work done by the project development team has

been a major concern. To deliver the end product to the customers on time the

internal functions between various teams involved in the project has to go

smoothly without any miscommunications so that they won’t blame on one

another as the root cause for unsuccessful project delivery. Different

knowledge basis present among various teams in the project should not affect

the project progress. When the project is moving from one team to another

there should be any discrepancy in understanding the state of the project and

the successor team should be able to work without having to know the core

details of how the project has been developed so far. The roots for agile

software process or methodology is to provide the right track to develop the

product or project as per the client’s input. Agile process gives importance to

the people which includes the teammates, clients and their interactions rather

than the tools, equipment or technologies they’ve been or they will be using;

it focuses on the work products and its fidelity against the customer

requirements; its attention is towards the adaptability as per the situations

rather than focusing on the predetermined plans which consumes so much time

to come up with one and one such plan doesn’t exists upon following which

there won’t be any hurdles thus the endurance towards changes and flexibility

is must. Agile process is about developing the project in the incremental and

iterative fashion which reduces the concept of “finished project”.The two

mailto:sravanthi.cvr@gnits.ac.in
mailto:tanmayigajadi29@gmail.com
mailto:nimmalaharshitha2002@gmail.com
mailto:bahulapatharlapalli25@gmail.com
mailto:sushma.ent2@gmail.com

8 Ch. Sravanthi et al

important areas of the software business is IT operations (ITOps) and

Developmental operations (DevOps). ITOps focuses on the safety, reliability

and compliance while DevOps focuses on designing the product and

delivering it to the end users. DevOps work on pipeline optimisation and

spotlights the continuous integration and installation of the software

developed. Its major idea is on operational efficiency and end to end

automation. Though the agile software development methodologies are more

common many organisations realised that they have not reached a frequent

release rate because of the gap between the development team and operations

team. (thus, DevOps helps in automating the process from design to delivery

of the product or process to the end user). DevOps removes the communication

barriers among various teams involved and helps in constant delivery with

continuous integration of developed with components with varying

requirements.

Keywords: DevOps, Automation, software engineering, configuration

management, agile methodology

Introduction

The business environment nowadays in terms of software & product design has evolved

more rapidly. Project (a software project involves the execution of tasks to achieve

added value outcomes) planning, evaluation, management (the planning,

implementation, and monitoring of the tasks) of improvements, and quality control are

some of the challenges that differentiate successful and failed projects. Agile methods

(incremental and iterative approaches) are widely used and implemented worldwide to

deal with these issues. Software developers concentrate on agile development, for

increasing the productivity of their projects and meeting the competitive demands of

their customers. Agile methodology has been developed to address the problems faced

by the conventional model and to offer project teams multiple possibilities during the

development process. But then here there is no end for the successful project

completion there might be the chance that customer suggest at least one change at each

increment due to which there will be unlimited time and resources consumed which

leads to cost overrun; and as the outputs are generated in fragments at each increment

they are difficult to track as well as the incremental development by different teams on

different units of the project causes some teams to wait till the others do their work and

if one team lags behind then all other must be on hold with causes misunderstandings

and more time consumption to resolve internal conflicts thus management becomes

hectic. Whereas when it comes to DevOps its main motto is to reduce the gap between

the Development team and Operations team. The gap between both the teams arises

because they come from different backgrounds (knowledge domain) that is

development team knows about the software products and service whereas the team

knows about the testing and production environments thus there will different business

goals and priorities between both the teams. DevOps promotes automated continuous

integration and deployment pipelines to enable frequent releases, to evaluate the work

Report on Automation of SDLC Using Devops in Cloud Environment 9

products in sprints rather than focusing on the adaptability to change. DevOps reduces

the complexity and helps in faster product delivery, issue resolution, resource utilisation,

scalability, availability, stable operating environments, visibility into system outcomes

and many more.

Literature Survey

Agile and DevOps are bombinate ideas that are commonly used in many organisations.

There are many common features of both which overlap together and cause the

ambiguity whereas the difference lies in the outcome and techniques followed though

the core structure of providing the end product to the customer on time as per the

requirements remains the same. DevOps focuses on the continuous integration,

continuous deployment, continuous monitoring and continuous feedback and

optimisation whereas the Agile methodology is all about the flexibility, adaptability,

incremental and iterative development. DevOps is oriented towards the faster

performance by proving various environments, tools and techniques to the allocated

where the work products generated by predecessor teams will be clearly seen along

with the configurable files and software which are required to run them.

Proposed System

The proposed system helps in automating the development process for building a

project by provide the interface for clients, software client manager, software architect

and developer to communicate with each other and it provides an integration point via

Jenkins for developers to commit the code through git and develop the code through

maven (which together provides the continuous integration) from there a pipeline is

created from Jenkins to ansible(for handling the configurable files for deployment) and

ansible to docker and Kubernetes (which provides the continuous deployment and

delivery). Our system provides the communication media(chat application) for clients

to pitch their ideas and once the client software manager likes the idea then he discusses

with other teams about various factors(such as budget, resource allocation, technology

used, tools and software required, time required to complete the project etc) and he may

also convince the clients on what can be done based on the allocation to avoid the

exception expectations from the clients. Then he forwards the reviewed requirements

to the software architect via the proposed system so they start building suitable models

10 Ch. Sravanthi et al

and once these models are built then they are forwarded to the software developers and

then they start developing the code and commit them onto the git where there is ci/cd

pipeline to the Jenkins and this code is checked against the code built by the Maven

(which already has the pipeline to the Jenkins[central point]) automatically and the

functionalities done till here from the code commit on git is known as the continuous

integration. Then the built code is sent to the Ansible which generates the artefacts and

these artefacts are given to the docker via pipeline which then generates images and

these images are deployed onto the cloud with the help of Kubernetes. All the

functionalities after the code generation to the image and container deployment is

regarded as the Continuous Deployment (that is the code is automatically deployed into

various environments as per the changes in the code committed on Git)

Implementation

The modules are implemented using AWS Management Console. The tools used are

Jenkins, Git, Maven, Ansible, Docker and Kubernetes.

Creating CI/CD pipeline for Git, Jenkins and Maven:

In the continuous integration and continuous deployment process, we need to build our

source code and play it in that target environment. The code should be already available

in our GitHub account. Once the code is commited, we need to integrate GitHub with

the Jenkins and Maven with the Jenkins so that we can pull the code onto Jenkins and

build with the help of Maven.And if we need any changes to our source code with the

help of Git from our local workstation station will mark play it and will commit that

code on to GitHub.

Setup Jenkins Server:

STEP-1: Setup a Linux ec2 instance

STEP-2: Install Java

STEP-3: Install Jenkins

STEP-4: Start Jenkins

STEP-5: Access it on the web UI using port 8080

Setup an ec2 instance

STEP-1: Go to AWS Management Console click on “Launch Instance” and then

choose the AMI(Amazon Machine Language) which is nothing but choosing the

operating system for this project we’ll be choosing Amazon Linux 2

STEP-2: Choose an Instance type we’ll be choosing t2 micro

STEP-3: Then choose the Configure instance details as per the requirement but we’ll

be using the default details

STEP-4: Select the storage required we’re going to use the default storage

STEP-5: Then we need to Add tags we’ll give the Key as Name and Value as the

Jeniks_Server

Report on Automation of SDLC Using Devops in Cloud Environment 11

STEP-6: Then we need to Configure security group where we’ll be creating an

security group instead of using the existing one for which for the Security group name

we’ll be giving “Jenkins_Security_Group” and even Description we’ll be giving the

same and we’ll give the Port range as 8080 as the Jenkins runs on the port 8080 and

for Type we’ll give Custom_IP

STEP-7: Then click on “Review and Instance” after reviewing what you’ve created

STEP-8: Then a window pops up saying for choosing the key_pair we’ll be creating a

new key pair and Give the Key Pair Name as DevOps_Project_key then download that

key_pair and launch the instance

We’ll be using MobaXterm to connect our ec2 Instances to connect to the Linux ec2

instance we’ll use the Session there click on SSH and give the public IP address of the

Jenkins ec2 instance which we’ve created and then check in the box “Use Private Key”

and choose the downloaded key pair of Jenkins over there and give the Specific User

Name as “ec2-user”

Installing Jenkins

For this we’ll be writing the following commands in the ssh session we’ve created

sudo wget-O /etc/yum.repos.d/jenkins.repo \https://pkg.jenkins.io/redhat-

stable/jenkins.repo

sudo rpm--import https://pkg.jenkins.io/redhat-stable/jenkins.io-2023.key

sudo yum upgrade

Add required dependencies for the jenkins package

sudo yum install java-11-openjdk

sudo yum install jenkins

sudo systemctl daemon-reload

To check the status of the Jenkins server use: “service jenkins status”

To start the Jenkins server use: “service Jenkins start”

Integrate Git with the Jenkins

STEP-1: Install Git on Jenkins Instance

STEP-2: Install GitHub plugin on Jenkins GUI

STEP-3: Configure Git on Jenkins GUI

Jenkins Job to pull the code from GitHub

For that goto Jenkins GUI and then click on “New Item” and then enter the name as

“PullCodeFromGitHub” and click on “Freestyle Project” and then click on “OK”

Then give the Description same as the job name that is “Pull Code From GitHub” and

then under “Source Code Management” section choose “Git” then under Repository

URL section you need to give the URL of the GitHub where the code is present and if

it is a Private Repository you need to provide the credentials for the Public repository

12 Ch. Sravanthi et al

there is no need for that and then click on “Apply” then “Save” and By default, Jenkins

is going to store all the build related information under /var/lib/Jenkins/workspace

Integrate Maven with Jenkins

STEP–1: Setup Maven on Jenkins Server

STEP–2: Setup Environment variables [JAVE_HOME, M2, M2_HOME]

STEP–3: Install Maven Plugin on Jenkins GUI

STEP–4: Configure Maven and Java on Jenkins GUI

Building the source code through Maven via Jenkins

For that goto Jenkins GUI then click on “New Item” then give the name

“FirstMavenProject” then click on the “Maven Project” and then on “OK” and then

give the description as the “First Maven Project” and under the “SourceCode

Management” choose “git” and in the “Repository URL” give the URL of the source

code and in the “Build” section give the “pom.xml” then if want to specify any “goals”

you can do that and then click on “Apply” and “Save”

If we goto our FirstMavenProject under the workspace in the webapp under the target

directory is where all our build artifacts gets stored. This build generates the.war file as

the output

Deploying our code in the target environment

Here the target environment we’re using is Tomcat Server. For this we’ll be creating an

ec2 instance on top of that we’ll be installing the tomcat and we’ll setup Jenkins job

such for deploying the code onto the Jenkins

Setup a Tomcat Server

STEP-1: Setup a Linux ec2 Instance

STEP-2: Install java

STEP-3: Configure Tomcat

STEP-4: Start Tomcat Server

STEP-5: Access Web UI on port 8080

Setup Docker Environment

For this setup we need a Docker host upon which we’ll install “Docker” and create

“Docker container” Setup of Docker Host includes

 Setup a Linux EC2 instance

 Install Docker

 Start Docker services

 Basic Docker Commands

Report on Automation of SDLC Using Devops in Cloud Environment 13

For integration the steps include

 Create a Dockeradmin user

 Install “Publish Over SSH” plugin to deploy the artifacts from Jenkins to docker

container

 Add Dockerhost to Jenkins “configure systems” so that the Jenkins will be able

to communicate with the DockerHost

“cat /etc/passwd” to list all the users present

“cat /etc/group” to list all the groups present

Now we need to create a user and add it to the docker group

 “useradd dockeradmin” to create a user dockeradmin

 “passwd dockeradmin” to create a password for that user

 “id dockeradmin” to check the group which it belongs to

 “usermod-aG docker dockeradmin” to add the dockeradmin user to docker group

 “vi /etc/ssh/sshd_config” and then search “Password” by /Password and then

decomment the “PasswordAuthentication yes” and comment out

“PasswordAuthentication no” by this it enables the password based authentication

 “service sshd reload” to reload do not stop and start because once you stop it

you’re going to loose the connection to dockerhost

Deploying on a Container

We’re going to create a new job where a artifacts from Jenkins are deployed onto the

docker container For that goto “New Item” then enter the name of the job as

“BuildAndDeployOnContainer” and at copy from choose “BuildAndDeployJob” and

then click on “OK” and then at “General” section give some description and scroll down

to “Post-Build Actions” and delete the existing one and add the new “Post-Build Action”

by clicking on it and choose the option “Send build artifacts over SSH” which is enabled

because we’ve installed “publish over ssh” plugin and then at name choose the ssh

server from what we added so far then at “Source Files” give “webapp/target/*.war”

and then at “Remove prefix” give “webapp/target” as we only want.war files to copied

and then click on “Apply” and then “Save”

Updating the deployment process

For that login to SSH by the instance created for docker

“exit” to logout

“cd /opt”

“mkdir docker” creating the docker directory

“chown-R dockeradmin:dockeradmin docker” to change the ownership of “docker”

from root to “dockeradmin”

“mv DockerFile /opt/docker” to move the DockerFile into docker directory

“chown-R dockeradmin:dockeradmin /opt/docker” to change the ownership

14 Ch. Sravanthi et al

Automate the build on Docker Container

For this edit the configuration of “BuildAndDeployContainer” by clicking on it and

then select the “Configure” and then scroll down to “Exec Command” under “Post-

Build Actions” there give the commands “cd /opt/docker; docker build-t regappv1. ” ;

“docker run-d--name registerapp-p 8087:8080 regapp:v1” and then click on “Apply”

then “Save” and then for the execution click on “Build Now” and you can access your

application on the port “8087” but the problem here will be that you cannot use same

given name “registerapp” for different containers which will be created for every

change in the code

Thus to overcome that we’ll go back to our job and then click on “Configure” and then

under “Post Build Actions” at the “Exec command” add two more line above the last

line they are “docker stop registerapp ; docker rm registerapp ” that is we’ll be stop the

existing container and then we’ll be removing it before creating the new container wit

the same for different artefact

To install the latest version of AWS cli run the following commands in the SSH

session curl

"https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip"-o "awscliv2.zip" unzip

awscliv2.zip

sudo./aws/install

Setup the Kubectl by the following four commands

curl-o kubectl https://amazon-eks.s3.us-west-2.amazonaws.com/1.21.2/2021-07-

05/bin/linux/amd64/kubectl

chmod +x./kubectl

mv./kubectl /usr/local/bin

kubectl version--short –client

Setup the eksctl by the following

curl--silent--location

"https://github.com/weaveworks/eksctl/releases/latest/download/eksctl_$(uname-

s)_amd64.tar.gz" | tar xz-C /tmp

sudo mv /tmp/eksctl /usr/local/bin

eksctl version

Create IAM role and attach it an EC2 instance

For that go to AWS Management console and search for IAM and from the IAM

dashboard select “Roles” and then click on “Create Role” as we’re this role to EC2

select an EC2 and then click on Next Permission then again search for “Administrative

Access” and click on next then ignore tags i.e., just click on nex and then give the role

name as “eksctl_role” and then click on “create role”.

https://amazon-eks.s3.us-west-2.amazonaws.com/1.21.2/2021-07-05/bin/linux/amd64/kubectl
https://amazon-eks.s3.us-west-2.amazonaws.com/1.21.2/2021-07-05/bin/linux/amd64/kubectl

Report on Automation of SDLC Using Devops in Cloud Environment 15

Setting up Kubernetes on EKS

Use the following commands to create a cluster

eksctl create cluster--name valaxy \

--region us-east-1 \

--node-type t2.small \

Create Jenkins deployment job for Kubernetes

Creating job so that artifacts from Jenkins are deployed on to the Kubernetes. For that

login to your Jenkins and then click on “New Item” and then give the name as

“Deploy_On_Kubernets” then choose “Freestyle Project” and click on “Ok” and after

give some description and scroll down to “Post-build actions” there you choose “Send

build artifacts over ssh” and then at the name section choose the ssh server then at “Exec

Command” enter the necessary configurations required and then click on “Apply” and

then “Save”

CI Job to create Image for Kubernetes

We’ve created a CD job which takes care of deployments now we’ll create a CI job

which will pull the code from GitHub and build the artifacts in Jenkins via Maven and

we’ll generate a new images for every artefact that is being generated and try to deploy

that on the Kuberenetes to do this we’ll create a new job for that go to Jenkins and click

on “New Item” give it a name and copy from the “BuildAandDeployOntoContainer”

and then click on “Ok” and then give the Description as “Build code with help of maven

and create an image” then choose “git” and give the repository URL and then specify

the branch as “master branch” and then under “Post-Build Actions” choose the SSH

server and at the exec command give the following

“ansible-playbook /opt/docker/regapp.yml”

“sleep 10”

“ansible-playbook /opt/docker/deply_regapp.yml”

And then click on “Apply” and “Save”

Results

The pipeline between the Jenkins and Docker is established to deploy every artifact that

is generated for every code commit on the image which then containerised and the

success of this job indicates the access of that container on the browser

16 Ch. Sravanthi et al

This pipeline is created to deploy the containers that are generated after every commit

on to the Kubernetes the success of this job reflects in the deployment of container on

Kubernetes successfully after every change in the code that has been committed and

that right deployment is showcased as per the display on the browser and corresponding

change in the code

Report on Automation of SDLC Using Devops in Cloud Environment 17

Chat Application that serves as the communication medium between stake holders

18 Ch. Sravanthi et al

Conclusion

DevOps integrates the efforts of the development team and operation team and turns

their work progress lead to a successful project with atmost quality and customer

satisfaction. Our system provides the cohesive way to develop a project right from the

requirements stage to the deployment stage as all the required DevOps tools are

connected via pipelines considering Jenkins as the central point which helps from

committing the developed code to deploying the container onto different environments

and the chat window provides the interface to gather all the requirements. This system

enables frequent updates based on the feedback given customers to make the product

more user friendly with the maximum utilisations of components which are already

built (that is provides component based development). There will be no specific timings

scheduled for a client to interact with the manager he/she will be able to theirs

requirements whenever they want on the chat window and they can expect the

Future Scope

1. Customer support 24/7 when the system is down reasons for it alternatives that

can be followed….

2. Video and audio conference so that diff teams can interact remotely

3. Taking this to a high scale tor handling diff teams on diff project with diff set of

customers

4. Providing customer to try what has already been built and get the initial feedback

but not so frequently as it delays but after major quarters of completion

5. As Maven and Jenkins are extensively used on java based applications to use

various devops tools where there won’t be any restriction on the specific language

based development

Report on Automation of SDLC Using Devops in Cloud Environment 19

Acknowledgement

It is our proud privilege to express the feelings of gratitude to several people who helped

us in completing this work We express our heartfelt gratitude to Dr. I. Ravi Prakash

Reddy, Head of the Department, IT department, GNITS for his constant guidance and

moral support. We would like to express our sincere thanks to Dr. K. Ramesh Reddy,

Principal, GNITS for providing working facilities in the college. Finally, we would like

to thank all the faculty and staff of IT department who helped us during our project and

also our parents and friends for their cooperation in completing the project.

References

[1] Moreira, M. The Agile Enterprise: Building and Running Agile Organizations,

1st ed.; Apress: Berkeley, CA, USA, [Google Scholar]

[2] Fitzgerald, B.; Stol, K.J. Continuous Software Engineering: A Roadmap and

Agenda. J. Syst. Softw., 123, 176–189. [Google Scholar] [CrossRef]

[3] Bosch, J. Continuous Software Engineering: An Introduction. In Continuous

Software Engineering; Springer: Berlin/Heidelberg, Germany, ; pp. 3–13.

[Google Scholar]

[4] Humble, J. Continuous Delivery vs. Continuous Deployment. Available online:

https://continuousdelivery.com/2010/08/continuous-delivery-vs-

continuous-deployment
[5] Jenkins. Build Great Things at any Scale. Available online: https://jenkins.io

[6] Chacon, S.; Straub, B. Pro Git, 2nd ed.; Apress: Berkeley, CA, USA,. [Google

Scholar]

[7] Christof, E.; Gallardo, G.; Hernantes, J.; Serrano, N. DevOps. IEEE Softw., 33,

94–100. [Google Scholar] CHALLENGES IN PRACTICE‖, NOV 2016

https://scholar.google.com/scholar_lookup?title=The+Agile+Enterprise:+Building+and+Running+Agile+Organizations&author=Moreira,+M.&publication_year=2017
https://scholar.google.com/scholar_lookup?title=Continuous+Software+Engineering:+A+Roadmap+and+Agenda&author=Fitzgerald,+B.&author=Stol,+K.J.&publication_year=2017&journal=J.+Syst.+Softw.&volume=123&pages=176%E2%80%93189&doi=10.1016/j.jss.2015.06.063
https://doi.org/10.1016/j.jss.2015.06.063
https://scholar.google.com/scholar_lookup?title=Continuous+Software+Engineering:+An+Introduction&author=Bosch,+J.&publication_year=2014&pages=3%E2%80%9313
https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment
https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment
https://jenkins.io/
https://scholar.google.com/scholar_lookup?title=Pro+Git&author=Chacon,+S.&author=Straub,+B.&publication_year=2014
https://scholar.google.com/scholar_lookup?title=Pro+Git&author=Chacon,+S.&author=Straub,+B.&publication_year=2014
https://scholar.google.com/scholar_lookup?title=DevOps&author=Christof,+E.&author=Gallardo,+G.&author=Hernantes,+J.&author=Serrano,+N.&publication_year=2016&journal=IEEE+Softw.&volume=33&pages=94%E2%80%93100

20 Ch. Sravanthi et al

