Generalized Hyers - Ulam - Rassias Stability of a Quadratic Functional Equation

S. Kandasamy¹, K. Ravi ² and P.K. Kumaresan³

Professor / Mathematics, V.M.K.V. Engineering College, Vinayaka Missions University, Salem, TN, India
E-mail: kandasamythamarai@gmail.com

Reader, Mathematics, Sacred Heart College, Tirupattur, T.N., India.
E-mail: shckravi@yahoo.co.in

Professor / Information Technology, V.M.K.V. Engineering College, Vinayaka Missions University Salem, T.N., India
E-mail: kums_slm@yahoo.com

Abstract

In this paper, we investigate the generalized Hyers-Ulam-Rassias stability of a new quadratic functional equation

\[f(2x+y) - 4f(x) + f(y) + f(x+y) - f(x-y) = 0 \]

Keywords and phrases: Quadratic functional equation, Hyers – Ulam-Rassias stability.

Introduction

The functional equation

\[f(x + y) + f(x - y) = 2f(x) + 2f(y) \] (1.1)
is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic function. A generalized Hyers – Ulam stability problem for the quadratic functional equation was proved by skof [22]. For mappings \(f : X \to Y \); where \(X \) is a normed space \(Y \) is a Banach space. Cholewa [6] noticed that the theorem of Skof is still true if the relevant domain \(X \) is replaced by an Abelian group. Czerwik [7] proved the generalized Hyer-Ulam-Rassias stability of the quadratic functional equation (1.1) and Park [17] proved the generalized Hyer-Ulam-Rassias stability of the quadratic functional equation in Banach modules over a C*-algebra. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (See [12, 14, 16, 17, 18, 21]).

In this paper, we discuss a new quadratic functional equation.

\[
f(2x + y) = 4f(x) + f(y) + f(x + y) - f(x - y)
\]

(1.2)

The generalized Hyers – Ulam – Rassias stability of the equation (1.2) is dealt with here. As a result of the paper, we have a much better possible upper bound for (1.2) than S.Czerwik and Skof – Cholewa.

Hyers – Ulam – Rassias Stability of (1.2)

In this section, let \(X \) be a real vector space and let \(Y \) be a Banach space. We will investigate the Hyers – Ulam – Rassias stability problem for functional equation (1.2)

Let us Define

\[
Df(x, y) = f(2x + y) - 4f(x) - f(y) - f(x + y) + f(x - y)
\]

Now we shall recall some theorems which will be useful in proving our results.

Theorem 2.1 ([7]). If a function \(f : X \to Y \), where \(X \) is an abelian group and \(Y \) a Banach space, satisfies the inequality

\[
\|f(x + y) + f(x - y) - 2f(x) - 2f(y)\| \leq \varepsilon (\|x\|^p + \|y\|^q)
\]

for \(p \neq 2 \) and for all \(x, y \in X \), then there exists a unique quadratic function \(Q \) such that

\[
\|f(x) - Q(x)\| \leq \frac{\varepsilon \|x\|^p}{4 - 2^p} + \frac{\|f(0)\|}{3}
\]

for all \(x \in X \).

Theorem 2.2 ([6]). If a function \(f : X \to Y \), where \(X \) is an abelian group and \(Y \) is a Banach space, satisfies the inequality.

\[
\|f(x + y) + f(x - y) - 2(x) - 2f(y)\| \leq \varepsilon
\]

for all \(x, y, \in X \), then there exists a unique quadratic function \(Q \) such that
\[\|f(x) - Q(x)\| \leq \frac{\varepsilon}{2} \]

for all \(x \in X \) and for all \(x \in X - 0 \), and \(\|f(0)\| = 0 \)

Theorem 2.3 Let \(\psi : X^2 \to \mathbb{R}^+ \) be a function such that
\[
\sum_{i=0}^{\infty} \psi \left(\frac{2^i x, 0}{4^i} \right) \text{ converges and } \lim_{n \to \infty} \frac{\psi(2^i x, 2^n y)}{4^n} \quad (2.1)
\]

for all \(x, y \in X \). If a function \(f : X \to Y \) satisfies
\[
\|Df(x, y)\| \leq \psi(x, y) \quad (2.2)
\]

for all \(x, y \in X \), then there exists one and only one quadratic function \(Q : X \to Y \) which satisfies (1.2) and the inequality
\[
\|f(x) - Q(x)\| \leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\psi(2^i x, 0)}{4^i} \quad (2.3)
\]

for all \(x \in X \). The function \(Q \) is defined by
\[
Q(x) = \lim_{n \to \infty} \frac{f(2^n x)}{4^n} \quad (2.4)
\]

for all \(x \in X \).

Proof: Letting \(x = y = 0 \) in (1.2), we get \(f(0) = 0 \). Putting \(y = 0 \) in (2.2) and dividing by 8, we get
\[
\|f(x) - \frac{f(2x)}{4}\| \leq \frac{1}{8} \psi(x, 0) \quad (2.5)
\]

for all \(x \in X \). Replacing \(x \) by \(2x \) in (2.5) and dividing by 4 and summing the resulting inequality with (2.5), we get
\[
\|f(x) - \frac{f(2x)}{4}\| \leq \frac{1}{8} \left[\psi(x, 0) + \frac{\psi(2x, 0)}{4} \right] \quad (2.6)
\]

for all \(x \in X \). Using induction on a positive integer \(n \), we obtain that
\[
\|f(x) - \frac{f(2^n x)}{4^n}\| \leq \frac{1}{8} \sum_{i=0}^{n-1} \frac{\psi(2^i, 0)}{4^i} \leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\psi(2^i x, 0)}{4^i} \quad (2.7)
\]

for all \(x \in X \).

Now, for \(m, n > 0 \)
Since the right-hand side of the inequality (2.8) tends to 0 as \(n \) tends to infinity, the sequence \(\left\{ \frac{f(2^n x)}{4^n} \right\} \) is a cauchy sequence.

Therefore, we may define \(Q(x) = \lim_{n \to \infty} \left\{ \frac{f(2^n x)}{4^n} \right\} \) for all \(x \in X \). Letting \(n \to \infty \) in (2.7), we arrive at (2.3).

Next, we have to show that \(Q \) satisfies (1.2). Replacing \(x, y \) by \(2^n x, 2^n y \) in (2.2) and dividing by \(4^n \), it then follows that

\[
\frac{1}{4^n} \| f(2^n(2x+y)) - 4f(2^n x) - f(2^n y) - f(2^n(x+y)) + f(2^n(x-y)) \| \leq \frac{1}{4^n} \psi(2^n x, 2^n y)
\]

Taking limit as \(n \to \infty \), using (2.1) and (2.4), we see that

\[
\| Q(2x + y) - 4Q(x) - Q(y) - Q(x + y) + Q(x - y) \| \leq 0
\]

Which gives

\[
Q(2x + y) = 4Q(x) + Q(y) + Q(x + y) - Q(x - y)
\]

Therefore, we have that \(Q \) satisfies (2.1) for all \(x, y \in X \). To prove the uniqueness of the quadratic function \(Q \), let us assume that there exists a quadratic function \(Q^1 : X \to Y \) which satisfies (1.2) and the inequality (2.3). But we have \(Q(2^n x) = 4^n Q(x) \) and \(Q^1(2^n x) = 4^n Q^1(x) \) for all \(x \in X \) and \(n \in N \). Hence it follows from (2.3) that

\[
\| Q(x) - Q^1(x) \| = \frac{1}{4^n} \| Q(2^n x) - Q^1(2^n x) \|
\]

\[
\leq \frac{1}{4^n} (\| Q(2^n x) - f(2^n x) \| + \| f(2^n x) - Q^1(2^n x) \|)
\]

\[
\leq \frac{1}{4^n} \sum_{i=0}^{\infty} \psi(2^{i+n}, 0) \to 0 \text{ as } n \to \infty
\]
Therefore Q is unique. This completes the proof of the theorem.

From Theorem 2.1, we obtain the following corollaries concerning the stability of the equation (1.2).

Corollary 2.4: Let \(X \) be a real normed space and \(Y \) a Banach space. Let \(\epsilon, p, q \) be real numbers such that \(\epsilon \geq 0, q > 0 \) and either \(p, q < 2 \), or \(p, q > 2 \). Suppose that a function \(f : X \to Y \) satisfies

\[
\| D f(x, y) \| \leq \epsilon (\| x \|^p + \| y \|^q)
\]

for all \(x, y \in X \). Then there exists one and only one quadratic function \(Q : X \to Y \) which satisfies (1.2) and the inequality.

\[
\| f(x) - Q(x) \| \leq \frac{\epsilon}{2\| 4 - 2^p \|} \| x \|^p
\]

for all \(x \in X \). The function \(Q \) is defined in (2.4). Furthermore, if \(f(t x) \) is continuous for all \(t \in \mathbb{R} \) and \(x \in X \), then \(f(tx) = t^2 f(x) \).

Proof: Taking \(\psi(x, y) = \epsilon (\| x \|^p + \| y \|^q) \) and applying Theorem 2.1, the equation (2.3) give rise to equation (2.10) which proves corollary 2.4.

Corollary 2.5 Let \(X \) be a real normed space and \(Y \) be a Banach space. Let \(\epsilon \) be real number. If a function \(f : X \to Y \) satisfies

\[
\| Df(x, y) \| \leq \epsilon
\]

for all \(x, y \in X \), then there exists one and only one quadratic function \(Q : X \to Y \) which satisfies (1.2) and the inequality.

\[
\| f(x) - Q(x) \| \leq \frac{\epsilon}{4}
\]

for all \(x \in X \). The function \(Q \) is defined in (2.4). Furthermore, if \(f(t x) \) is continuous for all \(t \in \mathbb{R} \) and \(x \in X \) then, \(f(tx) = t^2 f(x) \).

References

