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Abstract 
 

In this paper, two quadrature rules of same precision are mixed up and 
quadrature rule of higher precision is obtained. An asymptotic error estimate 
of the rule has been determined and the rule has been numerically verified.  
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Introduction 
Here in this chapter, we mixed up quadrature rule of Gauss -Legendre 3-point rule 
and Weddle quadrature with a quadrature obtained from Richardson extrapolation and 
each of precision 7. A new rule of precision 9 is obtained and this mixed quadrature 
rule is used for evaluating the real integral of the form 
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Mixed Quadrature Rule ofGauss-Legendre - 3 Point Rule And 
Weddle Quadrature Rule ( ( )fRWGL3 )  
For the approximation evaluation of (1.1.1) the Gauss- Legendre- 3point rule is  
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and Weddle quadrature rule is 
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 Each of the rules of (2.1.1) and (2.1.2) is of precision 5. Now the mixed 
quadrature rule due to Gauss-Legendre-3point and Weddle’s rule is 
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and truncation error generated by this approximation is 

  ( ) ( ) ( ) −−−
×

−
×

−
= 0

!105962275
1736240

!8730
71 108

3 fffEWGL   (2.1.4) 

 
 In this mixed quadrature rule the error consists of at least 8th order derivatives. 
Thus mixed quadrature theoretically is capable of computing exactly all polynomials 
of degree up to 7.Thus the degree of precision is 7. 
 
Richardson Extrapolation Rule ( )( fRREXT ) 
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 Where n k2≥  and k 1≥  
 For 8,3 == nk  (2.2.1) becomes  
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 Richardson extrapolation rule for n is divisible by 4 
 For 8=n  from (2.2.3) 
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 Where  
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 Substituting (2.2.5) and (2.2.6) in (2.2.4) we have 
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 Putting (2.2.7) and (2.2.8) in (2.2.2) and taking
4
1

=h , Richardson extrapolation 

rule is 
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 Each rule of ( )fRWGL3  and )3(

8I  is of precision -7 
 ( )fEWGL3  and )( fEREXT  denotes the error in approximating the integral )( fI  by 
the rule (2.1.4) and (2.2.9) respectively. 
 Then 
  ( ) ( ) ( )fEfRfI WGLWGL 33 +=   (2.2.10) 
  )( fI  = )()( fEfR REXTREXT +   (2.2.11) 
 
Let f(x) to be differentiable in 11 ≤≤− x  , by Taylor Series 
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Putting (2.2.12) in (1.1.1) 
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 Now taking length of the interval 
4
1

=h  , we have from (2.2.12) 
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 Now putting 8765432,10 ,,,,,,, fffffffff in (2.2.7) we have 
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Error In Richardson Extrapolation Quadrature Rule ( )( fEREXT ) And 
Error In Mixed Quadrature Rule Of Gauss-Legendre-3point Rule 
And Weddle Rule ( ( )fEWGL3 ). 
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 Using (2.2.13) and (2.2.14) in (3.1.1) 
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 From (3.1.2) and (3.1.3) error contains at least 8th order derivative of the integrand 
functions, it vanishes for all polynomials of degree is 7. That is the degree of the 
precision of the formula is 7. 
 
 
Mixed Qadrature Rule Of Gauss-Legendre -3 Point And Weddle 
With A Quadrature Obtained From Richardson Extrapolation

( )( )fRM 1  . 

Now multiplying (2.2.10) by
24
1  and (2.2.11) by ⎟

⎠
⎞

⎜
⎝
⎛ −

73
71

and adding the result we 

obtain    

 ( ) ( ) ( ) ( )
−−−++−=

!10
00111435.0

1631
73

1631
1704 10

3
ffRfRfI WGLREXT   (4.1.1) 

 )()()( 11 fEfRfI RMM +=   (4.1.2) 
 Where  
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 The notation )(1 fRM  and )(1 fERM  are mixed quadrature rule and error in mixed 
quadrature rule respectively. 
 The truncation error generated in this approximation is given by 
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 In (4.1.4), the error consists of at least 10th order derivatives. Thus this mixed 
quadrature is capable of computing exactly of all polynomials of degree up to 9. Thus 
the degree of persuasion is 9.The rule (4.1.3) may be called a mixed type as it is 
constructed from two different types of rules of the same precision. 
 
Error Bound 
An error bound of the rule (4.1.3) is given by theorem 5.1 
 
Theorem 5.1 
Statement: Let f(x) be sufficiently differentiable function in the closed interval ]1,1[−
.The bound of the truncation error 
  )()()( 11 fRfIfE MRM −=  is given by, 
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Proof 
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 Which gives a theoretical error bound as 12 ,ηη  are unknown points in [-1,1].From 
the equation it is clear that the in approximation will be less if points 21 ,ηη  are closer 
to each other. 
 
 
Numerical Verification 
Let us consider the integral quadrature rules for the approximate value 
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Quadrature Rules Approximate Value  
)( fRREXT   2.35040249  
)(3 fRWGL  2.35040260   

)(1 fRM  2.35040248  
exactfI =)(1  2.35040241 

 

 (ii) ( ) dxefI x∫
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Quadrature Rules Approximate Value  
)( fRREXT  1.49353040  

( )fRWGL3  1.49365045  
)(1 fRM  1.49352503  

exactfI =)(2  1.49365014 
 
 The mixed quadrature rule (numerically) integrated more accurately than a mixed 
quadrature rule of Gauss-Lgendre-3point and Weddle’s rule with a quadrature 
obtained from Richardson extrapolation.  
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