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Abstract 
 

In this article differential transform method is consider to solve second order 
differential equations. The analytical and numerical results of the equations 
have been obtained in terms of convergent series with easily comparable. 
Three examples are given to illustrate the efficiency of the present method. 
Differential transform technique may be considered as alternative and efficient 
for finding the approximate solutions of the boundary values problems. 
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Introduction 
The Differential transform method has been successfully used by Zhou[6] to solve a 
linear and nonlinear initial value problems in electric circuit analysis. This method 
constructs an analytical solution in the form of a polynomial.. The differential 
transform method is an alterative method for finding the analytic solution of the 
differential equations. In this paper, we apply the differential transform method which 
is based on Taylor expansion to construct analytical approximate solutions of the 
initial value problem. 
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 This paper is organized as follows: In Section 2, the differential transformation 
method is described. In Section 3, the method is implemented to three examples, and 
conclusion is given in Section 4. 
 
 
Differential transformation method 
Differential transformation of function ( )y x  is defined as follows 
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 In (1), ( )y x  is the original function and ( )Y k  is the transformed function. 
Differential inverse transform of ( )Y k is defined as follows 
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 In fact, from (1) and (2), we obtain 
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 Eq. (3) implies that the concept of differential transformation is derived from the 
Taylor series expansion. From the definitions (1) and (2), it is easy to obtain the 
following mathematical operations: 

1. If ( ) ( ) ( )f x g x h x= ±  then ( ) ( ) ( )F k G k H k= ± . 
2. If ( ) ( )f x cg x=  then ( ) ( )F k cG k= , where ‘c’ is constant. 

3. If ( ) xf x e=  then 1( )
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6. If ( ) nf x x=  then ( ) ( )F k k nδ= − , where δ the Kronecker delta. 
 
 
Numerical Examples  
To demonstrate the method introduced in this study, three examples are solved here. 
 
Example 1  
Consider the equation 
  11 15 6 5 ty y y e+ + =  (4) 
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the initial conditions is  
  (0) 2y =  and 1(0) 1y =  (5) 
 
 Taking the differential transform both sides of (4), we obtain 

  1( 2)( 1) ( 2) ( 1) ( 1) 6 ( ) 5
!

k k Y k k Y k Y k
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+ + + + + + + =  (6) 

 
where ( )Y k  is the differential transform. 
 From the initial condition given by Eq.(5) we have 
  (0) 2Y =  and (1) 1Y =  (7) 
 
 Taking Eq.(7) in Eq.(6) and by recursive method, we have 

  (2) 6Y = −
59(3)
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 The form of the solution can be written as 
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which is exact solution of the equation (4) 
 Now applying laplace transform to the equation (4), we get the same solution. 
 
Example 2  
Consider the equation 
  11 12 2 0y y y− + =  (8) 
 
the initial conditions is  
  (0) 1y =  and 1(0) 1y =  (9) 
 
 Taking the differential transform both sides of (8), we obtain 
  ( 2)( 1) ( 2) 2( 1) ( 1) 2 ( ) 0k k Y k k Y k Y k+ + + − + + + =  (10) 
 
where ( )Y k  is the differential transform. 
 From the initial condition given by Eq.(9) we have 
  (0) 1Y =  and (1) 1Y =  (11) 
 
 Taking Eq.(11) in Eq.(10) and by recursive method, we have 
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 The form of the solution can be written as 
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( ) cosxy x e x= , which is exact solution of the equation (8) 

 Now applying laplace transform to the equation (8) we get the same solution. 
 
Example 3  
Consider the equation 
  11 1 2 2y y x x+ = +  (12) 
 
the initial conditions is  
  (0) 4y =  and 1(1) 2y = −  (13) 
 
 Taking the differential transform both sides of (12), we obtain 
  ( 2)( 1) ( 2) ( 1) ( 1) ( 2) 2 ( 1)k k Y k k Y k k kδ δ+ + + + + + = − + −  (14) 
 
where ( )Y k  is the differential transform. 
 From the initial condition given by Eq.(13) we have 
  (0) 4Y =  and (1) 2Y = −  (15) 
 
 Taking Eq.(15) in Eq.(14) and by recursive method, we have 

  (2) 1Y =  (3) 0Y =  1(4)
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 The form of the solution can be written as 
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xy x e x−= + + , which is exact solution of the equation (12) 

 
 Now applying laplace transform to the equation (12), we get the same solution. 
 
 
Conclusion  
In this paper, we have shown that the differential transform method can be used 
successfully for finding the solution of second order differential equations and we 
compare the solution with other alternate method. It may be concluded that this 
technique is very powerful and efficient in finding solutions. 
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