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Abstract 
 

A computational method is presented for solving singularly perturbed two 
point boundary value problems without a first derivative term. The absence of 
first derivative term leads to the boundary layer regions nearer the end points 
of the interval(both left and right points of the interval). The zero th  order 
asymptotic expansion is used to obtain the terminal boundary conditions. 
Then, the two boundary layer regions and one non-boundary layer region are 
created. And so, the given problem is split into three two-point boundary value 
problems. All these problems are efficiently solved by an uniform and optimal 
exponentially fitted finite difference scheme. Error estimates for the 
computational method is derived using maximum principle,. Numerical results 
are given in this paper to demonstrate the applicability of the computational 
method.  
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Introduction 
The numerical treatment for singular perturbation problems have always been far 
from trivial, because of the boundary layer behavior of the solution. These problems 
occur frequently in fluid mechanics, elasticity and other branches of applied 
mathematics, science and engineering. A few notable problems are boundary layer 
problems, WKB problems, convective heat transport problems with large Peclet 
number, etc. The area of singular perturbations is a field of increasing interest to 
applied mathematicians. To be specific, we consider the following singular 
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perturbation problem(SPP): 
  Lu(x) ≡ - � u″(x) + b(x) u(x) = f(x), (1a) 
for 0 < x < 1 with  
  u(0) = ϕ 1 and u(1) = ϕ 2  (1b)  
 
where � is a small parameter (0 < � << 1 ), ϕ 1 , ϕ 2  are given constants, b(x) and 
f(x) are assumed to be sufficiently continuously differentiable functions in [0, 1], and 
b(x) ≥ β  > 0 on [0, 1], where β  is some positive constant. Under these assumptions 
SPP(1a,b) has a unique solution u(x) which, in general, displays a boundary layer of 
width O( ε ) at x=0 and x= 1 for small values of � [1-4, 811,14,15]. 
 Uniformly convergent finite difference schemes for the SPP(1ab) have been 
examined by various authors [2-4, 9, 11, 14, 15]. All these schemes use constant mesh 
size and it is impractical if one wants to find local behavior of the solution in the 
neighborhood of � , where � is small. 
 Pearson[12] was perhaps the first to attempt something like net adjustments in 
finite difference schemes for the boundary value problem with first derivative term . 
Roberts[13] proposed a boundary value technique and introduced the idea of inner 
and outer region problems for the domain [0, 1]. Such type of technique is also 
discussed in [5-7]. Other works include Bender[1], Neyfeh]8] and O’Malley[10]. 
 The objective of the paper is to present a new approach for solving the SPP(1a,b) . 
It is based on the asymptotic behavior of the solution of the SPP(1a,b). The method 
consists of the following ste3ps: 

• the original problem is divided into left boundary layer region problem, the 
outer region problem and right boundary layer region problem 

• terminal boundary conditions are obtained from the zero th  order asymptotic 
expansion for the solution of the SPP(1a,b) 

• then, the new inner region problems are created and solved numerically using 
uniform and optimal exponentially fitted schemes with variable mesh 

• in urn , the outer region problem is created and solved numerically using 
uniform and optimal exponentially fitted schemes which solve the reduced 
problem exactly for small values of � with constant mesh 

• finally, we combine the solutions of left boundary layer region problem, the 
outer region problem and right boundary layer region problem. 

  
 The process is to be repeated for different choices of the terminal points until the 
profiles stabilize in left boundary layer region and outer region and in , the outer 
region and the right boundary layer region. 
 In section 2 the description of the computational method is given. The error 
estimate of the solutions of three region problems are derived in section 3. The error 
estimate of the numerical solution of three region problems are derived in section 4 . 
The error estimate of the solutions of the computational method with respect to the 
solutions of three region problems are derived in section 5 . The numerical 
experimental results are presented in section 6.  
 Throughout this paper , we shall use the following notations  
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  b 0  = ε/)0(b , 

  b1  = ε/)1(b  , 
  x p  = t p  ε  , 

  x q  = ( 1 - x p  ) ε  , 

  D +  D −  u i  = ( u 1+i  - 2 u i  + u 1−i  ) / h 2 , 
  ρ1  = h1  / ε  , 
  ρ 2  = h 2  / ε  , 
  σ ( ρ1) = σ ( ρ 1  )( ixb  ) σ ( - ρ 1  )( ixb  ) , 

  σ ( ρ 2  ) = σ ( ρ 2  )( ixb  ) σ ( - ρ 2  )( ixb  )  
 
where σ ( x ) and σ ( - x ) are Bernoulli’s generating functions defined as  
  σ ( - x ) = x/[ 1 – exp( - x ) ] and σ ( x ) = exp( - x ) σ ( - x ) 
 
for x>0 and C is independent of I, h1 , h 2  cad � . 
 
 
Computational method 
Consider the SPP(1a,b). as the original problem. We split the original problem into 
three problems, namely, the left boundary layer region problem, the outer region 
problem and the right boundary layer region problem  
 First, we compute the left and right terminal boundary conditions as follows. 
 
Left terminal boundary condition  
Let x p  be the terminal point or common point or width or thickness of the left 
boundary layer region. To find the terminal boundary condition we use the solution of 
the reduced problem 
  b(x) u 0 (x) = f(x), x ∈  (0, 1) (2) 
and the transformed equation 
  -- d 2  v 0 ( τ  ) /dτ 2  + b(0) v 0 ( τ  ) = 0, (3a) 
  -- d 2  w 0 ( η  )/dη 2  + b(1) w 0 ( η ) = 0, τ , η  ∈  (0,∞), (3b)  
  v 0 ( τ  = 0 ) + w 0 ( η  = 1/ ε ) = ϕ 1 - u 0 (0),  (3c) 
  v 0 ( τ  = 1/ ε  ) + w 0 ( η  = 0 ) = ϕ 2  - u 0 (1),  (3d) 
 
 The reduced problem (2) is got by setting � = 0 in the SPP(1a,b). And the 
boundary value problems (3a,d) are obtained by the Taylor’s expansion of the 
coefficients b(x) and f(x) about x = 0 and x = 1, making a change of variables 
  X → τ  = x / ε  and η  = ( 1 – x ) / ε  
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and equating powers of �.  
 The zero th  order asymptotic expansion for the solution of the SPP(1a, b) is given 
by  
  U = u 0  + v 0  + w 0  . (4) 
where  
  u 0 (x) = f(x) / b(x) , (5) 
  v 0 (x ) = (p *  /q *  ) exp( - b 0  x ) (6) 
and 
  w 0 (x ) = (r *  /q *  ) exp( - b1  ( 1 - x ) ) (7) 
where 
  p *  = [ ϕ 1 - u 0 (0) ] - [ ϕ 2  - u 0 (1) ] exp( - b1  )  
  q *  = 1- exp( - b 0  b1  )  
and 
  r *  = [ ϕ 2  - u 0 (1) ] - [ ϕ 1 - u 0 (0) ] exp( - b 0  ) . 
 
 It can be observed that [3, 11], if u is the solution of (1a,b) and U is given by (4)  
  │ u(x – U)(x) │ ≤ C ε  , for 0 ≤ x ≤ 1 (8) 
 
for sufficiently smooth functions b(x) and f(x). 
 From (4), the left terminal boundary condition is taken as  
  u( x p  ) = u 0 ( x p  ) + v 0 ( x p  ) + w 0  ( x p  ) = ϕ 3  . (9) 
 
 Note that the left terminal point x p  will be of the form  

  x p  = t p  ε  where t p  = 1, 10, 20, 30, … . 
 
Right terminal boundary condition  
Let x q  be the right terminal boundary point or width or thickness of the right 
boundary layer region. Using the zero th  order asymptotic expansion for the solution 
of the SPP(1a,b), the right terminal boundary condition is taken as  
  u(x q  ) = u 0 ( x q  ) + v 0 ( x q  ) + w 0  (x q  ) = ϕ 4  . (10)  
 
 Note that the right terminal point x q  will be of the form  

  x q  = 1 - t p  ε   
where t p  = 1, 10, 20, 30, … . and x q  = 1 - x p . 
 Now using the left and right terminal boundary conditions we split the SPP(1a,b) 
into three two point boundary value problems(TPBVP. 
 
Left boundary layer region problem 
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The left terminal point x p  is common to both the left boundary layer region and the 
outer region. We have the left boundary layer region problem as a TPBVP as follows: 
  - � u″(x) + b(x) u(x) = f(x),  (11a) 
 for 0 < x < x p  with  
  u(0) = ϕ 1 and u(x p ) = ϕ 3 . (11b) 
  
Right boundary layer region problem 
The right terminal point x q  is common to both the right boundary layer region and the 
outer region. We have the right boundary layer region problem as a TPBVP as 
follows: 
  - � u″(x) + b(x) u(x) = f(x), (12a) 
for x q  < x < 1 with  
  u(x q ) = ϕ 4  and u(1) = ϕ 2  (12b) 
  
Outer region problem 
Using the left terminal point x p  and the right terminal point x q  we have the outer 
region problem as a TPBVP as follows: 
  - � u″(x) + b(x) u(x) = f(x),  (13a) 
 for x p  < x < x q  with  
  u(x p ) = ϕ 3  and u(x q ) = ϕ 4 .  (13b) 
 
Solution of the original problem 
After solving the above three problems, we combine the solutions of these three 
problems to obtain an approximate solution to the original problem over the interval 
[0, 1]. 
 We repeat the process for various choices of terminal points x p  and x q  until the 
solution profiles do not differ much from iteration to iteration. For a computational 
point of view, we use error estimates of the form  
  │ U(x) 1+m  - U(x) m  │ ≤ δ  , 0 < x < x p  (14a) 
and 
  │ U(x) 1+n  - U(x) n  │ ≤ ξ  , x q  < x < 1 (14b) 
 
where U(x) m  and U(x) n  are m th  and n th  iterations of the left and right boundary layer 
region solutions respectively and δ  and ξ  are prescribed tolerance bounds. 
 
Numerical method 
We use an uniform and optimal finite difference scheme for the numerical solution of 
the SPP(1a,b) to solve the above three TPBVPs which is presented in [3, 15] and it is 
defined as follows: 
 L h  u i ≡ - � σ ( ρ ) D +  D −  u i  + b(x i ) u i  = f(x i ), 0< I < N-1,  (15a) 



24  K. Selvakumar 

 

 u 0  = ϕ 1 and u N  = ϕ 2  (15b) 
where  
 σ ( ρ) = σ ( ρ )( ixb  ) σ ( - ρ )( ixb  ) , ρ= h / ε  .  (15c) 
 
 It is proved that in [15],  
  │ u(x i ) - u i  │ ≤ C min(c h, ε  ) 
 
where u(x) and u i  are the solutions of SPP(1a.b) and (15a-c) respectively. 
 
Error estimates-regions wise  
Using maximum principle we derive error estimates for the solutions of the left 
boundary layer region problem, right boundary layer region problem and outer region 
problem in Theorem 2, 3 and 4 respectively. The maximum principle is stated as 
follows in Theorem 1 [3, 15]: 
 
Theorem 1. 
Let v be any smooth function and L be the operator defined as in (1a). 

i. if v(0) ≥ 0, v(1) ≥ 0, and Lv(x) ≥ 0, for x ∈  (0, 1) , then we have v(x) ≥ 0, 
for all x ∈  [0, 1], 

ii. for all x ∈  [0, 1], we have │ v(x) │ ≤ C max(│ v(0) │, │ v(1) │, max │ 
Lv(y) │ ) , y ∈  [0, 1] and C > 0. 

 
Proof : See Doolan et al., [3, 15] for proof of Theorem 1. 
 
Theorem 2. 
Let u and u1  be the solutions of the SPP(1a,b) and (11a,b) respectively. Then , for all 
x ∈  [0, x p ,], 

  │ u(x) - u1(x) │ ≤ C ε   (16) 
 
where C is independent of � . 
 
Proof. For all 0 < x < x p , we have 
   L [u(x) - u1(x) ] = L u(x) - L u1(x) = f(x) - f(x) = 0. 
 For x=0, u(0) - u1(0) =ϕ 1 - ϕ 1 = 0. 
 And for x = x p , u(x p ) - u1( x p ,) = u(x p ) - ϕ 3  

 = u(x p ) - [ u(x p ) + O( ε ) ] 

 = O( ε ) . 
 Using maximum principle, for all x ∈  [0, x p ,], we have  

  │ u(x) - u1(x) │ ≤ │ u(x p ) - u1( x p ,) │ ≤ C ε .  
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Theorem 3. 
Let u and u 3  be the solutions of the SPP(1a,b) and (12a,b) respectively. Then , for all 
x ∈  [ x q  , 1], 

  │ u(x) - u 3  (x) │ ≤ C ε   (17) 
where C is independent of � . 
 
Proof. For all x q  < x < 1, we have 
  L [u(x) - u 3  (x) ] = L u(x) - L u 3  (x) = f(x) - f(x) = 0. 
 For x=1, u(1) - u 3  (1) = - ϕ 2  - ϕ 2  = 0. 
 And for x = x q , u(x q ) - u 3  (x q  ,) = u(x q ) - ϕ 4   

 = u(x q ) - [ u(x q ) + O( ε ) ] 

 = O( ε ) . 
 
 Using maximum principle, for all x ∈  [x q , 1] , we have  

 │ u(x) - u 3  (x) │ ≤ │ u(x q  )- u 3  ( x q ,) │ ≤ C ε .  
 
Theorem 4. 
Let u and u 2  be the solutions of the SPP(1a,b) and (13a,b) respectively. Then , for all 
x ∈  [x p , x q  ], 

  │ u(x) - u 2  (x) │ ≤ C ε   (18) 
where C is independent of � . 
 
Proof. For all x p  < x < x q  , we have 
 L [u(x) - u 2  (x) ] = L u(x) - L u 2  (x) = f(x) - f(x) = 0. 
 For x= x p  , u(x p ) - u 2 ( x p  ) = u(x p ) - ϕ 3  

 = u(x p ) - [ u(x p ) + O( ε ) ] 

 = O( ε ) . 
 
And for x = x q , u(x q ) - u 2  (x q  ,) = u(x q ) - ϕ 4   

 = u(x q ) - [ u(x q ) + O( ε ) ] 

 = O( ε ) . 
 
Using maximum principle, for all x ∈  [x p , x q ] , we have  

│ u(x) - u 2  (x) │ ≤ max ( │ u(x p  ) - u 2  (x p ) │ , │ u(x q  ) - u 2  ( x q ,) │ )  

≤ C ε .  
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Error estimates-Numerical solutions 
Using the discrete maximum principle we derive error estimates for the numerical 
solutions of the left boundary layer region problem, right boundary layer region 
problem and outer region problem in Theorem 6, 7 and 8 respectively using the 
numerical method (15a-c). The discrete maximum principle is stated as follows in 
Theorem 5 [3, 15]: 
 
Theorem 5. 
Let v i  be a mesh function and L h  be the operator defined as in (15a). 

i. if v 0  ≥ 0, v N  ≥ 0, and L h  v i  ≥ 0, for all 1 ≤ i ≤ N-1, then we have v i ≥ 0, 
for all 0 ≤ i ≤ N, 

ii. for all 0 ≤ i ≤ N , we have │ v(x) │ ≤ C max(│v 0  │, │ v N  │, max │ L h  v

j  │ ) , for all 0 ≤ j ≤ N and C > 0. 
 
Proof: See Doolan et al., [3, 15] for proof of Theorem 5. 
 
Theorem 6. 
Let u1  and u1

i  be the solution of the TPBVP (11a,b) and the numerical  
solution of the TPBVP (11a,b) using the scheme(15a -c) respectively. Then , for all x 
∈  [0, x p ,], 0 ≤ i ≤ N 

  │ u1(x i ) - u
1

i  │ ≤ C min( h 1 , ε  )  (19) 
 

where C is independent of i, h 1  and � . 
 
Proof. See [3, 15].  
 
Theorem 7. 
Let u 3  and u 3

i  be the solution of the TPBVP(12a,b) and the numerical  
solution of the TPBVP (12a,b) using the scheme (15a-c) respectively. Then , for all  
x ∈  [ x q  , 1], 0 ≤ i ≤ N 

  │u 3 (x i ) - u
3

i │ ≤ C min( h1 , ε )  (20)  

where C is independent of i, h 1  and � . 
 
Proof:. See [3, 15].  
 
Theorem 8. 
Let u 2  and u 2

i  be the solution of the TPBVP(13a,b) and the numerical  
solution of the TPBVP (13a,b) using the scheme(15a-c) respectively. Then , for all 



A Computational Method 27 

 

 x ∈  [x p , x q  ], 0 ≤ i ≤ N 

  │ u 2  (x i ) - u
2

i  │ ≤ C min(h 2 , ε ) (21) 
 
where C is independent of i, h 2  and � . 
 
Proof. See [3, 15]. 
 
 
Error Estimate-Computational Method 
Using the maximum principle, we derive error estimates between the solution of the 
original SPP(1a,b) and the numerical solutions of the left boundary layer region 
problem, right boundary layer region problem and outer region problem in Theorem 
9, 10 and 11 respectively.  
 
Theorem 9. 
Let u and u1

i  be the solution of the SPP (1a,b) and the numerical solution of the 
problem(11a,b) using the scheme(15a-c) respectively. Then , for all x ∈  [0, x p ,] and 
for 0 ≤ i ≤ N 
  │ u (x i ) - u

1
i  │ ≤ C ( ε  + min( h1 , ε  ) (22) 

where C is independent of i, h1and � . 
 
Proof. Using triangle inequality, we have 
  │ u (x i ) - u

1
i  │ ≤ │ u (x i ) - u

1( (x i ) │ + │ u1(x i ) - u
1

i  │. 
 
From the estimate(16) and (19) 

  │ u (x i ) - u
1

i  │ ≤ C ( ε  + min( h 1 , ε  ) . 
 
Theorem 10.. 
Let u and u 3

i  be the solution of the SPP(1a,b) and the numerical solution of the 
problem(12a,b) using the scheme (15a-c) respectively . Then , for all x ∈  [ x q  , 1], 
and for 0 ≤ i ≤ N 

  │u (x i ) - u
3

i │ ≤ C ( ε  + min( h 1 , ε  )  (23)  

where C is independent of i, h 1  and � . 
 
Proof:. Using triangle inequality, we have 
  │ u (x i ) - u

3
i  │ ≤ │ u (x i ) - u

3  ( (x i ) │ + │ u 3  (x i ) - u
3

i  │. 
 
 From the estimate(17) and (20) 
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  │ u (x i ) - u
3

i  │ ≤ C ( ε  + min( h 1 , ε  ) .  
 
Theorem 11.  
Let u and u 2

i  be the solutions of the SPP(1a,b) and the numerical solution of the 
problem(13a,b) using the scheme(15a-c) respectively . Then , for all x ∈  [x p , x q  ], , 
and for 0 ≤ i ≤ N 
  │ u (x i ) - u

2
i  │ ≤ C ( ε  + min( h 2 , ε  )  (24) 

 
where C is independent of i, h 2  and � . 
 
Proof. Using triangle inequality, we have 
 │ u (x i ) - u

2
i  │ ≤ │ u (x i ) - u

2  ( (x i ) │ + │ u 2  (x i ) - u
2

i  │. 
 
From the estimate(18) and (21) 
 │ u (x i ) - u

2
i  │ ≤ C ( ε  + min( h 2  , ε  ) .  

Remark. It is to be noted that the mesh size h 1  used in both the left and right 
boundary layer regions are same. And the mesh size h 2  used in the outer layer region 

is not equal to h 1 .  
 
Numerical experiment 
To demonstrate the applicability of the computational method , we have implemented 
it on two SPPs. Computed results are tabulated in Tables. From the Tables, the 
underlined value indicates that it is a terminal boundary conditions obtained from (9) 
and (10) and the corresponding x value denotes terminal points x p  and x q  
respectively.  
 In the last column of the Tables , we have given the absolute error of the 
numerical solution at x p  = 30 ε  and x q  = 1 - 30 ε  to the exact solution. The 

mesh size used in Tables 1A and 2A are h 2  = 0.1 and h1  = 10 4− , 10 3− , 2 ×10 3− , 3 ×
10 3−  , … for the intervals got for t p  = 1, 10, 20, 30, … respectively. The mesh size 

used in Tables 1B and 2B are h 2  = 0.1 and h1  = 10 5−  , 10 4− , 2 ×  10 4− , 3 ×  10 4− , … 
for the intervals got for t p  = 1, 10, 20, 30, … respectively.  
 
Example 1. 
Consider the following homogeneous SPP from Bender[1] 
 - � u″(x) + u(x) = 0, 0 < x < 1,  
 u(0) = 1 , u(1) = 1 . 
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 The numerical results are presented in Tables 1A and 1B, for � = 10 6−  and 10 8−  . 
 
Example 2.  
Consider the following non-homogeneous SPP from Doolan et. al.[3] 
 - � u″(x) + u(x) = - cos 2 ( π  x ) - 2 � π 2 cos ( 2π  x ) , 0 < x < 1,  
 u(0) = 0 , u(1) = 0 . 
 
 The numerical results are presented in Tables 2A and 2B, for � = 10 6−  and 10 8− . 
 
 
Discussion and conclusion 
We have presented a practical method, exactly implemented on a computer to solve 
singularly perturbed two point boundary value problems without a fist derivative 
term. We have demonstrated that the computational method approximates the exact 
solution well, with two examples. 
 The present method gives more mesh points inside the boundary layers with an a 
priori chosen accuracy, even though this method is not uniformly convergent. 
Uniform and optimal schemes with constant mesh become impractical if one wants to 
find the local behavior of the solution in the neighborhood of � when � is small. The 
present method is practical in such situation. 
 It can be observed from Tables that the present method approximates the exact 
solution very well.  
 All computations were performed in Pascal single precision on a Micro Vax II 
computer at Bharathidasan University, Tiruchirapalli-620 024, Tamil Nadu, India. 
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Table 1A : Numerical results for example 1 ε = 1.0000E-06 
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Table 1B : Numerical results for example 1 ε = 1.0000E-08 
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Table 2A : Numerical results for example 2 ε = 1.0000E-06 
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Table 2B : Numerical results for example 2 ε = 1.0000E-08 
 

 


