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Abstract 
 

This paper presents a finite difference scheme of order one for singularly 
perturbed Riccati equation 

  ε u'(x) = c(x)u 2 (x) + d(x)u(x) + e(x), x>0, u(0)=φ 
with a small parameter ε multiplying the first derivative, The scheme is a 
modified form of the classical Euler’s backward scheme of order one. The 
scheme is both optimal and uniform with respect to the small parameter ε, that 
is, the solution of the difference scheme satisfies the error estimates of the 
form:  

  | u ( x i  ) - u i  | ≤ C min ( h , � ) 
where C is independent of i, h and ε. Here h is the step size and x i  is any mesh 
point. The scheme is implicit in nature and no iteration is needed for the 
convergence of the solution of the scheme. The scheme presented in this paper 
is new and it reflects the asymptotic properties of the singularly perturbed 
Riccati equation. Finally, numerical experiments are presented. 
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Introdution 
Consider the scalar Riccati equation on the interval Ω = (0, ∞ ) 
  ε u'(x) = c(x)u 2 (x) + d(x)u(x) + e(x), x є Ω (1a) 
  u(0) = φ (1b) 
 
where ε>0 is a small parameter and c, d and e are smooth functions on Ω . In addition 
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we assume that 
  d 2 (x( - 4c(x)e(x) ≥ α  > 0, x ЄΩ. (2) 
 
 Equation(1a,b) has wide application in many areas of science such as chemical 
kinetics[8], mathematical physics[4]. For example in the propagation of auxiliary 
symmetric waves [7], the input wave impedance to an induction device[5], quadratic 
periodic optimization, in the design of solar heating system[11], etc.  
 The equation(1a,b) can be written in the form[2,15] 
  N u(x) ≡ ε u'(x) - c(x)[u (x) - a(x)][u(x) – b(x)] = 0 , x Є Ω , (3a) 
  u(0) = φ (3b) 
 
where a(x) and b(x) are the roots of the quadratic equation 
  u 2 (x) + [d(x)/c(x)] u(x) + [e(x)/c(x)] = 0, x Є Ω , c(x)≠0.  
 
 The condition(2) is sufficient to guarantee that operator N has a maximum 
principle and the solution u(x) of expression(3a,b) is unique and bounded[2].  
 The problem(3a,b) is a singularly perturbed equation with an initial layer at x=0 
which is of order ε[2,9,10]. As ε goes to zero, the equation(3a,b) reduces to the form  
  c(x)[u 0  (x) - a(x)][u 0 (x) – b(x)] = 0 , x Є Ω . (4)  
 
 The solution of (4) is u 0 (x) = a(x) and u 0 (x) = b(x) . That is, the critical points are 
clearly a(x) and b(x). We may define the corresponding reduced problem u 0 (x) by  
  u 0 (x) = a(x), x Є Ω (5)  
 
which is the stable critical point., throughout this paper. In general, numerical solution 
of (3a,b) using the classical Euler’s rule will not yield satisfactory result. A modified 
form of the Euler’s rule is presented in [2,9,10] gives satisfactory result for small 
values of the mesh size but not for small values of ε.  
 We introduce a uniform mesh of width h on Ω with mesh points x i  = ih. We solve 
problem(3a,b) by finite difference methods of the form:  
  N h u i  ≡ ε σ 1+i  ( ρ ) D +  u i  - c 1+i  [ u 1+i  - a 1+i  ] [ u 1+i  - b 1+i ] = 0 , (6a)  
  u 0  = � (6b) 
 
where c 1+i  , , a 1+i  , b 1+i  and the fitting factor σ 1+i  ( ρ ) are specified later. The scheme 
of this paper is chosen in such a way that it must solve exactly the reduced problem(5) 
as ε goes to zero, because the scheme which solve exactly the reduced problem(5) are 
expected to work well for large values of x. If the solution u i  of the scheme (6a,b) 
satisfies the `reduced equation(5) exactly at the interior points, as ε goes to zero, them 
we call such finite difference scheme with this property as optimal. 
 In this paper the fitting factor will always be chosen so that the difference scheme 
is uniform with respect to the small parameter ε, that is, if u and u i  are the solutions 
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of (3a,b) and (6a,b) respectively, then at each node x i  there is an error estimate of the 
form 
  | u ( x i  ) - u i  | ≤ C h p  (7) 
 
where C and p are independent of i i, h and ε.  
 Uniformly convergent finite difference schemes for the solution of linear and 
nonlinear singularly perturbed problems have been approached from the point of view 
of singular perturbations and exponential fitting[2,3,9,10,12,13,15]. Uniform results 
for nonlinear initial value problems based on exponential fitting appear 
in[2,9,10,12,15].  
 Uniformly convergent finite difference schemes of the problem(3a,b) have been 
proposed by Carroll[2] and O’Reilly[9,10]. In fact, the scheme of Carroll[2] gives 
uniform error estimate for the case a(x)≠b(x) and not for the case a(x)=b(x). It must be 
noted that in the fitting factor, Carroll used third order approximation but the scheme 
is of order one. O’Reilly[9,10] replaced u(x) + d(x)/(2c(x)) by u which becomes a 
Bernoulli’s equation and then framed an explicit finite difference scheme. Both the 
schemes developed by Carroll and O’Reilly are uniform and they never reflect the 
asymptotic behavior of the solution for small values of ε 
 The purpose of the paper is to propose an implicit finite difference scheme for the 
problem(3a,b) such that the solution of the scheme is uniform using Euler’s backward 
scheme. Also, the scheme must reflect the asymptotic properties of the solution of 
(3a,b). We derive error estimates of the form: 
  | u ( x i  ) - u i  | ≤ C min ( h , � ) (8)  
 
where C is independent of i, h and ε. Schemes satisfying the inequality (8) are clearly 
uniform of order one and optimal. 
 The schemes proposed in [2,9,10] are uniform of order one and satisfies the 
estimate(7) for p=1. And these schemes are not satisfying the estimate(8) and so they 
are not optimal. . The scheme presented in [15] is a modified scheme of Carrull[2] 
which is uniform and optimal but the form of the fitting factor is same as in the 
scheme of Carroll[2] need a lot of computation. 
 The scheme presented in this paper is a modified form of the scheme of Euler’s 
backward scheme and it is computationally cheaper than all other explicit schemes 
available in the literature. The fitting factor of the scheme presented in this paper is 
computationally cheaper than the fitting factor of the schemes of Carroll[2] and[ 15] 
And the scheme works well for moderate and small values of ε and even for large 
values of the step size h. 
 Throughout this paper, ρ = h/ε and C will denote a generic constant independent 
of I, h and ε. 
 
 
Finite Difference Scheme  
In this section an implicit finite difference scheme with a variable fitting factor is 
presented. The consistency, stability and convergence are discussed. The finite 
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difference scheme for (3a,b) is 
 N h u i  ≡ ε σ 1+i  ( ρ ) D +  u i  - c 1+i  [ u 1+i  - a 1+i  ] [ u 1+i  - b 1+i ] = 0 , (9a)  
 u 0  = �   (9b) 
where 
  σ 1+i  ( ρ ) = σ ( ρ q 0  ) R i   (9c) 
  σ ( ρ q 0  ) = ρ q 0  / [ exp(-ρ q 0 ) - 1 ], ρ = h/ε , (9d) 
  q 0 = c 0  (a 0  - b0) , (9e)  
  R i = [1-kexp( i ρ q 0  ) ] / [1-kexp( (i+1) ρ q 0  ) ], (9f)  
  k= ( �- a 0  )/( � - b0) (9g )            
and 
  c 1+i  = c(x 1+i ), a 1+i  = a(x 1+i ), b 1+i  = b(x 1+i ). (9h) 
 
 The scheme(9a-h) is consistent with the problem(3a,b) in the sense that the 
discrete problem (9a-h) coincide with the problem(3a,b) when h approaches zero. The 
scheme(9a-h) satisfies the necessary condition for uniform convergence exactly 
introduced in[2], that is,  
  lim σ i ( ρ ) = ( ρq 0  exp( ρq 0  ) /[ 1 - exp( ρq 0  ) ] ) R 0  (10a) 
as limit h goes to zero, where 
  R 0  = [ 1 - K 0  exp( iρq 0  ) ]/ [ 1 - K 0  exp( (i+1) ρq 0  ) ] (10b) 
  q 0  = c 0  ( a 0  - b 0 )  (10c) 
and 
  K 0  = (φ-a 0  )/( φ -b 0  ) .  (10d) 
 
 The scheme(9a-h) model the equation(5) exactly as ε goes to zero 
  u 1i = u(x 1+i ). (11) 
 
 And so one can expect the scheme(9a-h) to work well for large x. The scheme is 
exponentially fitted , because the necessary condition(10a-d) gives the minimum 
requirement on the scheme to model the transient behavior of the problem(3a,b) 
accurately. 
 Following the results of Keller[6], a stability result is given for the solution of the 
scheme(9a-h) in the form of a Lemma. It is noted that  

  - q i  = 
i

i
iii ecd 42 −  ≥ α  > 0. 

 
Lemma 2.1.[6,15] 
Assume that d 2 (x) – 4c(x)e(x) ≥ α  >0 for all x Є Ω. Let N h  be the operator defined 

in (9a-h). If {v i} and {w i } be any two functions then, for all x Є Ω and i≥0 

 | v i - w i  | ≤ | v 0  - w 0  | + max| N h v j  - N h  w j  |, j ≥ 0. 
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 Following theorem gives the convergence result for the scheme(9a-h). An 
estimate of the form (8) is obtained in this theorem. 
 
Theorem 2.2  
Let u and u i  be the solutions of problem(3a,b) and (9a-h) respectively. Then, at each 
mesh point x i , we have the following error estimate, 
  | u ( x i  ) - u i  | ≤ C min ( h , � ) (12)  
 
where C is independent of i, h and ε.  
 
Proof: From the stability result of N h  in the scheme(9a-h), it suffices to prove that 
  | ι i  | = | N h  u(x i ) - N h  u i  | ≤ C min ( h , � )  
 
where ι i  is the truncation error of the scheme(9a-h) with respect to the problem(3a,b). 
  For i=0, ι 0  = � - � = 0. 
  For I ≥ 1, ι i  = N h  u(x i ) - N h  u i  
  = N h  u(x i ) - 0  
  = N h  u(x i ) - N u(x 1+i )  
 
where N u(x 1+i ) =0 since N u(x) =0.  
 Using the asymptotic expansion for the solution of (3a,b) in the interval [x i  ,x 1+i  ]  
  u(x) = u 0 (x) + v 0 (x/ε) + o(ε) 
where 
  u 0 (x) = a(x) 
and 
  v 0 (x/ε) = k [ a (0) – b(0) ]exp( q 0 x/ε ) / [1- k exp( q 0  x-/ε ) ] , 
  q 0 = c(0) (a(0) – b(0)) , k = [� - a(0)]/[ � - b(0)]  
where x Є Ω, we have 
 ι 1  = N h  u(x i ) - N u(x 1+i )  
 = ε σ i ( ρ ) D +  u(x i ) - ε u'(x 1+i )  
 = ε [ σ i ( ρ ) – 1 ] D +  u 0 (x i ) + ε [ D +  u 0 (x i ) - u 0 '(x 1+i ) ] 
 + [ ε σ i ( ρ ) D +  v 0 (x i /ε) - ε v 0 '(x 1+i /ε) ] + O(ε) 
 = ε [ σ i  ( ρ ) – 1 ] D +  u 0 (x i ) + ε [ D +  u 0 (x i ) - u 0 '(x 1+i ) ] + O(ε)    
since ε v 0 '(x 1+i /ε) = ε σ i ( ρ ) D +  v 0 (x i /ε) . And 
 ε[σ i ( ρ ) - 1 ] = ε [ σ ( ρ q 0  ) R i  - 1 ]  
 = ε [ σ ( ρ q 0  ) - 1 ] + [ ε σ ( ρ q 0  ) ] [ R i  - 1 ]  
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 = ε [ σ ( ρ q 0  ) - 1 ] + ε σ ( ρ q 0  ) [ exp(ρ q 0 ) - 1 ] v 0 (x i /ε)/ [ a(0) – b(0)]  
 
From [3] we have 
 ε| σ (ρ q 0 ) – 1 | ≤ C min ( h , � ), 
 │exp(ρ q 0 ) - 1│≤ C min ( 1 , ρ ), 
 │ σ ( ρ q 0  )│ ≤ C, │ v 0 (x i /ε)│ ≤ C 
and hence  
 | ε [ σ ( ρ q 0  ) - 1 ] | ≤ C min ( h , � ) + C min ( h , � )    
 ≤ C min ( h , � ). 
 
Therefore,  
 | ι i | ≤ C min ( h , � ) for al i ≥ 0  
since  
 │D +  u 0 (x i ) │ ≤ C and │ D +  u 0 (x i ) - u 0 '(x 1+i ) │ ≤ C. h  
 
Using stability result, we have 
 | u ( x i  ) - u i  | ≤ | u ( 0 ) - u 0  | + max | N h  u(x j ) - N h  u j  | ,j ≥ 0 
 ≤ |� - � | + max | ι j |     
 ≤ max | ι j |  
 ≤ C min ( h , � ) 
 
which is the required estimate. 
 Hence the explicit scheme (9a-h) is proved to be uniform of order one and 
optimal. 
 
 
Numerical Experiment 
This section gives numerical results for a singularly perturbed Riccati equation for 
large values of x. We compare the difference scheme(9a-h) in Table 1 with a number 
of integration formulae . For the problem 1, we use a common uniform mesh h=1/16 
and interval [0,1] respectively and we compute absolute error 
  e i

h = max | u ( x i ) - u i  | for all i= 0(1)16 
 
where u ( x i ) and u i  are exact and approximate solutions respectively. 
 All computations were performed in PASCAL single precision on a Micro Vax II 
computer at Bharathidasan University, Tiruchirapalli-620 024, India. 
 The sample problems which we consider are as follows: 
 
Problem 1[15] 
 u'(x) – (3/8) cos (x)[(1+6 sin(x) )/8] 2/1−  = λ [ 0.6 sin(x) +0.1 – 0.8 u 2 (x) ] ,  
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 u(0) = (1/8) 2/1 , λ = 1/ε, ε ≠ 0. 
 Numerical results are given in Table 1. 
 
 In Tables 1 a comparative study is made. The schemes compared with the 
scheme(9a-h) presented in this paper are 

1. Euler’s forward method 
2. Euler’s backward method 
3. Trapezoidal method 
4. scheme of Carroll[2] 
5. scheme of O’Reilly[9,10] 
6. scheme of Selvakumar [15]. 

 
 The problem 1 with variable coefficients a(x) and b(x) is chosen to show the 
superiority of the scheme(9a-h). From Table 1 it is observed that the scheme of 
Carroll[2] and scheme of O’Reilly[9,10] are uniform but not optimal.  
 It is observed from Table 1 that the scheme of Selvakumar[15] and the 
scheme(9a-h) are uniform and optimal convergence of O( min ( h , � ) ) . The 
magnitude of the absolute error produced by the scheme(9a-h) is lesser than that of 
the scheme of Selvakumar[15]. 
 The fitting factor in the scheme of Carroll[2] and Selvakumar.[15] are same. The 
scheme(9a-h) is computationally superior than the schemes of Carroll[2] and 
Selvakumar.[15] in the sense that the fitting factor in the scheme(9a-h) is 
computationally cheaper than the fitting factor in the scheme of Selvakumar[[15] and 
Carroll[2]. 

 
Table 1 

 

 
 
 

Conclusion 
In this paper an implicit finite difference scheme of order one is presented for the 
singularly perturbed Riccati equation . The scheme (9a-h) is a modified form of 
classical Euler’s backward method. The scheme(9a-h) is implicit in nature, 
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exponentially fitted, optimal and uniform of order one. The scheme(9a-h) is 
applicable even for large values of the step size and small values of the parameter ε.  
 The scheme(9-h) reflects the asymptotic properties of the solution of the 
singularly perturbed Riccati equation. The scheme presented in this paper can be 
applied to solve the second order singularly perturbed boundary value problems 
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