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Abstract 
 

This paper presents a new computational procedure for  solving  singular 
perturbation problems arising in control system using shooting method. The 
convergence of the method is given and the numerical results are presented to 
illustrate the computational procedure.  The   computational procedure solves 
exactly the test problems for small values of the singular perturbation 
parameter, and it is presented in Tables 1 and 2. No matrix inversion is needed 
for the computation.   Numerical methods of order one are applied to solve  
the  given problem and obtained  very good results. Higher order numerical 
methods can be applied to get higher order convergence.  This computational 
procedure can also be applied to solve partial differential equations.  
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Introduction 
Consider the following singular perturbation  problem  arising in control 
system[1,2,4,5] 
  Lu(t)  ≡   εu"  (t) + a(t) u' (t) –  b(t) u(t)  =  f(t),  0 < t <1,  (1a) 

  B 0  u(0)  ≡u(0) =φ 1      B1  U(1)  ≡  u(1) = φ 2  (1b)  

where ε  > 0 is a small parameter, a, b and f are smooth functions satisfying      a(t) ≥  
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α > 0 and b(t) ≥ 0 with respect to t.   The solution of the problem do not converges 
uniformly to the solution u 0 (t) of the reduced problem of (1a,b)  

  a(t) 0u ' (t)  –  b(t) 0u  (t)  =  f(t),  0 < t <1, (2a)  

  0u (1) = φ 2  (2b)  
 
as   ε goes to zero at t = 0.  Because of this reason, classical schemes may not  produce  
good  approximations to the solution u(t) especially when  ε is small.  In   this paper a 
good approximation to the problem (1a,b) is presented, The maximum principle and 
the stability result [2,4]  for the solution of the problem (1a,b) are given in the 
following lemmas, which is needed for error estimation. 
 
Lemma 1 
Let v be a smooth function satisfying 

Lv(t) ≤ 0, 0 ≤ t ≤ 1, B 0  v(0) ≥ 0 and B 1  v(1) ≥ 0.  Then 

v(t) ≥ 0 for  all  0 ≤ t ≤ 1. 
 
Lemma 2 
Let v be a smooth function.  Then we have the following uniform stability estimate 

  | v(t) | ≤ C (|B 0  v(0) | + |B 1  v(1) |+ max |L v(t) |) 

for all t  in  [0,1]. 
 The main aim of the paper is to solve the problem (1a,b) using shooting method. 
Motivated by the works in [3,7] the given problem (1a,b) can be replaced by an initial 
value problem(IVP) then the resultant IVP is solved numerically using exponentially 
fitted finite difference schemes given in [2,4]. 
 
Schemes for Initial Value Problems 
In this section,  two finite difference schemes of order one with variable and constant 
fitted factors  for  the IVP 

  1u '  t) – 2u (t) = 0   ,  1u (0) = φ 1  , (3a) 

  � 2u ' (t) + a(t) 2u (t) – b(t) 1u (t) = f(t) . 2u (0) = φ 3   (3b) 

where  u 1 (t) = u(t)  and  u 2 (t) = u' (t) are given. 
 
The schemes with variable fitting factor is 

  D +  u i,1  - u i,2  = ((u R1 (t 1+i ) - u R1 (t i ))/h) - u R2 (t i )  , (4a) 

  ε σ i  (- ρ )  D +  u i,2 + a(t i )  u i,2  -   b(t i ) u i,1  = f i
iih , (4b) 

  u1 0,1
= φ 1  , u 0,2  = φ 3   (4c) 

where 
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 σ i ( -ρ ) = ρ a(t i ) / [ 1 – exp( - ρ a(t i  ) ) ]  , h = t 1+i - t i , ρ = h/ε,               (4d) 

 f i
h  =  a( t i  )  u R,2  ( t 1+i   )  -  b(t i  ) u R1 ( t i  ) , (4e)  

and u R1 ( t ) and u R2 ( t )  are the solutions of the reduced  problem of (3a,b) 

   u R1 ' ( t ) - u R2 ( t ) = 0 , u R1 (0) = φ 1 , (5a) 

  a( t )  u R2 ( t )  -  b( t)  u R1   ( t ) = f( t ) . (5b)  
 
 To reduce the computational time of the scheme (4a-e), a scheme with constant 
fitting factor is defined as follows: 

  D +  u i,1  - u i,2 =  ( ( u R1 ( t 1+i ) – u R1 (t i  ) )/h )  - u R2 (t i ), (6a) 

  ε σ( ρ )  D +  u i,2  + a(t i ) u 1,2 +i  - b(t i  ) u i,1  = f hi
h   ,  (6b) 

  u 0,1  = φ 1  , u 0,2  = φ 3 , (6c) 

where 
  σ( ρ ) = ρa(0) / [ exp{ ρ  a(0) )  – 1 ]  , ρ = h/ε  (6d) 

and u R1 (t) , u R2 (t)  and  f i
h  are defined as in  (5a,b) and (4e). 

 Above schemes are proposed in [4] for the IVP(3a,b). These schemes are 
consistent, stable and uniformly convergent of order one. And reflect the asymptotic 
properties of the solution of (3a,b) as ε  goes to zero. The application of the schemes 
(4a-e) and (6a-d) are given in the next section. 
 
 
Description of the Method 
In this  section a new computational procedure to solve the problem (1a,b) is   
presented using shooting method motivated by the works of [3,7].  For the problem 
(1a,b) we make an initial guess φ 3   for u' (0)  from  the zero th  order asymptotic 
expansion for the solution of the problem  (1a,b) [2]:  

  u ( t,  ε ) =  u 0 ( t )  + [  φ 1   -  u 0  (0) ]exp( - a(0)  t/ε )  (7) 

where  u 0 ( t )  is the solution of the problem(2a,b).  That is, 

  u'( t 0   ) =  [ u( t 1  , ε )  - u( t 0 , ε ) ] / ( t 1  - t 0 )  

where  t 1≠ t 0  , t 0 = 0   and   t 1  is a point in the  neighborhood of t = t 0  . Now we denote 
u(t, φ 3 ) as the solution of the IVP[4] 

  ε u''(t) + a(t) u'(t) – b(t)u(t) = f(t),  0 < t < 1,  (8a) 

  u(0) = φ 1  , u' (0)= φ 3  (8b) 

such that [3, 7] 
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  u(1, φ 3  ) - φ 2  = O(ε)  (9)  

as t 1  goes to  t 0 . As  ε goes to zero and t1 goes to t 0 = 0, u(1, φ 3 ) - φ 2    will tend to 
zero .  The IVP ( 8a,b) can be reduced into a system of IVP for first order ordinary 
differential equations in which the first equation do not contain the parameter  ε and 
the second equation contain a small parameter ε multiplied at the first derivative, 

  u 1 ' (t) - u 2 (t) =  0, (10a) 

  ε u 2 ' (t)  + a(t) u 2 (t) -  b(t) u 1 (t) = f(t), 0,< t < 1 ,  (10b) 

  u 1 (0) = φ 1  , u 2 (0) = φ 3  (10c)  

where u 1 (t) = u(t) and u 2 (t) = u' (t). Here the non –uniformity occurs only at the 
derivative but not in the solution. Now the IVP (10a-c) can be solved numerically 
using the scheme (4a-e). The finite difference scheme for (10a-c) is 

  D +  u i,1 - u i,2  = ((u R1 ( t 1+i  ) - u R1 (t i ) )/h) - u R2 (t i ) ,  (11a) 

  εσ i ( -ρ ) D + u i,2  + a(t i ) u i,2  -  b(t i ) u i,1  = f i
h , (11b) 

where σ i ( -ρ ), u R1 ( t ), u R2 (t )  and  f i
h  are defined as in  (4d),  (5a-b)  and  (4e).  

Hence the given problem (1a,b) can be solved  numerically using  shooting method  
with the help of one-step methods without matrix inversion.  
 In the following the convergence of the solution u (t, φ 3 ) of the IVP (8a,b) to the 
solution u(t) of the problem (1a,b) is given.  
 
Theorem 1 
Let u(t) and u(t, φ 3 )   are the solutions of the problems (1a,b) and   (8a,b) 
respectively. Then, for all t in [0,1]  we have  

  | u(t) – u(t, φ 3 )  | ≤  C ε . (12) 
 
Proof. The proof of the theorem follows from the stability result  (1.2.Lemma 2).  
From (1a, b) and (8a, b), we have, 

 L [ u(t) –u(t, φ 3  ) ] =   Lu(t)  -Lu(t, φ 3 ) = f(t) – f(t) = 0,  

 B 0  [ u(0) – u( 0, φ 3 )  ] = B 0 u(0) -  B 0 u(0,φ 3 ) = φ 1  - u(0, � 3 )= � 1   - φ 1  = 0 

and 

 B 1  [ u(1) – u( 1, φ 3 )  ] = B1 u(1) -  B1 u(1, φ 3 ) = φ 2  - u(1, φ 3 ). 
 
From (9) we have 

  |  B 1  [ u(1) – u( 1, φ 3 )  ]   | ≤  | φ 2  - u(1, φ 3 )  | ≤ C ε. 
 
Now, using stability result, we have 



A Computational Procedure 5 

 

  | u(t) – u(t, φ 3 )  | ≤ C ε .                                                                           
 

Note. 
When ε goes to zero, the solution u (t, φ 3  )  of  (8a,b) converges to the solution  u(t) 
of (1a,b). 
 The following   theorem gives  the main results of this section, that is, the 
convergence of the computational method. 
 
Theorem 2 
Let   u(t) and u i  be the solutions of  (1a,b) and (11a-b) respectively. Then we have, 

  |   u(t i ) - u i  | .≤  C ( ε + h ).  
 
Proof. From [4] we have the estimate for the solution   of   the  scheme (11a-b) as  

  |   u(t i , φ 3  ) - u i  |  ≤ C h. 
 
From  Theorem 1 we have  

  | u(t i ) – u(t i , φ 3 )  | ≤ C ε . 
 
Therefore  

  | u(t i ) - u i  |  ≤  | u(t i ) – u(t i , φ 3 )  | + |  u(t i , φ 3  ) - u i  |   

  ≤   C ε + C h   ≤   C  ( ε + h ). 
 
Note 
When the scheme (6a-d) is applied to the IVP (10a-c)   the computational time   will  
be reduced at  each nodal points. From   [4] we have  

  |   u (t i , φ 3  ) - u i  |  ≤  C h  
 
where   u(t i , φ 3  )  is the solution of the IVP (8a,b) and u i  is  the solution of the 
scheme (6a-d).  Therefore, using the   estimate (12)  

  | u(t i ) - u i  |  ≤  | u(t i ) – u(t i , φ 3 )  | + |  u(t i , φ 3  ) - u i  |   

  ≤   C ε + C h  ≤  C  ( ε + h ). 
 
 
Test Examples and Numerical Results 
Example 1.   Consider the following homogenous  problem  which arises in control 
system 
  ε u" (t) +  u' (t) = 0, 0 < t < 1, (13a)  
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  u(0) =  � 1 =1, u(1) =  � 2  = 2 .  (13b)  
 
The  initial  guess  φ 3  for u'(0)  is given by  

  φ 3  =  u'(0) = ( φ 2  - φ 1 ) [ 1 – exp( - t 1 / ε ) ] / t 1   

where   t 1  is a  point in the neighborhood  of  t 0 = 0 from the zero th  order  asymptotic 
expansion  for the solution of  (13a,b) 

  u(t,ε) = φ 2  +  (  φ 1  -  φ 2  ) exp(  - t  / ε ). 
 
The corresponding   IVP   is  
  ε  u" (t) +  u' (t) = 0, 0 < t < 1, (14a) 

  u(0) = φ 1  , u'(0) =  φ 3   (14b) 
 
whose    solution is  

  u(t, φ 3 ) =  φ 1 +  ε φ 3  [ 1 – exp( - t / ε ) ]                                

such    that  

  u(1, φ 3  ) -  φ 2  = ( φ 2  -  φ 1  ) (  ((1/  σ(-t 1  /ε ))[ 1 – exp(-1/ε ) ]) - 1 ) 

where 

  σ( - t 1  /  ε ) = (t 1  /ε)/ [1-exp(- t 1  / ε )]. 
 
As t 1  goes to zero,  

  σ( - t 1 /  ε )  goes to one and  so    

  u(1, φ 3  ) -  φ 2  = ( φ 1  -  φ 2  ) exp(-1/ε ). 
 
Again   as   ε goes to zero , we  have, 

  u(1, φ 3  ) -  φ 2  =  0. 
 
The IVP (14a, b) can be reduced into a system of the form   

  u 1 ' (t)  - u 2 (t)  = 0, u 1 (0) = φ 1 , (15a) 

  ε u 2 ' (t) + u 2 (t)  = 0,  u 2 (0) = φ 3 ,  (15b)  
 
where u 1 (t) = u(t) and  u 2 (t)  = u'(t) . The IVP (15a , b) can be solved numerically  
using the schemes given in section 2.  It is observed that   the scheme (4a-e) reduces 
to the scheme (6a-d) when applied to the IVP (13a, b).  
 Numerical results are given in Table 1.  It is observed that the computational 
procedure   solves exactly the sample problem (13a,b) even for large values of  h = 
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1/16 and small value of �= 10 4− . The  shooting error , u(1, φ 3  ) -  φ 2  =  0, for large 
step size h = 1/16 and small  value of  ε = 10 4− .  Similarly for   � = 10 5−    the 
shooting error is zero for large step size h = 1/16. 
 
Example 2..  Consider the following homogeneous problem with variable coefficient 
which arises in control system  
  ε u"(t) + (1+t ) u't) = 0 , 0 <t <1, 
  u(0) = 1, u(1) = 2.  
 
 The numerical   results are given in Table 2 using the scheme (4a-e).  It   is 
observed that the computational procedure   solves exactly the sample problem   even  
for large  values of  h = 1/16 and small value of   � = 10 4− .  The   shooting error , u(1, 
φ 3  ) -  φ 2  =  0  for  large step size h = 1/16 and small value of  ε = 10 4− .  Similarly   
for � = 10 5−  the shooting error is zero for large step size h = 1/16.  Same numerical 
result   is got on   using   the scheme (6a-d)  but it take less time for  computation. 
 
Example 3..  Consider the following   non homogeneous problem with variable 
coefficient   which arises in  fluid dynamics 
  ε u"(t) + u'(t) = 1+2t, 0 <t <1, 
  u(0) = 0, u(1) = 2.  
 
 The numerical results are given in Table 3.  It   is   observed that  the scheme (4a-
e) reduces to  the scheme (6a-d) when applied to example 3.  The  shooting error , u(1, 
φ 3  ) -  φ 2  =  3.906499818E-03  for large step size h = 1/16 and small  value of  ε = 10

4− .  Similarly for  � = 10 5−    the shooting error is 3.96499818E-03  for large step size 
h = 1/16.  It is also observed that   for small values of �  the  shooting error is 
constant.  
 
Example 4..  Consider the following   homogeneous problem  which arises in control 
system 
  ε u"(t) + u'(t) – u(t) = 0 , 0 <t <1, 
  u(0) = 1, u(1) = 2.  
 
 The numerical results are given in Table 4.  It is  observed that  the scheme (4a-e) 
reduces to  the scheme (6a-d) when applied to example 4.   The  shooting error , u(1, 
φ 3  ) -  φ 2  =  8.7998364932E-02  for large step size h = 1/16 and small  value of  ε = 
10 4− .  Similarly for  � = 10 5−    the shooting error is  8.7998364932E-02  for large 
step size h = 1/16.  It is also observed that  for small values of � the  shooting error is 
constant.  
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Note. 
When the exact solution of  the initial value problem (8a,b) is not known , using the 
numerical  solution of  (8a,b), we can check the condition (9).  In Tables 1-4 , the 
condition (9) is checked and given  for the respective Test problems  to illustrate the 
computational procedure 

 
 

Table 1 
 

    
 
 

Table 2 
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Table 3 
 

    
 

Table 4 
 

    
 
 
Conclusions 
From the above discussion, we conclude that the given singular perturbation problem   
arising in control system can be solved by shooting method. The given problem is 
replaced by an initial value problem with an initial guess from the zero th  order 
asymptotic expansion for the solution. Then the  resultant initial value problem is 
solved  using exponentially fitted finite difference schemes The dissimilarity between 
the given problem and the transformed initial value problem is , the non uniformity  
occurs in the solution  of the given problem and the non uniformity occurs in the 
derivative of the solution of the transformed initial value problem respectively at t = 
0. 
 The computational   procedure presented in this  paper  solves  exactly the Test 
problem 1 and problem 2  for small values of  � = 10 4− .  The advantage of this 
procedure is , there is no need for matrix inversion as in tri-diagonal difference 
schemes. A one step method is used in  the  computational procedure. To study the 
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local   behavior of the solution in the neighborhood  of ε, one can apply the 
computational procedure presented in  [5].   
 Using a scheme of order one, in this paper a good approximation to the solution of  
the given problem is  obtained.  To get higher order convergence one can apply the 
higher order numerical methods presented in [1,2,3,4,6].  The computational 
procedure can also be applied to solve   the partial differential equations 
 All computations were performed in Pascal single precision   on a Micro Vax  II  
computer at Bharathidasan University, Tiruchirapalli-620 024, Tamil Nadu, India. 
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