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Abstract 
 

The job-Shop Scheduling is concerned with arranging processes and 
resources. Scheduling tools allow production to run efficiently. The goal in 
this paper is the development of an algorithm for the job-shop scheduling 
problem, which is based on genetic algorithms. Our intention is to prove, that 
even a relatively simple genetic algorithm is capable for job-shop scheduling. 
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Introduction 
Scheduling is an act of defining priority of arranging activities to meet certain 
requirements, constraints, or objectives. A schedule is a timetable for both jobs and 
machines. Time is a major constraint and we must utilize it in an optimum manner. 
Scheduling the production resources leads to increased efficiency, utilization and 
profitability for the enterprise. Job-shop is one of the most popular generalized 
production systems.  
 GA applications for JSSP have special chromosome representation as well as 
genetic operators to be applied to feasible schedules. In our case, the chromosomes 
are coded as a list of sets of numerical values for each particular schedule. A 
generalization of the GA is the Genetic Programming (GP) algorithm where each 
individual in a generation represents, with its chromosome, a feasible model solution. 
In this paper we need, a sequence of genetic operators that will define one genetic 
algorithm. There are two kinds of information defined for the GP algorithm; they are 
terminals (variable values and random numbers) and functions (mathematical 
functions used in the generated model). 
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Methodology 
A large amount of work in JSSP has been reported over the past three decades using 
several approaches like optimal methods, dispatching rules, constraint-based 
intelligent systems, Lagrangian relaxation, neural networks, tailored heuristics, tree 
search techniques, inductive learning models, local search procedures and genetic 
algorithms.  
 In this paper, we have opted genetic algorithm approach by taking a 5job – 5 
machine problem. We have solved it by traditional as well as by GA approach. The 
problem is given below. On traditionally solving this problem, we have obtained the 
results shown in Annexure I. 

 
Table1: Operation Sequence. 

 
 Sequence1 Sequence2 Sequence3 Sequence4 Sequence5 
Job1 Machine3 Machine1 Machine2 Machine4 Machine5 
Job2 Machine2 Machine3 Machine5 Machine1 Machine4 
Job3 Machine1 Machine5 Machine4 Machine3 Machine2 
Job4 Machine4 Machine3 Machine2 Mahine1 Machine5 
Job5 Machine5 Machine3 Machine1 Machine2 Machine4 

 
 
Genetic Algorithms in JSSP 
We have generated schedules in a particular way in which the chromosome will be 
feasible after performing genetic operators. The decision management in JSSP 
distributes the jobs for each machine, selecting sometimes one task among the other 
alternatives so as to have a better fitness. Chromosome is coded with M*J (where M 
stands for machine & J for Jobs) values between 0 and 1, one for each decision. 
This approach allows using the same traditional GA operators to solve the problem 
because the chromosome contains a sequence of numbers, all representing feasible 
schedules.  
 
 
Crossover 
Yamada and Nakano (1997) in most of their papers have introduced plenty of 
techniques that could be use in solving the job-shop problem. One of them is by 
making use of CB neighbourhood and DG distance. The idea of this technique is to 
evaluate a point x by the distance d x, p2 . Lets denote parent1 and parent2 as p1 and 
p2 . First, set x p1 . Then, we generated the CB neighbourhood for x , N x. For each 
member, yi , in N x we calculated the distance between the members and p2 to produce 
Dyi , p2  . Then, we sort Dyi , p2  in ascending order. Starting from the first index in 
Dsort yi , p2 , we accepted yi with probability one if the fitness value is less than the 
current fitness valueV yi ≤ V x. Otherwise, we accepted it with probability 0.5. Starting 
from p1 , we modified x step by step approaching p2 . After some iteration, we will 
find that x will gradually loses p1 ’s characteristics and started to inherit p2 ’s 



Solving the Job-Shop Scheduling Problem by using Genetic Algorithm 95 

 

characteristics although in a different ratios. We choose the child depending on the 
less DG distance between the child and both its parents.  
 
Algorithm 1: Crossover 

1. Let p1 and p2 be the parent solution. 
2. Set x = p = q 1 . 
3. Find CB Neighbourhood for x , N(x). 
4. Do  

a. For each member yi N(x), calculate the distance between yi and p2 , ( ) 
D yi , p2 . 

b. Sort the distance value in ascending order, ( ) Dsort yi , p2 . 
c. Starting from i =1, do 

i. Calculate the fitness value for yi , ( ) V yi . 
ii. If V(yi ) ≤ V(x) accept yi with probability one, and with 

probability 0.5  
 otherwise. 

iii. If yi is not accepted, increase i by one. 
 Repeat i-iii until yi is accepted. 

d. Set x = yi 
e. If V(x)≤V(q) then set q = x . 

 Repeat 3-4 until number of iterations. 
 

5. q is the child. 
 
Mutation 
Instead of using some random probability, we apply mutation if the DG distance 
between parent1 and parent2 are less than some predefined value. It is also defined 
based on the same idea as crossover. However, we choose the child which has the 
largest distance from the neighbourhood.  
 
Algorithm 2: Mutation 

1. Set x = p1. 
2. Find Neighbourhood for x , N(x) 
3. Do  

a. For each member yi N(x), calculate the distance between yi and p1 , ( ) 
D yi , p1 . 

b. Sort the distance value in descending order, ( ) Dsort yi , p1 . 
c. Starting from i = 1, do 

i. Calculate the fitness value for yi , ( ) V yi . 
ii. If V(yi ) ≤ V(x) accept yi with probability one, and with 

probability 0.5 
 otherwise. 

iii. If yi is not accepted, increase i by one. 
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Repeat i-iii until yi is accepted. 
d. Set x = yi . 
e. If V(x)≤V(q) then set q = x . 

Repeat 2-3 until number of iteration. 
4. q is the child. 

 
Acceptance Criterion 
The final and the most important step in the GA procedure is to choose the individual 
to be replaced by child. It is widely known that we always choose the fittest individual 
to reproduce in the next iteration. In Yamada and Nakano (1997), they did not 
consider or choose the child with the same fitness value with other population 
members. However, by not even considering that child, we may lose the good 
individual without considering its abilities to be evaluated. So, in this paper, after 
considering the worst individual in the population, we also consider if the child has 
the same fitness value with the member of population. Instead of dropping that child, 
we replaced the old one with the child assuming that we have given chance for the old 
individual to reproduce. Noted that we could not take both of the individuals to avoid 
having problem later, we might have problem falling in the local optima. The 
algorithm for the whole procedure is shown  

1. Initialize population: Randomly generated a set of 10 schedules including the 
schedules obtained by some priority rules. 

2. Randomly select two schedules, named them as p1 and p2 . Calculate DG 
distance between p1 and p2 . 

3. If DG distance is smaller from some predefined value, apply Algorithm 2 to p1 
. Generate child. Then go to step 5. 

4. If DG distance is large, we apply Algorithm 1 to p1 and p2 . Generate child. 
5. Apply neighbourhood search to child to find the fittest child in the 

neighbourhood. Noted it as child’. 
6. If the makespan for the child’ is less than the worst and not equal to any 

member of population, replace the worst individual with child’. If there is a 
member having the same makespan value, replace the member with the child’. 

7. Repeat 2-6 until some termination condition are satisfied. 
 
 
Results and Discussions 
Consider a 5 jobs and 5 machines problem with the operation sequence and the 
processing time for each operation have been determined in Table1. We run the 
program for five times using the population size = 10, number of iterations for 
mutation is 100 and crossover is 200. The algorithm was terminated after 200 
generations. From the result, it can be shown that the combination of critical block, 
DG distance and genetic algorithm could provide a result as good as other methods. 
From Table, we could see that the last job processed is job 5 on machine 4. So, our 
makespan value for this problem is 34. The result also gives us the job sequence for 
each machine to process, the starting time and the finish time for each operation. For 
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example, on machine 1, we start to process job 3 at time 0 and finished at 7. Then we 
process job 1, followed by job 4, job 5 and job 2. 
 We have applied both types of initial population to the data. First we used the 
combination of schedules we generated using the priority rules and the randomly 
generated schedules as the initial population. From the five runs, we find the optimum 
before the generation exceeded 100. 
 From the five runs, we could conclude that if we used the randomly generated 
schedules as the initial population, we will only find the optimum value at generation 
larger than 100. However, both results gave the same makespan value which is 34. 
 
 
Conclusion 
The study on GA and job shop scheduling problem provides a rich experience for the 
constrained combinatorial optimization problems. Application of genetic algorithm 
gives a good result most of the time. Although GA takes plenty of time to provide a 
good result, it provides a flexible framework for evolutionary computation and it can 
handle varieties of objective function and constraint. 
 For further research, the technique in this paper would be applied to a larger size 
problem to see how it performed. 
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Annexure I 
On traditionally solving the problem we have the following results. 
 
List of Operations  
(Job.Op) 

Process Time Remaining Operations 
Scheduled (Machine) 

Start Time Completion
Time 

(1,1), (2,1), (3,1), (4,1), (5,1) 
(1,1), (2,1), (3,2), (4,1), (5,1) 
(1,2), (2,1), (3,2), (4,1), (5,1) 
(1,2), (2,1), (3,2), (4,1), (5,2) 
(1,3), (2,1), (3,2), (4,1), (5,2) 
(1,3), (2,1), (3,3), (4,1,), (5,2) 
(1,3), (2,1), (3,3), (4,2), (5,2) 
(1,3), (2,2), (3,3), (4,2), (5,2) 
(1,3), (2,2), (3,3), (4,2), (5,3) 
(1,3), (2,2), (3,3), (4,3), (5,3) 
(1,4), (2,2), (3,3), (4,3), (5,3) 
(1,4), (2,2), (3,4), (4,3), (5,3) 
(1,4), (2,3), (3,4), (4,3), (5,3) 
(1,4), (2,3), (3,4), (4,3), (5,4) 
(1,5), (2,3), (3,4), (4,3), (5,4) 
(1,5), (2,3), (3,4), (4,4), (5,4) 
(1,5), (2,3), (3,5), (4,4), (5,4) 
(1,5), (2,3), (3,5), (4,4), (5,5) 
(1,5), (2,4), (3,5), (4,4), (5,5) 
(1,5), (2,5), (3,5), (4,4), (5,5) 
(1,5), (2,5), (3,5), (4,5), (5,5) 
(2,5), (3,5), (4,5), (5,5) 
(3,5), (4,5), (5,5) 
(3,5), (4,5) 
(4,5) 

27, 20, 31, 21, 25  (3,1) 
27, 20, 24, 21, 25  (1,1) 
25, 20, 24, 21, 25  (5,1) 
25, 20, 24, 21, 20  (1,2) 
17, 20, 24, 21, 20  (3,2) 
17, 20, 16, 21, 20  (4,1) 
17, 20, 16, 17, 20  (2,1) 
17, 14, 16, 17, 20  (5,2) 
17, 14, 16, 17, 13  (4,2) 
17, 14, 16, 12, 13  (1,3) 
13, 14, 16, 12, 13  (3,3) 
13, 14, 12, 12, 13  (2,2) 
13, 9, 12, 12, 13    (5,3) 
13, 9, 12, 12, 10    (1,4) 
7, 9, 12, 12, 10      (4,3) 
7, 9, 12, 7, 10        (3,4) 
7, 9, 3, 7, 10          (5,4) 
7, 9, 3, 7, 4             (2,3) 
7, 7, 3, 7, 4             (2,4) 
7, 4, 3, 7, 4             (4,4) 
7, 4, 3, 3, 4             (1,5) 
4, 3, 3, 4,                (2,5) 
3, 3, 4,                    (5,5) 
3,3,                         (3,5) 
3,                            (4,5) 

1 
3 
5 
1 
5 
4 
2 
3 
3 
2 
4 
3 
1 
4 
2 
3 
2 
2 
1 
1 
5 
4 
4 
2 
5 

0 
0 
0 
7 
7 
0 
0 
5 
12 
15 
15 
17 
15 
19 
19 
22 
24 
22 
26 
29 
26 
29 
31 
31 
33 

7 
2 
5 
15 
15 
4 
6 
12 
17 
19 
19 
22 
18 
25 
24 
31 
30 
26 
29 
33 
33 
31 
35 
34 
36 

 
 


