A Note on a Common Fixed Point Theorem in Cone Metric Spaces of Huang, Zhu and Wen

K.P.R. Sastry ${ }^{1}$, Ch. Srinivasarao ${ }^{2}$, K. Sujatha ${ }^{3}$ and G. Praveena ${ }^{4}$
${ }^{1}$ 8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam-530 017, India.
E-mail: kprsastry@hotmail.com
${ }^{2}$ Department of Mathematics, Mrs. A.V.N. College, Visakhapatnam-530 001, India.
E-mail: drcsr41@yahoo.com
${ }^{3}$ Department of Mathematics, St. Joseph's College for Women, Visakhapatnam-530 004, India
E-mail: kambhampati.sujatha@yahoo.com
${ }^{5}$ Department of Mathematics, Mrs. A.V.N. College, Visakhapatnam-530 001, India E-mail: praveenagorapalli29@gmail.com

Abstract

In this paper, we obtain the result of Xianjiu Huang, Zhu, Wen [2] in a simple way as a corollary from (L.G. Haung and X. Zhang [1], Theorem 1)

Mathematics Subject Classification: 54E40; 54E35; 54H25
Keywords: Cone metric spaces; Common fixed point; Sequences of maps.

Introduction

The object of this note is to obtain the result of (Xianjiu Huang, Zhu, Wen [2]) from (L.G. Haung and X. Zhang [1], Theorem 1) in a simple way as corollary.

For relevant definitions and other material we refer to (Xianjiu Huang, Zhu, Wen [2]).

Main Results

L.G. Haung and X. Zhang [1] proved the following theorem.

Theorem 2.1 (L.G. Haung and X. Zhang [1], Theorem 1): Let (X, d) be a complete cone metric space and P a normal cone with normal constant K. Suppose the mapping S: $X \rightarrow X$ satisfies

$$
\begin{equation*}
d(S x, S y) \leq k d(x, y) \tag{2.1.1}
\end{equation*}
$$

for some $0<k<1$ and for every $x, y \in \mathrm{X}$. Then S has unique fixed point in X .
Now we obtain Theorem 2.1 of [2] as a corollary of the above theorem in a simple way.

Corollary 2.2 ([2], Theorem 2.1): Let (X, d) be a complete cone metric space and P a normal cone with normal constant K. Suppose the sequence $\left\{T_{n}\right\}$ of self mappings on X
satisfies, for some positive integer m,

$$
\begin{equation*}
d\left(T_{i}^{m} x, T_{j}^{m} y\right) \leq a_{i, j} d(x, y) \tag{2.2.1}
\end{equation*}
$$

for all $\mathrm{i}, \mathrm{j}=1,2,3 \ldots . ., x, y \in X$,
where $a_{i, j}$ and k are constants with $0 \leq a_{i, j}<\mathrm{k}<1$.Then the sequence

$$
\left\{T_{i}^{m}\right\} \text { has a unique common fixed point in } \mathrm{X} \text {. }
$$

Proof: By hypothesis, $d\left(T_{i}^{m} x, T_{j}^{m} y\right) \leq a_{i, j} d(x, y)$

$$
\leq \mathrm{k} d(x, y) \text { for all } x, y \in X
$$

Hence, by taking $x=y$ we get $T_{i}^{m} x=T_{j}^{m} x$ for all $\mathrm{i}, \mathrm{j}=1,2,3 \ldots$
Thus $T_{1}{ }^{m}=T_{2}{ }^{m}=T_{3}{ }^{m}=\ldots$
Hence, by Theorem 2.2,
$\left\{T_{1}{ }^{m}\right\}$ has unique fixed point, say, y^{*}.
Then $T_{1}{ }^{m}\left(T_{1} y^{*}\right)=T_{1}\left(T_{1}{ }^{m} y^{*}\right)=T_{1} y^{*}$
so that $T_{1} y^{*}$ is a fixed point of $T_{1}{ }^{m}$
By condition (2.2.1) follows that
$T_{1} y^{*}$ is a fixed point of $T_{1}{ }^{m}$.
Hence, by the uniqueness of fixed point of $T_{1}{ }^{m}$ follows that

$$
T_{1} y^{*}=y^{*}
$$

Thus y^{*} is a fixed point of $\mathrm{T}_{1=} \mathrm{T}_{2}=\mathrm{T}_{3=\ldots}$
If z^{*} is a fixed point of T_{1}, then z^{*} is also a fixed point of $T_{1}{ }^{m}$ so that $z^{*}=y^{*}$ Thus y^{*} is the unique fixed point of $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}=\ldots$

References

[1] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332, 2007, 1468-1476.
[2] Xianjiu Huang, Chuanxi Zhu and Xi Wen, A common fixed point theorem in cone metric spaces, Int.jour. of math. Analysis, vol.4, 2010, no.15,721-726.

