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Abstract 
 

The theory of complex networks plays an important role in a wide variety of 
disciplines, ranging from communications and power systems engineering to 
molecular and population biology. while the focus of this paper is on 
biological applications of the theory of graphs and networks, there are also 
several other domains in which networks play a crucial role. For instance, the 
Internet and the World Wide Web (WWW) have grown at a remarkable rate, 
both in size and importance, in recent years, leading to a pressing need both 
for systematic methods of analyzing such networks as well as a thorough 
understanding of their properties. Moreover, in sociology and ecology, 
increasing amounts of data on food-webs and the structure of human social 
networks are becoming available. Given the critical role that these networks 
play in many key questions relating to the environment and public health, it is 
hardly surprising that researchers in ecology and epidemiology have focused 
attention on network analysis in recent years. In particular, the complex 
interplay between the structure of social networks and the spread of disease is 
a topic of critical importance. The threats to human health posed by new 
infectious diseases such as the SARS virus and the Asian bird flu coupled with 
modern travel patterns, underline the vital nature of this issue. 

On a more theoretical level, several recent studies have indicated that 
networks from a broad range of application areas share common structural 
properties. Furthermore, a number of the properties observed in such real 
world networks are incompatible with those of the random graphs which had 
been traditionally employed as modeling tools for complex networks The 
latter observation naturally poses the challenge of devising more accurate 
models for the topologies observed in biological and technological networks, 
while the former further motivates the development of analysis tools for 
complex networks. The common structural properties shared by diverse 
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networks offers the hope that such tools may prove useful for applications in a 
wide variety of disciplines. Within the fields of Biology and Medicine, 
applications include the identification of drug targets, determining the role of 
proteins or genes of unknown function, the design of effective containment 
strategies for infectious diseases, and the early diagnosis of neurological 
disorders through detecting abnormal patterns of neural synchronization in 
specific brain regions. Recent advances in the development of high-throughput 
techniques in molecular biology have led to an unprecedented amount of data 
becoming available on key cellular networks in a variety of simple organisms. 
Broadly, three classes of bio-molecular networks have attracted most attention 
to date: metabolic networks of biochemical reactions between metabolic 
substrates; protein interaction networks consisting of the physical interactions 
between an organism's proteins; and the transcriptional regulatory networks 
which describe the regulatory interactions between different genes. 

The large amount of data now available on these networks provides the 
network research community with both opportunities and challenges. On the 
one hand, it is now possible to investigate the structural properties of networks 
in living cells, to identify their key properties and to hopefully shed light on 
how such properties may have evolved biologically. A major motivation for 
the study of biological networks is the need for tailored analysis methods 
which can extract meaningful biological information from the data becoming 
available through the efforts of experimentalists. This is all the more pertinent 
given that the network structures emerging from the results of high-throughput 
techniques are too complex to analyze in a non-systematic fashion. A 
knowledge of the topologies of biological networks, and of their impact on 
biological processes, is needed if we are to fully understand, and develop more 
sophisticated treatment strategies for, complex diseases such as cancer. Also, 
recent work suggesting connections between abnormal neural synchronization 
and neurological disorders such as Parkinson's disease and Schizophrenia 
provides strong motivation for studying how network structure influences the 
emergence of synchronization between interconnected dynamical systems.  

The mathematical discipline which underpins the study of complex 
networks in Biology and elsewhere, and on which the techniques discussed 
throughout this paper are based, is graph theory Alongside the potential 
benefits of applying graph theoretical methods in molecular biology, it should 
be emphasized that the complexity of the networks encountered in cellular 
biology and the mechanisms behind their emergence presents the network 
researcher with numerous challenges and difficulties. The inherent variability 
in biological data, the high likelihood of data inaccuracy and the need to 
incorporate dynamics and network topology in the analysis of biological 
systems are just a sample of the obstacles to be overcome if we are to 
successfully understand the fundamental networks involved in the operation of 
living cells. Another important issue, which we shall discuss at various points 
is that the structure of biological and social networks is often inferred from 
sampled sub networks. The precise impact of sampling on the results and 
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techniques published in the recent past needs to be understood if these are to 
be reliably applied to real biological data. Motivated by the considerations 
outlined above, a substantial literature dedicated to the analysis of biological 
networks has emerged in the last few years, and some significant progress has 
been made on identifying and interpreting the structure of such networks. Our 
primary goal in the present paper is to provide as broad a survey as possible of 
the major advances made in this field in the recent past, highlighting what has 
been achieved as well as some of the most significant open issues that need to 
be addressed. In this paper, we give an overview of the use of graph 
theoretical techniques in Biological networks. In particular, we discuss recent 
work on identifying and modeling the structure of bio-molecular networks, as 
well as the application of centrality measures to interaction networks Work on 
the link between structural network properties with emphasis on disease 
propagation. 

 
Keywords: graphs, biological networks. 

  
 
Introduction 
Biological networks are abstract representations of biological systems, which capture 
many of their essential characteristics. In the network, molecules are represented by 
nodes, and their interactions are represented by edges (or arrows). The cell can be 
viewed as an overlay of at least three types of networks, which describes protein-
protein, protein-DNA, and protein-metabolite interactions. Inherent in this description 
is suppression of detail: many different mechanisms of transcription regulation, for 
example, may be described by a single type of arrow. Furthermore, the interactions 
can be of different strengths, so there should be numbers or weights on each arrow. 
Whenever two or more arrows converge on a node, an input function needs to be 
specified (for example, AND or OR gates). At present, many of the connections, 
numbers and input functions are not known. However, something can still be learned 
even from the very incomplete networks currently available.  
 First, the network description allows application of tools and concepts developed 
in fields such as graph theory, physics, and sociology that have dealt with network 
problems before Second, biological systems viewed as networks can readily be 
compared with engineering systems, which are traditionally described by networks 
such as flow charts and blueprints. Remarkably, when such a comparison is made, 
biological networks are seen to share structural principles with engineered networks.  
 Here are three of the most important shared principles, modularity, robustness to 
component tolerances, and use of recurring circuit elements. The first principle, 
modularity, is an oft-mentioned property of biological networks. For example, 
proteins are known to work in slightly overlapping, coregulated groups such as 
pathways and complexes. Engineered systems also use modules, such as subroutines 
in software and replaceable parts in machines. The following working definition of a 
module is proposed based on comparison with engineering: A module in a network is 
a set of nodes that have strong interactions and a common function. A module has 
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defined input nodes and output nodes that control the interactions with the rest of the 
network. A module also has internal nodes that do not significantly interact with 
nodes outside the module.  
 Modules in engineering, and presumably also in biology, have special features 
that make them easily embedded in almost any system. For example, output nodes 
should have “low impedance,” so that adding on additional downstream clients should 
not drain the output to existing clients (up to some limit). Why does modularity exist 
in biological networks? It is important to realize that not all networks that evolve by 
tinkering are modular. A well-studied example is computer science neural networks 
(NNs). NNs are a set of interconnected nodes, each of which has a state that depends 
on the integrated inputs from other nodes. As do protein signaling networks, NNs 
function to process information between input and output nodes. In a way analogous 
to biological networks, NNs are optimized by an “evolutionary” tinkering process of 
adding and removing arrows and changing their weights until the NN performs a 
given computational goal (gives the “correct” output responses to input signals). 
Unlike biological networks, however, NNs are nonmodular. They typically have a 
highly interconnected architecture in which each node participates in many tasks. 
Viewed in this perspective, the modularity of biological networks is puzzling because 
modular structures can be argued to be less optimal than NN-style, non modular 
structures. After all, modules greatly limit the number of possible connections in the 
network, and usually a connection can be added that reduces modularity and increases 
the fitness of the network. This is the reason that NNs almost always display a 
nonmodular design.  
 A clue to the reason that modules evolve in biology can be found in engineering. 
Modules in engineering convey an advantage in situations where the design 
specifications change from time to time. New devices or software can be easily 
constructed from existing, well-tested modules. A nonmodular device, in which every 
component is optimally linked to every other component, is effectively frozen and 
cannot evolve to meet new optimization conditions. Similarly, modular biological 
networks may have an advantage over nonmodular networks in real-life ecologies, 
which change over time: Modular networks can be readily reconfigured to adapt to 
new conditions. The second common feature of engineering and biological networks 
is robustness to component tolerances. In both engineering and biology, the design 
must work under all plausible insults and interferences that come with the inherent 
properties of the components and the environment. Thus, Escherichia coli needs to be 
robust with respect to temperature changes over a few tens of degrees, and no circuit 
in the cell should depend on having precisely 100 copies of protein X and not 103. 
This point has been made decades ago for developmental systems and metabolism. 
The fact that a gene circuit must be robust to such perturbations imposes severe 
constraints on its design: Only a small percentage of the possible circuits that perform 
a given function can perform it robustly.  
 Recently, there have been detailed experimental-theoretical studies that 
demonstrate how particular gene circuits can be robust, for example, in bacterial 
chemotaxis and in fruit-fly development. The third feature common to engineering 
and biological networks is the use of recurring circuit elements. An electronic device, 
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for example, can include thousands of occurrences of circuit elements such as 
operational amplifiers and memory registers. Biology displays the same principle, 
using key wiring patterns again and again throughout a network. Metabolic networks 
use regulatory circuits such as feedback inhibition in many different pathways.  
 The transcriptional network of E. coli has been shown to display a small set of 
recurring circuit elements termed “network motifs” Each network motif can perform a 
specific information processing task such as filtering out spurious input fluctuation , 
generating temporal programs of expression or accelerating the throughput of the 
network. Recently, the same network motifs were also found in the transcription 
network of yeast. It is important to stress that the similarity in circuit structure does 
not necessarily stem from circuit duplication. Evolution, by constant tinkering, 
appears to converge again and again on these circuit patterns in different 
nonhomologous systems, presumably because they carry out key functions. Network 
motifs can be detected by algorithms that compare the patterns found in the biological 
network to those found in suitably randomized networks. This is analogous to 
detection of sequence motifs as recurring sequences that are very rare in random 
sequences. Network motifs are likely to be also found on the level of protein signaling 
networks . Once a dictionary of network motifs and their functions is established, one 
could envision researchers detecting network motifs in new networks just as protein 
domains are currently detected in the sequences of new genes. Finding a sequence 
motif (e.g., a kinase domain) in a new protein sheds light on its biochemical function; 
similarly, finding a network motif in a new network may help explain what systems-
level function the network performs, and how it performs it.  
 Will a complete description of the biological networks of an entire cell ever be 
available? The task of mapping an unknown network is known as reverse-
engineering. Much of engineering is actually reverse engineering, because prototypes 
often do not work and need to be understood in order to correct their design. The 
program of molecular biology is reverse-engineering on a grand scale. Reverse 
engineering a nonmodular network of a few thousand components and their nonlinear 
interactions is impossible (exponentially hard with the number of nodes). However, 
the special features of biological networks discussed here give hope that biological 
networks are structures that human beings can understand. Modularity, for example, is 
at the root of the success of gene functional assignment by expression correlations. 
Robustness to component tolerances limits the range of possible circuits that function 
on paper to only a few designs that can work in the cell. This can help theorists to 
home in on the correct design with limited data. Network motifs define the few basic 
patterns that recur in a network and, in principle, can provide specific experimental 
guidelines to determine whether they exist in a given system. These concepts, together 
with the current technological revolution in biology, may eventually allow 
characterization and understanding of cell-wide networks, with great benefit to 
medicine. The similarity between the creations of tinkerer and engineer also raises a 
fundamental scientific challenge: understanding the laws of nature that unite evolved 
and designed systems. 
 Through examples of large complex graphs in realistic networks, research in 
graph theory has been forging ahead into exciting new directions. Graph theory has 
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emerged as a primary tool for detecting numerous hidden structures in various 
information networks, including Internet graphs, social networks, biological networks, 
or, more generally, any graph representing relations in massive data sets. How will we 
explain from first principles the universal and ubiquitous coherence in the structure of 
these realistic but complex networks? In order to analyze these large sparse graphs, 
we use combinatorial, probabilistic, and spectral methods, as well as new and 
improved tools to analyze these networks. The examples of these networks have led 
us to focus on new, general, and powerful ways to look at graph theory. 
 Understanding complex systems often requires bottom up approach, breaking the 
system into small and elementary constituents and mapping out the interactions 
between these components. In many cases, the myriads of components and 
interactions are best characterized as networks. For example society is a network of 
people connected by various links, including friendships, collaborationships, sexual 
contacts or scientific co-authorships. Electronic communication relies on two very 
different networks: the physical network wiring the routers together (internet) and the 
web of homepages links by URLs. Airline, cell-phone, power-grid or business 
networks represent further examples of complex networks of technological, scientific 
or economic interest. 
 In biological systems networks emerge in many disguises, from food webs in 
ecology to various biochemical nets in molecular biology. In particular, wide range if 
interactions between genes proteins and metabolites in a cell are best represented by 
various complex networks. During the last decade, genomics has produces an 
incredible quantity of molecular interaction data, contributing to maps of specific 
cellular networks. The emerging fields of transcriptomics and proteomics have the 
potential to join the already extensive data sources provided by the genome wide 
analysis of gene expression at the mRNA and protein level. 
 Networks offer us a new way to categorize systems of very different origin under 
a single framework. This approach has uncovered unexpected similarities between the 
organization of various complex systems, indicating that the networks describing 
them are governed by generic organization principles and mechanisms. Understanding 
the driving forces which invest different networks with similar topological features 
enables system biology to combine the numerous details about molecular interactions 
into a single framework, offering means to address the structure of the cell as a whole. 
 
 
Mathematical Preliminaries 
The basic mathematical concept used to model networks is a graph. In this section, we 
shall introduce certain principal notations and recall some basic definitions and facts 
from graph theory. Furthermore, the notation and nomenclature introduced here will 
enable us to discuss the various biological networks encountered throughout the paper 
in a uniform and consistent manner. Throughout, R, Rn and Rm x n denote the field of 
real numbers, the vector space of n-tuples of real numbers and the space of m x n 
matrices with entries in R respectively. AT denotes the transpose of a matrix A in Rm x 

n and A belonging to Rn x n is said to be symmetric if A = AT. For finite sets S, T, S x T 
denotes the usual Cartesian product of S and T, while |S| denotes the cardinality of S. 
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Directed and Undirected Graphs 
The graphs or networks which we shall encounter can be divided into two broad 
classes: directed graphs and undirected graphs. Formally, a finite directed graph, G, 
consists of a set of vertices or nodes, V(G), V(G) = {v1; : : : ; vn}; together with an 
edge set, E(G) which is a subset of V(G) x V(G). Intuitively, each edge (u; v) in E(G) 
can be thought of as connecting the starting node u to the terminal node v. For 
notational convenience, we shall often write uv for the edge (u; v). We shall say that 
the edge uv starts at u and terminates at v. For the most part, we shall be dealing with 
graphs with finitely many vertices and for this reason, we shall often omit the 
adjective finite where this is clear from context. 
 In Biology, transcriptional regulatory networks and metabolic networks would 
usually be modelled as directed graphs. For instance, in a transcriptional regulatory 
network, nodes would represent genes with edges denoting the interactions between 
them. This would be a directed graph because, if gene A regulates gene B, then there 
is a natural direction associated with the edge between the corresponding nodes, 
starting at A and finishing at B. Directed graphs also arise in the study of neuronal 
networks, in which the nodes represent individual neurons and the edges represent 
synaptic connections between neurons. 
 An undirected graph, G, also consists of a vertex set, V(G), and an edge set E(G). 
However, there is no direction associated with the edges in this case. Hence, the 
elements of E(G) are simply two element subsets of V(G), rather than ordered pairs as 
above. As with directed graphs, we shall use the notation uv (or vu as direction is 
unimportant) to denote the edge {u; v} in an undirected graph. For two vertices, u, v 
of an undirected graph, uv is an edge if and only if vu is also an edge. We are not 
dealing with multi-graphs [47], so there can be at most one edge between any pair of 
vertices in an undirected graph. The number of vertices n in a directed or undirected 
graph is the size or order of the graph.  
 In recent years, much attention has been focused on the protein-protein interaction 
networks of various simple organisms [92, 151]. These networks describe the direct 
physical interactions between the proteins in an organism's proteome and there is no 
direction associated with the interactions in such networks. Hence, PPI networks are 
typically modelled as undirected graphs, in which nodes represent proteins and edges 
represent interactions.  
 An edge uv in a directed or undirected graph G is said to be an edge at the vertices 
u and v, and the two vertices are said to be adjacent to each other. In this case, we also 
say that u and v are neighbours. For an undirected graph, G and a vertex, u inV(G), 
the set of all neighbours of u is denoted N(u) and given by N(u) = {v in V(G) : uv 
belongs to E(G)}. 
 
Node-degree and the Adjacency Matrix 
For an undirected graph G, we shall write deg(u) for the degree of a node u in V(G). 
This is simply the total number of edges at u. For the graphs we shall consider, this is 
equal to the number of neighbours of u, deg(u) = |N (u)|. In a directed graph G, the in-
degree, degin(u) (out-degree, degout(u)) of a vertex u is given by the number of edges 
that terminate (start) at u. Suppose that the vertices of a graph (directed or undirected) 
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G are ordered as v1,…,vn. Then the adjacency matrix, A, of G is given by aij = 1 if vivj 
belongs to E(G) and 0 if vivj does not belongs to E(G) --(1). Thus, the adjacency 
matrix of an undirected graph is symmetric while this need not be the case for a 
directed graph.  
 
Paths, Path Length and Diameter 
Let u, v be two vertices in a graph G. Then a sequence of vertices u = v1; v2; : : : ; vk = 
v; such that for i = 1,…, k - 1: (i) vivi+1 belongs to E(G); (ii) vi ≠ vj for i ≠ j is said to 
be a path of length k -1 from u to v. The geodesic distance, or simply distance, d(u, v), 
from u to v is the length of the shortest path from u to v in G. If no such path exists, 
then we set d(u; v) = ∞. If for every pair of vertices, u, v in V(G), there is some path 
from u to v, then we say that G is connected. The average path length and diameter of 
a graph G are defined to be the average and maximum value of d(u,v) taken over all 
pairs of distinct nodes. u,v in V(G) which are connected by at least one path. 
 
Clustering Coefficient 
Suppose u is a node of degree k in an undirected graph G and that there are e edges 
between the k neighbours of u in G. Then the clustering coefficient of u in G is given 
by Cu = 2e/k(k -1) --: (2). Thus, Cu measures the ratio of the number of edges between 
the neighbours of u to the total possible number of such edges, which is k(k -1)/2. The 
average clustering coefficient of a graph G is defined in the obvious manner. 
 
Statistical Notations 
Throughout the paper, we shall often be interested in average values of various 
quantities where the average is taken over all of the nodes in a given network of 
graph. For some quantity f, associated with a vertex, v, the notation <f> denotes the 
average value of f over all nodes in the graph. 
 
 
Identification and Modelling of Bio-molecular Networks 
Due to recent advances in high-throughput technologies for biological measurement, 
there is now more data available on bio-molecular networks than ever before. This has 
made it possible to study such networks on a scale which would have been impossible 
two decades ago. In fact, large-scale maps of protein interaction networks [197, 125, 
186, 67, 151, 117], metabolic networks [97, 140] and transcriptional regulatory 
networks [114, 177] have been constructed for a number of simple organisms. 
Motivated by these developments, there has been a significant amount of work done 
on identifying and interpreting the key structural properties of these networks in 
recent years. We shall give here an overview of the main aspects. In particular, we 
shall describe the principal graph theoretical properties of bio-molecular networks 
which have been observed in experimental data. We shall also discuss several 
mathematical models that have been proposed to account for the observed topological 
properties of these networks. 
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Structural Properties of Biological Networks 
In this subsection, we shall concentrate on the following three aspects of network 
structure, which have received most attention in the last few years:(i) Degree 
distributions; (ii) Characteristic path lengths; (iii) Modular structure and local 
clustering properties. For each of these, we shall describe recently reported findings 
for protein interaction, metabolic and transcriptional regulatory networks in a variety 
of organisms. 
 
Degree Distributions 
Much of the recent research on the structure of bio-molecular and other real networks 
has focused on determining the form of their degree distributions, P(k); k = 0,1…, 
which measures the proportion of nodes in the network having degree k. Formally, 
P(k) = nk /n where nk is the number of nodes in the network of degree k and n is the 
size of the network. It was reported in [59, 12] that the degree distributions of the 
Internet and the WWW are described by a broad-tailed power law of the form P(k) ≈ 
k-υ

 υ > 1 --- (3). Networks with degree distributions of this form are now commonly 
referred to as scale-free networks. This finding initially surprised the authors of these 
papers as they had expected to find that the degree distributions were Poisson or 
Gaussian. In particular, they has expected that the degrees of most nodes would be 
close to the mean degree, <k>, of the network, and that P(k) would decay 
exponentially as | k- <k>| increased. For such networks, the mean degree can be 
thought of as typical for the overall network. On the other hand, the node-degrees in 
networks with broad-tailed distributions vary substantially from their mean value, and 
<k>, cannot be thought of as a typical value for the network in this case. 
 Following on from the above findings on the WWW and the Internet, several 
authors have investigated the form of the degree distributions, P(k), for various 
biological networks. Recently, several papers have been published that claim that 
interaction networks in a variety of organisms are also scalefree. For instance, in [97], 
the degree distributions of the central metabolic networks of 43 different organisms 
were investigated using data from the WIT database [140]. The results of this paper 
indicate that, for all 43 networks studied, the distributions of in-degree, Pin(k), and 
out-degree, Pout(k), have tails of the form (3), with 2 < υ < 3. Similar studies on the 
degree distributions of protein interaction networks in various organisms have also 
been carried out. In [200], the protein interaction network of S. cerevisiae was 
analysed using data from four different sources. As is often the case with data of this 
nature, there was little overlap between the interactions identified in the different sets 
of data. However, in all four cases, the degree distribution appeared to be broad-tailed 
and to be best described by some form of modified power law. Similar findings have 
also been reported for the protein interaction networks of E. coli, D. melanogaster, C. 
elegans and H. pylori in the recent paper [70]. Note however that for transcriptional 
regulatory networks, while the outgoing degree distribution again appears to follow a 
power law, the incoming degree distribution is better approximated by an exponential 
rule of the form Pin(k) ≈ e-βk

 [13, 74, 60]. 
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Diameter and Characteristic Path Length 
Several recent studies have revealed that the average path lengths and diameters of 
bio-molecular networks are “small" in comparison to network size. Specifically, if the 
size of a network is n, the average path length and diameter are of the same order of 
magnitude as log(n) or even smaller. This property has been previously noted for a 
variety of other technological and social networks [2], and is often referred to as the 
small world property [192]. This phenomenon has now been observed in metabolic, 
genetic and protein interaction networks. For instance, in [189, 97], the average path 
lengths of metabolic networks were studied. The networks analysed in these papers 
had average path lengths between 3 and 5 while the network sizes varied from 200-
500. Similar findings have been reported for genetic networks in [177], where a 
network of approximately 1000 genes and 4000 interactions was found to have a 
characteristic path length of 3.3, and for protein interaction networks in [187, 201, 
200]. In a sense, the average path length in a network is an indicator of how readily 
“information" can be transmitted through it. Thus, the small world property observed 
in biological networks suggests that such networks are efficient in the transfer of 
biological information: only a small number of intermediate reactions are necessary 
for any one protein/gene/metabolite to influence the characteristics or behaviour of 
another. 
 
Clustering and Modularity 
The final aspect of network structure which we shall discuss here is concerned with 
how densely clustered the edges in a network are. In a highly clustered network, the 
neighbours of a given node are very likely to be themselves linked by an edge. 
Typically, the first step in studying the clustering and modular properties of a network 
is to calculate its average clustering coefficient, C, and the related function, C(k), 
which gives the average clustering coefficient of nodes of degree k in the network. In 
[152], the average clustering coefficient was calculated for the metabolic networks of 
43 organisms and, in each case, compared to the clustering coefficient of a random 
network with the same underlying degree distribution.  
 
 
Measures of Centrality and Importance in Biological Networks 
The problem of identifying the most important nodes in a large complex network is of 
fundamental importance in a number of application areas, including Communications, 
Sociology and Management. To date, several measures have been devised for ranking 
the nodes in a complex network and quantifying their relative importance. Many of 
these originated in the Sociology and Operations Research literature, where they are 
commonly known as centrality measures [191]. More recently, driven by the 
phenomenal growth of the World Wide Web, schemes such as the PageRank 
algorithm on which GOOGLE is based, have been developed for identifying the most 
relevant web-pages to a specific user query. 
 There is now a large body of data available on bio-molecular networks, and there 
has been considerable interest in studying the structure of these networks and relating 
it to biological properties in the recent past. In particular, several researchers have 
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applied centrality measures to identify structurally important genes or proteins in 
interaction networks and investigated the biological significance of the genes or 
proteins identified in this way. Particular attention has been given to the relationship 
between centrality and essentiality, where a gene or protein is said to be essential for 
an organism if the organism cannot survive without it. The use of centrality measures 
to predict essentiality based on network topology has potentially significant 
applications to drug target identification [184, 96]. 
 In this section, we shall describe several measures of network importance or 
centrality that have been applied to protein interaction and transcriptional regulatory 
networks in the recent past. We shall place particular emphasis on the efforts to assess 
the biological significance of the most central genes or proteins within these 
networks. 
 
Classical Centrality Measures 
In this subsection, we shall discuss four classical concepts of centrality which have 
recently been applied to biological interaction networks:(i) Degree centrality;(ii) 
Closeness centrality; (iii) betweenness centrality;(iv) Eigenvector centrality. 
 
Degree Centrality 
Degree centrality is the most basic of the centrality measures.. The idea behind using 
degree centrality as a measure of importance in network is the following:”An 
important node is involved in a large number of interactions”. Formally, for an 
undirected graph G, the degree centrality of a node u in V(G) is given by Cd(u) = 
deg(u) --(5) For directed networks, there are two notions of degree centrality: one 
based on in-degree and the other on out-degree. These are defined in the obvious 
manner. Degree centrality and the other measures discussed here are often normalized 
to lie in the interval [0; 1]. A number of recent studies have indicated that bio-
molecular networks have broad-tailed degree distributions, meaning that while most 
nodes in such networks have a relatively low degree, there are significant numbers of 
so-called hub nodes. The removal of these hub nodes has a far greater impact on the 
topology and connectedness of the network than the removal of nodes of low degree 
[4]. This naturally leads to the hypothesis that hub nodes in protein interaction 
networks and genetic regulatory networks may represent essential genes and proteins. 
In [95], the connection between degree centrality and essentiality was investigated for 
the protein-protein interaction network in S. cerevisiae. The analysis was carried out 
on a network consisting of 1870 nodes connected by 2240 edges, which was 
constructed by combining the results of earlier research presented in [178, 197]. In 
this network, 21% of those proteins that are involved in fewer than 5 interactions, 
Cd(u) ≤ 5, were essential while, in contrast, 62% of proteins involved in more than 15 
interactions, Cd(v) ≥15, were essential. More recently, similar findings were reported 
in [201]. Again, the authors considered a network of protein interactions in yeast, this 
time consisting of 23294 interactions between 4743 proteins. The average degree of 
an essential protein in this network was 18.7, while the average degree of a 
nonessential protein was only 7.4. Moreover, defining a hub to be a node in the first 
quartile of nodes ranked according to degree, the authors of [201] found that over 
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40% of hubs were essential while only 20% of all nodes in the network are essential. 
The above observations have led some authors to propose that, in protein interaction 
networks, node degree and essentiality may be related [201, 95]. However, the precise 
nature of this relationship is far from straightforward. For instance, using a network 
constructed from data published in [92, 178], the author of [194] has claimed that 
there is little difference between the distributions of node degrees for essential and 
non-essential proteins in the interaction network of yeast. However, in this network, 
the degrees of essential proteins are still typically higher than those of non-essential 
proteins. In [75] the connection between the degree of a protein and the rate at which 
it evolves was investigated. The authors reasoned that if highly connected proteins are 
more important to an organism's survival, they should be subject to more stringent 
evolutionary constraints and should evolve at a slower rate than non-essential 
proteins. However, the authors of [75] found no evidence of a significant correlation 
between the number of interactions in which a protein is involved and its evolutionary 
rate. Once again, this indicates that while node degree gives some indication of a 
protein's likelihood to be essential, the precise relationship between essentiality and 
node degree is not a simple one. 
 
Closeness Centrality Measures 
We shall now discuss closeness centrality measures which are defined in terms of the 
geodesic distance, d(u, v) between nodes in a graph or network. The basic idea behind 
this category of measures is the following: An important node is typically “close" to, 
and can communicate quickly with, the other nodes in the network. In the recent paper 
[196], three closeness measures, which arise in the context of resource allocation 
problems, were applied to metabolic and protein interaction networks. The specific 
measures considered were eccentricity, status, and centroid value.The eccentricity, 
Ce(u), of a node u in a graph G is given by Ce(u) = max d(u, v); v in V(G) ---(6) and 
the centre of G is then the set C(G) = {v in V(G) : Ce(v) = min Ce(w) w in V(G)}---(7) 
Thus, the nodes in C(G) are those that minimize the maximum distance to any other 
node of G. The status, Cs(u), of a node v is given by Cs(u) = ∑ d(u; v) v in V(G) --- 
(8) and the median of G is then the set M(G) = {v in V(G) : Cs(v) = min Cs(w) w in 
V(G)}--- (9). The nodes in M(G) minimize the average distance to other nodes in the 
network. The final measure considered in [196] is the centroid value which is closely 
related to the status defined above. In fact, these two measures give rise to identical 
rankings of the nodes in a graph and, for this reason, we shall not formally define 
centroid value here. 
 A number of points about the results presented in [196] are worth noting. First of 
all, on both ER graphs and the BA model of scale-free graphs, all three measures were 
found to be strongly correlated with node-degree. The measures were then applied to 
the central metabolic network of E. coli and the centre, C(G), and the median, M(G), 
of this network were calculated. The authors reasoned that central nodes represent 
“cross-roads" or “bottlenecks" in a network and should correspond to key elements of 
the organism's metabolism. In support of this assertion, the centre, C(G), contained 
several of the most important known substrates, including ATP, ADP, AMP and 
NADP. On the other hand, in the protein interaction network of S. cerevisiae, no 
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discernible difference between the eccentricity distribution of essential and non-
essential proteins was observed. In the same paper, centrality measures were also 
applied to networks of protein domains where two domains are connected by an edge 
if they co-occur in the same protein. The nodes with the highest centrality scores in 
these networks corresponded to domains involved in signal transduction and cell-cell 
contacts.  
 
Betweenness Centrality Measures 
In [64], the concept of betweenness centrality was introduced as a means of 
quantifying an individual's influence within a social network. The idea behind this 
centrality measure is the following: An important node will lie on a high proportion of 
paths between other nodes in the network. Formally, for distinct nodes, u, v; w in 
V(G), let σuv be the total number of geodesic paths between u and v and σuv(w) be the 
number of geodesic paths from u to v that pass through w. Also, for w in V(G), let 
V(u) denote the set of all ordered pairs, (u, v) in V(G) x V(G) such that u; v;w are all 
distinct. Then, the betweenness centrality of w, Cb(w), is given by Cb(w) = ∑ σuv(w)/ 
σuv (u,v)in V(w)--- (10) Recently, in [99] the measure Cb was applied to the yeast 
protein interaction network and the mean value of Cb for the essential proteins in the 
network was approximately 80% higher than for nonessential proteins.  
 The authors pointed out that this was not consistent with the scale-free BA model 
or with the more biologically motivated DD models proposed in [170, 181]. 
Furthermore, there was considerable variation in the value of Cb(u) for proteins u with 
the same degree. This naturally raises the following question: if two proteins, u, v 
have the same degree k but Cb(u) > Cb(v), is u more likely to be essential than v? 
However, no clear evidence to support this hypothesis was found in the data 
considered in [99]. In the present context, it is worth noting the work in [136] where a 
definition of betweennness centrality based on random paths between nodes, rather 
than on geodesic paths was considered. This centrality measure was motivated by the 
fact that, in real networks, information does not always flow along the shortest 
available path between two points. This new concept of betweenness centrality has 
yet to be applied to bio-molecular networks in a systematic way. 
 
Eigenvector Centrality Measures 
As with many of the measures considered in this section, eigenvector centrality 
measures appear to have first arisen in the analysis of social networks, and several 
variations on the basic concept described here have been proposed [26, 27, 191, 28]. 
This family of measures is a little more complicated than those considered previously 
and eigenvector centrality measures are usually defined as the limits of some iterative 
process. The core idea behind these measures is the following. “An important node is 
connected to important neighbours”. In much of the original work presented in the 
sociology literature, the eigenvector centrality scores of a network's nodes were 
determined from the entries of the principal eigenvector of the network's adjacency 
matrix. Formally, if A is the adjacency matrix of a network G with V(G) = {v1,…,vn}, 
and ρ(A) = max | λ | λ in σ(A) is the spectral radius of A, then the eigenvector 
centrality score, Cev(vi) of the node vi is given by the ith co-ordinate, xi, of a suitably 
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normalized eigenvector x satisfying Ax = ρ(A)x: In the recent paper [57], the 
connection between various centrality measures, including eigenvector centrality, and 
essentiality within the protein interaction network of yeast was investigated. In this 
paper, the performance of eigenvector centrality was comparable to that of degree 
centrality and it appeared to perform better than either betweenness centrality or 
closeness centrality measures Before concluding our discussion of the classical 
centrality measures and their possible application to the identification of essential 
genes or proteins, it is worth noting the following points about eigenvector centrality. 
(i) In order for the definition above to uniquely specify a ranking of the nodes in a 
network it is necessary that the eigenvalue ρ(A) has geometric multiplicity one. For 
general networks, this need not be the case. However, if the network is connected then 
it follows from the Perron- Frobenius Theorem for irreducible non-negative matrices 
[17, 86] that this will be the case. (ii) Similar ideas to those used in the definition of 
eigenvector centrality have recently been applied to develop the Page-Rank algorithm 
on which the GOOGLE search engine relies [32, 111]. The HITS algorithm for the 
ranking of web pages, proposed by Kleinberg [105], also relies on similar reasoning. 
 
 
Graph Theoretical Approaches to Identifying Functional Modules 
A graph clustering algorithm for identifying families of related nodes in networks was 
described in [55], where the problem of how to cluster proteins in large databases into 
families based on sequence similarity was considered. The first step in this algorithm 
was to assign sequence similarity scores to each pair of proteins using an algorithm 
such as BLAST. A weighted graph was then constructed, whose nodes are proteins 
and where the weight of an edge between two nodes is the similarity score calculated 
in the previous step. The TRIBE-MCL algorithm for detecting communities of related 
nodes within this graph was then described. This technique is based on Markov chain 
clustering , and identifies communities through iterating two different mathematical 
operations of inflation and expansion .The core concept behind this method is that 
families of related nodes are densely interconnected and hence there should be more 
“long" paths between pairs of nodes belonging to the same family than between pairs 
of nodes belonging to distinct families. Subsequently, in [146] this algorithm was 
used to identify functionally related families in the protein interaction network of S. 
cerevisiae. In fact, the algorithm was applied to the line-graph L(G), where the nodes 
of L(G) are the edges of G and two nodes in L(G) are connected if the corresponding 
edges in G are incident on a common node in G. Three separate schemes of protein 
function classification were then used to validate the modules identified with this 
algorithm, and the coherence of functional assignment within these modules was 
significantly higher than that obtained for random networks obtained by shuffling 
protein identifiers between modules. This together with further analysis indicated that 
the identified modules did represent functional families within the network. Further 
approaches to the determination of functional modules within biological networks 
have been described in [149, 166]. The technique in [149] relies on searching for 
highly connected subgraphs (HCS) where a HCS of a graph G is a subgraph S for 
which at least half of the nodes of S must be removed in order to disconnect it. On the 
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other hand, in [166, 165] a procedure is described which identifies modules of related 
genes in the transcriptional regulatory network of yeast as well as the regulators of 
each such module. Other approaches to determining functional modules within 
transcriptional networks have been described in [11, 90]. The techniques described in 
these papers are not based on a graph theoretical analysis of network topology 
however; in fact, they rely on analyzing gene expression data across different 
experimental conditions and determining sets of genes which are regulated by 
common transcription factors. 
 
 
Network Structure and Disease Propagation 
We shall consider here the impact of network structure on disease propagation 
models. Given that several of the novel network properties considered in the recent 
past have been observed in social networks and in networks of human sexual contacts 
[118], it is natural to ask what effect these properties have on the spread of disease 
through such networks. Given the emergence of new virulent diseases such as the 
SARS virus and the Asian bird u, the importance of understanding the interaction 
between network structure and the dynamics of disease propagation cannot be over-
emphasized.. First, we shall discuss recent numerical and theoretical work on the 
effect of different degree distributions on the behaviour of classical epidemic models, 
with particular emphasis on the effect of power-law distributions on the so-called 
epidemic threshold. We shall then discuss extensions of this basic line of research 
which have attempted to take into account finite-size effects correlations between the 
degrees of connected nodes. Finally, we shall discuss a number of other issues 
pertaining to disease spread on networks, including the containment of epidemics on 
different network topologies and the evolution of different disease strains. 
 
Scale-free Networks and Epidemic Thresholds 
The mathematical theory of epidemics has been the subject of intensive research for 
some time now and several different models for disease spread have been developed. 
A detailed discussion of the properties of all of these models is well beyond the scope 
of the current document, and the interested reader should consult [8, 78]. Here, we 
shall confine our discussion to results concerned with two basic models of disease 
spread: the Susceptible-Infected-Susceptible or SIS model and the Susceptible- 
Infected-Removed or SIR model. Much of the recent work on disease propagation 
through networks has focussed on these two core models. In the SIS model, a 
population is divided into two groups: the first (S) consists of susceptible individuals, 
who are not infected but can contract the disease from members of the second group 
(I) of infected individuals. After a period of time, an infected person recovers and then 
becomes susceptible again. Hence no immunity is conferred by contracting the 
disease and the recovered infective can become infected again at a later time. In 
contrast, in the SIR model, a recovered infective is regarded as being immune to the 
disease and cannot subsequently become infected again. Hence, the population is 
divided into three groups in such models: susceptibles (S), infectives (I) and removed 
or recovered (R). There are two fundamental parameters associated with any SIS or 
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SIR model: the probability λ of an infective passing on the disease to a susceptible 
with whom they are in contact during the period in which they are infective, and the 
rate υ at which an infective recovers. In basic models of population epidemiology, it is 
assumed that the population is homogeneously mixed. This essentially amounts to 
assuming that each individual, or node, in the population has the same number of 
contacts. Under the assumptions of homogeneous mixing and a fixed population size, 
the standard equations for the SIR model are given by [130, 30] dS/dt = -λSI ---(18) ; 
dI/dt = λSI – υI ; dR/dt = υI: Here, the variables S(t); I(t);R(t) represent the total 
number of individuals in the susceptible, infected and recovered classes respectively 
at time t. From a network point of view, we can consider the population as a graph, G, 
in which each individual is represented by a node and each edge represents a contact 
or connection between individuals, through which the disease can spread. In a 
homogeneously mixed population, each node v in G has the same degree, which 
would be equal to the mean degree, <k>, of the network. This assumption is only 
reasonable for networks whose degree distributions are narrow, meaning that the 
coefficient of variation, CV = (<k2> / (<k2> - 1))1/2 is very small. 
 
 
Conclusions and Directions for Future Research 
The need for a more systematic approach to the analysis of living organisms, 
alongside the availability of unprecedented amounts of data, has led to a considerable 
growth of activity in the theory and analysis of complex biological networks in recent 
years. Networks are ubiquitous in Biology, occurring at all levels from biochemical 
reactions within the cell up to the complex webs of social and sexual interactions that 
govern the dynamics of disease spread through human populations. Over the last few 
years, several core themes and questions in biological network analysis have arisen 
from pressing problems in Biology and Medicine. For instance, while the research on 
bio-molecular and neurological networks is still at a relatively early stage, a 
comprehensive understanding of these networks is needed to develop more 
sophisticated and effective treatment strategies for diseases such as Cancer and 
Schizophrenia. Other aspects of this line of research have been motivated by the need 
to determine the biological role of un annotated genes or proteins. On the other hand, 
at the level of social networks, future approaches to epidemic containment will need 
to take into account the interplay between network topology and dynamics. Our aim 
in this article has been to provide as comprehensive an overview as possible of the 
uses of Graph Theory and Network Analysis within Biology, and to point out 
problems in Graph Theory that arise from the study of biological networks. 
Specifically, we concentrated on the following five broad topics. 
 
Structural identification and modelling of bio-molecular networks 
Recent advances in high-throughput techniques have led to the construction of maps 
of protein- protein interaction, transcriptional regulatory and metabolic networks for a 
variety of organisms. Numerical investigations of the properties of these network 
maps, indicate that they tend to have short characteristic path lengths, high clustering 
coefficients and scale-free degree distributions. Motivated by these observations, 
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mathematical models such as the Barabasi-Albert scale-free network and Duplication-
Divergence models have been proposed for protein interaction and genetic networks. 
However, the experimental techniques on which these network maps are based are 
prone to high rates of false positive errors, and typically only cover a fraction of the 
network's nodes. The development of more accurate and reliable experimental 
methodologies is of course of vital importance for future research on the structure of 
bio-molecular networks. On a more theoretical level, two of the most significant 
issues that need to be addressed in this area are the sampling properties of complex 
networks and the impact of data inaccuracies on the identification of network statistics 
such as the degree distribution.  
 
Centrality measures and essentiality in gene and protein networks 
Much of the research on applying centrality measures to bio-molecular networks has 
focused on the prediction of gene or protein essentiality. In most of the studies 
discussed the centrality score of a node was found to be indicative of its likelihood to 
be essential. In particular, this appears to be true for degree centrality, betweenness 
centrality and eigenvector centrality measures. However, there is no clear evidence 
that the more complex centrality measures perform any better than degree centrality. 
A major source of open problems in this area is the robustness of centrality measures 
to data inaccuracies. Once again, this issue is very important for the reliable 
application of these techniques to biological data. 
 
Network structure and epidemic dynamics 
The interplay between epidemic dynamics and network structure is vital for 
understanding and containing the spread of infectious diseases. The numerical studies 
and mean field analyses have shown that a scale-free topology can significantly 
reduce the epidemic threshold, making the outbreak of epidemics more likely in 
networks with such a structure. Network topology also has an impact on the 
effectiveness of immunization schemes for containing epidemic outbreaks. In 
particular, for networks with a scale-free topology, the targeted immunization of 
nodes of high degree offers substantial improvements over uniform random 
immunization. Of course, the reliable identification of social network structure is vital 
for the practical implementation and interpretation of such results. One important 
direction for future research in this area is the extension of recent results to 
incorporate the effects of sampling and data noise on epidemic dynamics on networks 
and containment strategies. To finish, it is our hope that this article will be of 
assistance to the broad community of researchers working on the study of biological 
networks, by highlighting recent advances in the field, as well as significant issues 
and problems that still need to be addressed. 
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