A Note on a Common Fixed Point Theorem in Cone Metric Spaces of Huang, Zhu and Wen

K.P.R. Sastry¹, Ch. Srinivasarao², K. Sujatha³ and G. Praveena⁴

 ¹8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam-530 017, India. E-mail: kprsastry@hotmail.com
²Department of Mathematics, Mrs. A.V.N. College, Visakhapatnam-530 001, India. E-mail: drcsr41@yahoo.com
³Department of Mathematics, St. Joseph's College for Women, Visakhapatnam-530 004, India E-mail: kambhampati.sujatha@yahoo.com
⁵Department of Mathematics, Mrs. A.V.N. College, Visakhapatnam-530 001, India E-mail: praveenagorapalli29@gmail.com

Abstract

In this paper, we obtain the result of Xianjiu Huang, Zhu, Wen [2] in a simple way as a corollary from (L.G. Haung and X. Zhang [1], Theorem 1)

Mathematics Subject Classification: 54E40; 54E35; 54H25

Keywords: Cone metric spaces; Common fixed point; Sequences of maps.

Introduction

The object of this note is to obtain the result of (Xianjiu Huang, Zhu, Wen [2]) from (L.G. Haung and X. Zhang [1], Theorem 1) in a simple way as corollary.

For relevant definitions and other material we refer to (Xianjiu Huang, Zhu, Wen [2]).

Main Results

L.G. Haung and X. Zhang [1] proved the following theorem.

Theorem 2.1 (L.G. Haung and X. Zhang [1], Theorem 1): Let (X, d) be a complete cone metric space and *P* a normal cone with normal constant *K*. Suppose the mapping S: $X \rightarrow X$ satisfies

$$d(Sx, Sy) \le k \ d(x, y) \tag{2.1.1}$$

for some $0 \le k \le 1$ and for every $x, y \in X$. Then S has unique fixed point in X.

Now we obtain Theorem 2.1 of [2] as a corollary of the above theorem in a simple way.

Corollary 2.2 ([2], Theorem 2.1): Let (X, d) be a complete cone metric space and P a normal cone with normal constant K. Suppose the sequence $\{T_n\}$ of self mappings on X

satisfies, for some positive integer *m*, $d(T_i^m x, T_j^m y) \le a_{i,j} d(x, y)$ (2.2.1)

for all i,j = 1,2,3..., $x, y \in X$, where $a_{i,j}$ and k are constants with $0 \le a_{i,j} < k < 1$. Then the sequence

 $\{T_i^m\}$ has a unique common fixed point in X.

Proof: By hypothesis, $d(T_i^m x, T_j^m y) \le a_{i,j} d(x, y)$ $\le k d(x, y)$ for all $x, y \in X$.

Hence, by taking x = y we get $T_i^m x = T_j^m x$ for all i, j = 1,2,3...Thus $T_1^m = T_2^m = T_3^m = ...$ Hence, by Theorem 2.2, $\{T_1^m\}$ has unique fixed point, say, y^* . Then $T_1^m(T_1y^*) = T_1(T_1^m y^*) = T_1 y^*$ so that $T_1 y^*$ is a fixed point of T_1^m By condition (2.2.1) follows that $T_1 y^*$ is a fixed point of T_1^m . Hence, by the uniqueness of fixed point of T_1^m follows that $T_1 y^* = y^*$

Thus y^* is a fixed point of T₁ = T₂ = T₃ =... If z^* is a fixed point of T₁, then z^* is also a fixed point of T_1^m so that $z^* = y^*$ Thus y^* is the unique fixed point of T₁ = T₂ = T₃ =...

References

- [1] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332, 2007, 1468-1476.
- [2] Xianjiu Huang, Chuanxi Zhu and Xi Wen, A common fixed point theorem in cone metric spaces, Int.jour. of math. Analysis, vol.4, 2010, no.15,721 726.