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Abstract 
 

Molodtsov [1999] initiated the concept of soft set theory as a new approach 
for modeling uncertainities. Then Maji et. al [2001] expanded this theory to 
fuzzy soft set theory. The algebraic structures of soft set theory have been 
studied increasingly in recent years. Aktas and Ca’gman [2007] defined the 
notion of soft groups. Feng et.al [2008] initiated the study of soft semi rings 
and finally soft rings are defined by Acar et.al [2010]. In this study we 
introduce, fuzzy soft ring, which is a generalisation of soft rings introduced by 
Acar et. al. and we study some of their properties. 
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Introduction 
Most of the existing mathematical tools for formal modeling, reasoning and 
computing are crisp, deterministic and precise in character. But in real life situation, 
the problems in economics, engineering, environment, social science, medical science 
etc do not always involve crisp data. Consequently, we cannot successfully by using 
the traditional classical methods because of various types of uncertainties in this 
problem. There are several theories, for example, theory of fuzzy sets [27], theory of 
intuitionist fuzzy sets [5], vague sets [13], interval mathematics [26], and rough sets 
[23], which can be considered as mathematical tools for dealing with uncertainties. 
But all these theories have this inherents difficulties as what where point out by 
Molodtsov in [21]. The reason for these difficulties is possibly the inadequacy of the 
parameterization tool of the theories. 
 In 1999 Molodtsov [21], initiated the Novel concept of soft set theory which is 
completely new approach for modeling vagueness and uncertainties. Soft set theory 
has a rich potential for applications in several directions, few of which had been 
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shown by Molodtsov in [21] After Molodtsov work, some different applications of 
soft set theory where studied in [1]. 
 Furthermore Maji, Biswas and Roy worked on soft set theory in [18]. Also Maji 
et. al [17] presented the definition of fuzzy soft set and Roy et. al presented some 
applications of there notion to decision making problems. The algebraic structures of 
set theories dealing with uncertainities has also been studied by some authors. 
Rosenfield [25] proposed the concept of fuzzy groups in order to establish the 
algebraic structures of fuzzy sets. Rough groups were defined by Biswas and some 
authors have studied the algebraic properties of rough sets as well. Recently the many 
authors discuss the soft set research on the soft set theory is progressing rapidly. For 
example, the concept of soft semi ring, soft group, soft BCK/BCI algebras, soft BL-
algebras and fuzzy soft groups. This paper begins by introducing the basic concept of 
fuzzy soft set theory, then we introduce the basic version of fuzzy soft ring theory, 
which extends the notion of the ring to the algebraic structure of fuzzy soft set. 
 In this paper, we study Molodtsov motion of soft sets and fuzzy soft set 
considering the fact that the parameters are mostly fuzzy hedges or fuzzy parameters. 
We discuss fuzzy soft sets algebraic structure and given the definition of fuzzy soft 
ring. We define operations on fuzzy soft rings soft set, research on the soft set theory 
is progressing rapidly. For example, the concept of soft semi ring, soft group, soft 
BCK/BCI algebras, soft BL-algebras and fuzzy soft groups. This paper begins by 
introducing the basic concept of fuzzy soft set theory, then we introduce the basic 
version of fuzzy soft ring theory, which extends the notion of the ring to the algebraic 
structure of fuzzy soft set. 
 In this paper, we study Molodtsov motion of soft sets and fuzzy soft set 
considering the fact that the parameters are mostly fuzzy hedges or fuzzy parameters. 
We discuss fuzzy soft set algebraic structure and given the definition of fuzzy soft 
ring. We define operations on fuzzy soft rings and prove some results on them. 
Finally we present image, pre-image, fuzzy soft homomorphisms and discussed their 
properties. 
 
 
Preliminaries 
Through out this paper R denotes a commutative ring and all fuzzy soft sets are 
considered over R. 
 
Definition 2.1 
A pair (f, A), is called a soft set over the lattice L, If f:A → P(L). Here L be the initial 
universe and E be the set of parameters. Let P(L) denotes the power set of L and IL 
denotes the set of all fuzzy sets on L. 
 
Definition 2.2 
A pair (f, A is called a fuzzy soft set over L, where f:A → IL, ie. for each a ∈ A,  
fa: L → I is a fuzzy set in L. 
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Definition 2.3 
Let (f, A) be a non-null soft set over a ring R. Then (f, A) is said to be a soft ring over 
R if and only if f(a) is sub ring of R for each a ∈ A. 
 
Definition 2.4 
Let (f, A) be a non Null fuzzy soft set over a ring R. Then (f, A) is called a fuzzy soft 
ring over R If and only if f(a) = fa is a fuzzy sub ring of R. for each a ∈ A. 

(FSR1) fa (x + y) ≥ T {fa (x), fa (y)} 

(FSR2) fa (–x) ≥ fa (x) 

(FSR3) fa (xy) ≥ T{ fa (x), fa (y)} 
 
for all x, y ∈ R 
 
Definition 2.5  
Let (f, A) be a fuzzy soft set over L. The soft set (f, A)α = {(fa)α / a ∈ A} for each α ∈ 
[0, 1] is called α–level soft set. 
 
Definition 2.6  
Let fa be a fuzzy soft ring in R. Let θ:R → R´ be a map and define  

  fa
θ(x) = fa(θx) by defining fa

θ: R → [0, 1]. 
 
Definition 2.7 
Let φ: X → Y and Ψ: A → B be two functions, where A and B are parameter sets for 
the crisp sets X and Y respectively. Then the pair (φ, Ψ) is called a fuzzy soft function 
from X to Y. 
 
Definition 2.8 
The pre-image of (g, B) under the fuzzy soft function (φ, Ψ) denoted by (φ, Ψ)–1 is the 
fuzzy soft set defined by (φ, Ψ)–1 (g, B) = (φ−1(g) , Ψ −1(B)). 
 
Definition 2.9 
Let (φ, Ψ): X →Y is a fuzzy soft function, if φ is a homomorphism from X → Y then 
(φ, Ψ) is said to be fuzzy soft homomorphism. If φ is a isomorphism from X → Y and 
Ψ is 1 – 1 mapping from A on to B then (φ, Ψ) is said to be fuzzy soft isomorphism. 
 
 
Properties of Fuzzy Soft Ring 
Preposition 3.1 
Let fa be a fuzzy soft ring of R then  

  fa(x) ≤ fa(0) for all x ∈ R, the subset 

  Rfa = {x ∈ R / fa(x) = fa(0)} is a fuzzy soft ring of R. 
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Proof: Let x ∈ G, then 
(FSR1)  fa(x + y) = T { fa(x), fa(y)} 
  = T { fa(x), fa(–x)} 
  ≤ fa((x) + (–x)) 

  ≤ fa(0) 
 
 This implies subdivision (i). To verify subdivision (ii), it follows that x ∈ R fa and 
R fa ≠ φ . 
 Now let x, y ∈ R, then  
(FSR2) fa(x + (–y)) ≥ T{fa(x), fa(–y)} 
  = T {fa(x), fa(y)} 
  = T {fa(0), fa(0)} 
  = fa(0) 
 
 But, from subdivision (i), fa(x) ≤ fa(0) for all x, y ∈ R and so fa(x + (–y)) = fa(0). 
Which then x + (–y) ∈ Rfa is fuzzy soft ring of R. 

(FSR3) Let x, y ∈ Rfa and setting y = x, then 
 fa(xy) ≥ T{fa(x), fa(y)} 
  = T {fa(x), fa(x)} 
  = T {fa(0), fa(0)} 
  = fa(0) 
 
∴ fa is a fuzzy soft ring over R. 
 
Corollary: 3.2 
Let R be a finite ring and fa be a fuzzy soft ring of R. Consider the subset H of R 
given by 
  H = {x ∈ R / fa(x) = fa(0) } 
 
 Then H is called crisp subring of R. 
 
Proposition 3.3 
Let fa and fb be two fuzzy soft rings of R then fa ∩ fb is fuzzy soft ring of R. 
 
Proof: Let x, y ∈ R  
(FSR1) (fa ∩ fb) (x + y) = T {fa(x + y), fb(x + y)} 

   ≥ T {T fa(x), fa(y)}, T{ fb(x), fb(y) } 
   ≥ T {T { fa(x), fa(y), fb(x), fb(y)}} 
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   ≥ T {T { fa(x), fb(y)}, T{fa(y), fb(y)}} 
   ≥ T {(fa ∩ fb)(x), (fa ∩ fb)(y) } 
 
 FSR1 satisfied in R 
(FSR2)  (fa ∩ fb) (–x) = T {fa(–x), fb(–x)} 

  ≥ T {fa(x), fb(x)} 
  ≥ {(fa ∩ fb)(x) 
 
(FSR3) (fa ∩ fb) (xy) = T {fa(xy), fb(xy)} 
  T { T {fa(x), fa(y)}, T{ fb(x), fb(y)}} 
  T { T {fa(x), fa(y)}, fb(x), fb(y)}} 
  T { T {fa(x), fb(x)}, T{ fa(y), fb(y)}} 
  T { (fa ∩ fb ) (x) , (fa ∩ fb ) (y)} 
 
 Hence fa ∩ fb is fuzzy soft ring of R 
 
Preposition 3.4 
If fa is fuzzy soft ring of R then the non-empty level subset U (fa; t) is fuzzy soft ring 
for all t ∈ Im (fa). 
 
Proof:  
Let fa be a fuzzy soft ring and t ∈ Im (fa). 
 Now x, y ∈ U (fa; t), we have fa(x) ≥ t, fa(y) ≥ t. 
(FSR1) fa(x + y) ≥ T { fa(x), fa(y)} 
  ≥ T {t, t} 

  ≥ t 
 
 So, which implies x + y ∈ U (fa; t). 
(FSR2) fa(–x) ≥ fa(x) 
  ≥ t 
 
 Therefore –x ∈ U (fa; t). 
 
(FSR3) fa(xy) ≥ T { fa(x), fa(y)} 

  ≥ T {t, t} 

  ≥ t 
 
 Therefore xy ∈ U (fa; t). 
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 Hence, U (fa; t) is a fuzzy soft ring of R. 
 
Proposition 3.5 
If fa is a fuzzy soft ring of R and defined by fa

+(x) = fa(x) + 1 – fa(0), for all x ∈ R, 
then fa

+ (x) is normal fuzzy soft ring of R which contains fa. 
 
Proof: 
For any x, y ∈ R. It follows that fa

+(x) = fa(x) + 1 – fa(0) 
(FSR1) fa

+ (x + y) = fa (x + y) + 1 – fa(0) 
  ≥ T {{ fa(x), fa(y)}+ 1 – fa(0)} 
  ≥ T {{ fa(x) + 1 – fa(0), fa(y) + 1 – fa(0),} 

  ≥ T { fa
+(x), fa

+(y)} 
 
(FSR2)  fa

+ (–x ) = fa (–x) + 1 – fa(0) 

  ≥ fa(x) + 1 – fa(0) 
  ≥ fa

+(x) 
 
(FSR3) fa

+ (x y) = fa (x y) + 1 – fa(0) 

  ≥ T {{ fa(x), fa(y)}+ 1 – fa(0)} 
  ≥ T {{ fa(x) + 1 – fa(0), fa(y) + 1 – fa(0)} 
  ≥ T { fa

+(x), fa
+(y)} 

 
 Therefore, fa

+ is normal fuzzy soft ring of R. 
 
Proposition 3.6 
If { iaf ai f} ∈  is a family of fuzzy soft rings of R, then ∩ iaf is fuzzy soft ring of R, 

whose ∩ iaf = {(x, Λ iaf (x) / x ∈ R}, where i ∈ fa. 
 
Proof: 
Let x, y ∈ R, then for i ∈ fa It follows that 

(FSR1) ∩ iaf ( x + y) = Λ iaf (x + y) 

  ≥ Λ T { iaf (x), iaf (y)} 

  ≥ T {Λ iaf (x), Λ iaf (y)} 

  ≥ T {∩ iaf (x), ∩ iaf (y)} 
 
(FSR2) ∩ iaf ( –x ) = Λ iaf (–x ) 
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  ≥ Λ  iaf (x) 

  ≥ ∩ iaf (x) 
 
(FSR3) ∩ iaf ( xy ) = Λ iaf (xy ) 

  ≥ Λ  T { iaf (x), iaf (y)} 

  ≥ T { Λ iaf (x), Λ iaf (y)} 

  ≥ T { ∩ iaf (x), ∩ iaf (y)} 
 
 Therefore, ∩ iaf is fuzzy soft ring of R. 
 
Preposition 3.7 
If fa is a fuzzy soft ring of R then c

af  is a fuzzy soft ring of R. 
 
Proof: 
Let x, y ∈ R. then 

(FSR1) c
af  (x + y) = 1 – fa (x + y) 

  ≤  1 – T {fa (x), fa (y)} 
  ≤  S {1 – fa (x), 1 – fa (y)} 

  ≤  S { c
af  (x), c

af  (y)} 
 
(FSR2) c

af  ( – x) = 1 – fa (–x) 

  ≤ 1 – fa (x) 

  ≤ c
af  (x) 

 
(FSR3) c

af  (xy) = 1 – fa (xy) 

  ≤  1 – T {fa (x), fa (y)} 
  ≤  S {1 – fa (x), 1 – fa (y)} 

  ≤  S { c
af  (x), c

af  (y)} 

 Therefore, c
af  is fuzzy soft ring of R. 

 
Preposition 3.8 
Let fa and fb be two fuzzy soft ring of R then fa U fb is fuzzy soft ring of R. 
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Proof:  
Let x, y ∈ R, then 
(FSR1) (fa U fb) (x + y ) = S { fa (x + y), fb (x + y)} 

  ≥ S { T { fa (x), fb (y)}, T {{ fb (x), fb (y)}} 
  ≥ T { S { fa (x), fa (y), fb (x), fb (y)}} 
  ≥ T { S { fa (x), fb (x)}, S {fa (y), fb (y)}} 
  ≥ T { (fa U fb) (x), (fa U fb ) (y)} 
 
(FSR2) (fa U fb) (–x ) = S { fa (–x), fb (–x)} 

  ≥ S { fa (x), fb (x)} 
  ≥ ( fa U fb ) (x) 
 
 
(FSR3) (fa U fb) (xy) = S { fa (xy), fb (xy)} 

  ≥ S { T { fa (x), fa (y)}, T { fb (x), fb (y)}} 
  ≥ T {S ( fa (x), fa(y), fb (x), fb (y)} 
  ≥ T { S { fa (x), fb (x)}, S {fa (y), fb (y)}} 
  ≥ T { (fa U fb) (x), (fa U fb ) (y)} 
 
 Therefore, fa U fb is fuzzy soft ring of R.  
 
Preposition 3.9 
Let fa and fb be two fuzzy soft rings of R then fa × fb is fuzzy soft ring of R. 
 
Proof: 
Let x, y ∈ R. then  
(FSR1) (fa × fb) (x + y ) = T { fa (x + y), fb (x + y)} 

  ≥ T { T { fa (x), fa (y)}, T {{ fb (x), fb (y)}} 
  ≥ T { T { fa (x), fa (y), fb (x), fb (y)}} 

  ≥ T { T { fa (x), fb (x)}, T {fa (y), fb (y)}} 
  ≥ T { (fa × fb) (x), (fa × fb ) (y)} 
 
(FSR2) (fa × fb) (–x ) = T { fa (–x), fb (–x)} 
  ≥ T { fa (x), fb (x)} 

  ≥ (fa × fb) (x) 
 
(FSR3) (fa × fb) (xy ) = T { fa (x y), fb (x y)} 
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  ≥ T { T { fa (x), fa (y)}, T {{ fb (x), fb (y)}} 
  ≥ T { T { fa (x), fa (y), fb (x), fb (y)}} 
  ≥ T { T { fa (x), fb (x)}, T {fa (y), fb (y)}} 

  ≥ T { (fa × fb) (x), (fa × fb ) (y)} 
 
 Therefore, fa × fb is fuzzy soft ring of R.  
 
Preposition 3.10  
If 1af , 2af , … , naf  be fuzzy soft ring of the rings R1, R2, … , Rn respectively then 

1af × 2af × … × naf is fuzzy soft ring of R1 × R2 × … × Rn. 
 
Proof:  
Let X = (x1, x2, … , xn), Y = (y1, y2, … , yn) ∈ R 
 
(FSR1)  ( 1af × 2af × … × naf ) (X + Y) 

  = ( 1af × 2af × … × naf )  ((x1, x2, … , xn) + (y1, y2, … , yn)) 

  = ( 1af × 2af × … × naf ) (x1 + y1, x2 + y2 , … , xn + yn) 

  = T { 1af (x1 + y1), 2af (x2 + y2), … , naf (xn + yn)} 

  ≥ T { T { 1af (x1), 1af (y1)}, T { 2af (x2), 2af (y2)}, … ,  

  T { naf (xn), naf (yn)}} 

  ≥ T { T { 1af (x1), 2af (x2) … , naf (xn),  

  1af (y1), 2af (y2) … , naf (yn)}} 

  ≥ T { T { 1af (x1), 2af (x2) … , naf (xn)},  

  T{ 1af (y1), 2af (y2) … , naf (yn)}} 

  ≥ T { ( 1af × 2af × … × naf ) (x1, x2, … , xn), 

   ( 1af × 2af × … × naf ) (y1, y2, … , yn)} 
 
FSR1 satisfied in R1 × R2 × … × Rn. 
(FSR2) ( 1af × 2af × … × naf ) (–X) 

  = ( 1af × 2af × … × naf )  

  (–(x1, x2, … , xn)) 
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  = ( 1af × 2af × … × naf )  

  (–x1 , – x2 , … , – xn) 
  = T { 1af (–x1), 2af (–x2), … , naf (–xn )} 

  ≥ T { 1af (x1), 2af (x2), … , naf (xn)} 

  ≥ ( 1af × 2af × … × naf ) (x1, x2, … , xn) 

  ≥ ( 1af × 2af × … × naf ) (X) 
 
(FSR3) ( 1af × 2af × … × naf ) (XY) 

  = ( 1af × 2af × … × naf )  

  ((x1, x2, … , xn) (y1, y2, … , yn)) 
  = ( 1af × 2af × … × naf )  

  (x1 y1, x2 y2 , … , xn yn) 

  ≥ T { 1af (x1 y1), 2af (x2 y2), … , 

  naf (xn yn)} 

  ≥ T { T { 1af (x1), 1af (y1)}, T { 2af (x2), 2af (y2)}, … ,  

  T { naf (xn), naf (yn)}} 

  ≥ T { T { 1af (x1), 2af (x2) … , naf (xn),  

  1af (y1), 2af (y2) … , naf (yn)}} 

  ≥ T { T { 1af (x1), 2af (x2) … , naf (xn)},  

  T{ 1af (y1), 2af (y2) … , naf (yn)}} 

  ≥ T { ( 1af × 2af × … × naf ) (x1, x2, … , xn), 

  ( 1af × 2af × … × naf ) (y1, y2, … , yn)} 

  ≥ T { ( 1af × 2af × … × naf ) (X), 

  ( 1af × 2af × … × naf ) (Y)} 
 
 Therefore, ( 1af × 2af × … × naf is fuzzy soft ring of R1 × R2 × … × Rn. 
 
Preposition 3.11 
Let R and R´ be two ring and θ:R →  R´ be a soft homomorphism. If fb is a fuzzy soft 
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ring of R then the pre-image θ–1(fb) is fuzzy soft ring of R. 
 
Proof: 
Assume that fb is fuzzy soft ring of R´. Let x, y ∈ R. 
 
(FSR1) 1

b(f )−θ
μ  (x + y) = 

bfμ  θ (x + y) 

  = 
bfμ  ( θx + θ y) 

  ≥ T {
bfμ (θx), 

bfμ (θy)} 

  ≥ T { 1
b(f )−θ

μ  (x), 1
b(f )−θ

μ  (y)} 

 
(FSR2)  1

b(f )−θ
μ  (–x) = 

bfμ  θ (–x) 

  ≥ 
bfμ θ(x)  

  ≥ 1
b(f )−θ

μ  (x) 

 
(FSR3)  1

b(f )−θ
μ  (x y) = 

bfμ  θ (x y) 

  = 
bfμ  ((θx) (θy)) 

  ≥ T {
bfμ θ(x), 

bfμ θ(y)} 

  ≥ T { 1
b(f )−θ

μ  (x), 1
b(f )−θ

μ  (y)} 

 
Therefore θ−1 (fb) is fuzzy soft ring of R´. 
 
Preposition  3.12 
Let θ: R →  R´ be an epimorphism and fb be fuzzy soft set in R´. If θ–1(fb) is fuzzy soft 
ring of R´ then fb is fuzzy soft ring of R. 
 
Proof 
Let x, y ∈ R. Then there exist a, b ∈ R such that θ (a) = x, θ (b) = y. It follows that. 
 
(FSR1)  b(f )θμ  (x + y) = 

bfμ  θ (x + y) 

  = 
bfμ  ( θx + θ y) 

  ≥ T {
bfμ (θx), 

bfμ (θy)} 
  ≥ T { b(f )θμ  (x), b(f )θμ  (y)} 
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(FSR2) b(f )θμ  (–x) = 
bfμ θ (–x) 

  ≥ 
bfμ θ(x)  

  ≥ b(f )θμ  (x) 
 
(FSR3)  b(f )θμ  (x y) = 

bfμ  θ (x y) 

  = 
bfμ  ((θx) (θy)) 

  ≥ T {
bfμ (θx), 

bfμ (θy)} 
  ≥ T {

bfμ θ(x), 
bfμ θ(y)} 

  ≥ T { b(f )θμ  (x), b(f )θμ  (y)} 
 
 Therefore θ(fb) is fuzzy soft ring of R. 
 
Proposition 3.13 
If fa is fuzzy soft ring of R and θ:R →  R´ be a soft homomorphism of R then the 
fuzzy soft set 

  af θ  = {(x, af θ (x)) / x ∈ R} is fuzzy soft ring of R. 
 
Proof 
Let x, y ∈ R.  
 
(FSR1)  af θ  (x + y) = fa θ (x + y) 
  = fa (θx + θy) 
  ≥ T {fa (θx), fa (θy)} 
  ≥ T { af θ (x), af θ (y)} 
 
(FSR2)  af θ  (–x) = fa (θ (–x)) 
  ≥ fa (θ(x)) 
  ≥ af θ  (x) 
 
(FSR3)  af θ  (x y) = fa (θ (x y)) 
  = fa ((θx) (θy)) 
  ≥ T {fa (θx), fa (θy)} 
  ≥ T { af θ (x), af θ (y)} 
 
 Therefore, af θ  is fuzzy soft ring of R. 
 
Proposition 3.14 
Let fa be a fuzzy soft set over L, then fa is fuzzy soft ring over L if and only if for all a 
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∈ A and for arbitrary α ∈ [0, 1] with (fa)α ≠ 0, then α– level soft set (fa)α is fuzzy soft 
ring over L.  
 
Proof 
Let fa be fuzzy soft ring over L. Then for each a ∈ A, fa is a fuzzy sub ring of L. For 
arbitrary α ∈ [0, 1], (fa)α ≠ 0. Let x, y ∈ (fa)α. Then fa(x) ≥ α and fa(y) ≥ α. 
(FSR1) (fa)α (x + y) ≥ T {(fa)α (x), (fa)α (y)} 
  ≥ T {fa(x), fa(y) } 

  ≥ T {α, α} 

  ≥ α 
 
 Therefore, x + y ∈ (fa)α  
(FSR2) (fa)α (–x) ≥ {(fa)α (x) 

  ≥ (fa)α (x) 

  ≥ α 
 
 Therefore, – x ∈ (fa)α  
(FSR3) (fa)α (x y) ≥ T {(fa)α (x), (fa)α (y)} 

  ≥ T {fa (x), fa(y) } 
  ≥ T {α, α} 
 
 Therefore, xy ∈ (fa)α  
 Therefore (fa)α is a fuzzy soft ring of R. 
 
Proposition 3.15 
Every imaginable fuzzy soft ring μ of R is fuzzy soft ring of R. 
 
Proof  
Assume that μ is imaginable fuzzy soft ring of R. Then we have  
  μ (x + y) ≥ T { μ (x), μ (y)} and  

  μ (–x) ≥ μ (x), μ (xy) ≥ T{ μ (x), μ (y)} for all x, y ∈ R. 
 
 Since μ is imaginable, we have. 

  min { μ (x), μ (y)}= T { min { μ (x), μ (y)}, min { μ (x), μ (y)}} 
  ≤ T { μ (x), μ (y)} 

  ≤ min { μ (x), μ (y)} 
 
and so 
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  T { μ (x), μ (y)} =  min { μ (x), μ (y)} 
 
 It follows that μ (x + y) ≥ T{ μ (x), μ (y)} for all x, y ∈ R. 
 Hence μ is fuzzy soft ring of R.  
 
Proposition 3.16 
If  μ is fuzzy soft ring of R and θ is endomorphism of R then [ ]θμ  is fuzzy soft ring of 
R. 
 
Proof  
For any x, y ∈ R, we have 

(FSR1)  [ ]θμ (x + y)) = μ (θ (x + y)) 

  = μ (θx + θy) 
  ≥ T {μ(θx), μ (θy)} 

  ≥ T { [ ]θμ (x), [ ]θμ (y)} 
 
(FSR2)  [ ]θμ (–x) = μ (θ (–x ) 

  ≥ μ θ(x) 

  ≥ [ ]θμ (x) 
 
(FSR3) [ ]θμ (xy) = μ θ (x y) 

  = μ ((θx) (θy)) 

  ≥ T {μ(θx), μ (θy)} 
  ≥ T {μθ(x), μ θ(y)} 

  ≥ T { [ ]θμ (x), [ ]θμ (y)} 
 
 Therefore, [ ]θμ  is fuzzy soft ring of R. 
 
Proposition 3.17 
Let T be a continuous t-norms and let f be a soft homomorphism on R. If μ is fuzzy 
soft ring of R then μf is fuzzy soft ring of f(R). 
 
Proof: 
Let A1 = 1f − (y1) and A2 = 1f − (y2) and  

  A12 = 1f − (y1 + y2). Where y1 , y2 f(R). 
 
 Consider the set. 
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  A1 + A2 = {x ∈ R / x = a1 + a2}, for some a1 ∈ A1 and a2 ∈ A2 
 
 If x ∈ A1 + A2 then x = x1 + x2 for some x1 ∈ A1 and x2 ∈ A2. So that we have  
  f(x) = f(x1) + f(x2) 
  = y1 + y2 
 
 Therefore, x ∈ 1f −  (y1 + y2) = A12 
 Thus A1 + A2 ∈ A12 
 It follows that 
 
(FSR1) μf (y1 + y2) = sup {μ (x) / x ∈ 1f −  (y1 + y2)} 
  = sup {μ (x) / x ∈  A12 } 
  = sup {μ (x) / x ∈  A1 + A 2 } 

  ≥ sup {μ (x1+ x2) / x1 ∈  A1 , x2 ∈ A 2 } 
 
 Since T is continuous, therefore for every ∈ > 0, we see that if  
 Sup {{μ (x1) / x1 ∈  A1} + x1* ≤ δ and 
 Sup {{μ (x2) / x2 ∈  A2} + x2* ≤ δ  
 T { Sup {{μ (x1) / x1 ∈  A1}, Sup {{μ (x2) / x2 ∈  A2}} + T (x1* , x2*) ≤ ∈ 
 
 Choose a1 ∈ A1 and a2 ∈ A2 such that 
 Sup {{μ (x1) / x1 ∈  A1} + μ (a1) ≤ δ and 
 Sup {{μ (x2) / x2 ∈  A2} + μ (a2) ≤ δ  
 Τ { Sup {{μ (x1) / x1 ∈  A1}, Sup {{μ (x2) / x2 ∈  A2}} + T (μ (a1), μ (a2)) ≤ ∈ 
 Consequently, we have 
 μf (y1 + y2) ≥ sup {T {μ (x1), μ (x2) / x1 ∈  A1 , x2 ∈  A2 }} 
  ≥ Τ {sup {μ (x1)/ x1 ∈  A1}, sup { μ (x2) / x2 ∈  A2 }} 
  ≥ Τ {μ f (y1), μ f (y2) } 
 
 Similarly, we can show that, μf (–x) ≥ μf (x), and 
  μf (xy) ≥ T{μf (x), μ f (y)} 
 
 Hence μf is fuzzy soft ring of f(R). 
 
Proposition 3.18 
Onto homomorphic image of fuzzy soft ring with sup-property is fuzzy soft ring of R. 
  
Proof 
Let f: R →  R´ be an onto homomorphism of rings and μ be a sup property of fuzzy 
soft ring of R. 
 Let x´, y´ ∈ R´ and x0 f–1(x´) and y0 ∈ f–1(y´) be such that  
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  μ (x0) = sup μ (h) and μ (y0) = sup μ (h)  

   h∈ 1f − (x´)  h∈ 1f − (y´) 
 
 respectively, then we can deduce that 
(FSR1)  μf (x´ + y´) = sup μ (z)  

   z∈ 1f − (x´ + y´) 
  ≥ T {μ(x0), μ(y0)} 

  = T { sup μ (h) , sup μ (h) } 

   h∈ 1f − (x´) h∈ 1f − (y´)  
  ≥ T {μf ( x´), μf (y´)} 
 
(FSR2)  μf (–x´) = sup μ (z)  

   z∈ 1f − (–x´) 
  ≥ μ(x0) 
  = sup μ (h)  

   h ∈ 1f − (x´)  

  ≥ μf ( x´) 
 
(FSR3)  μf (x´y´) = sup μ (z)  

   z∈ 1f − (x´ y´) 

  ≥ T {μ(x0), μ(y0)} 
  = T { sup μ (h) , sup μ (h) } 

   h∈ 1f − (x´) h∈ 1f − (y´)  
  ≥ T {μf ( x´), μf (y´)} 
 
 Therefore μf is fuzzy soft ring of R´.  
 
Proposition 3.19  
Let fa be a fuzzy soft ring over R and (φ, Ψ) be a fuzzy soft homomorphism from R to 
R´. Then (φ, Ψ)fa is fuzzy soft ring over R´. 
 
Proof: 
 Let k ∈ (Ψ)fa and y1, y2 ∈ Y. If φ−1(y1) = φ or φ−1(y2) = φ . 
 The proof is straight forward. 
 
 Let us assume that, there exist x1, x2 ∈ X such that 
  φ (x1) = y1 and φ (x2) = y2. 
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 Now 

  φ (fa)k (y1 + y2) = V V fa(t) 
   φ (t) = y1 + y2 Ψ (a) = k  
   ≥ V fa(x1 + x2) 
   Ψ (a) = k  
   ≥ V {T {fa(x1), fa(x2)} 

   Ψ (a) = k 
   ≥ T { V {fa(x1), V fa(x2)} 
   Ψ (a) = k Ψ (a) = k 
 
 This inequality is satisfy for each x1, x2 ∈ X, which satisfy  

  φ (x1) = y1, φ (x2) = y2, 
 
then we have 
(FSR1) φ (fa)k (y1 + y2) ≥ T { ( V , V 

1af (t1) ) , 

   φ (t1) = y1 Ψ (a) = k 
   ( V , V 

2af (t2) ) } 

   φ (t2) = y2 Ψ (a) = k 
 
  T {φ (fa)k (y1), φ (fa)k (y2)} 
 
 And similarly, we can have 

  φ (fa)k (–y) ≥ φ (fa)k (y), 
  φ (fa)k (y1 y2) ≥ T {φ (fa)k (y1), φ (fa)k (y2)} 
 
 Therefore (φ, Ψ)fa is fuzzy soft ring of R´.  
 
Proposition 3.20 
Let gb be a fuzzy soft ring over R´ and (φ, Ψ) be a fuzzy soft homomorphism from R 
to R´, then 1( , )−φ ψ  gb is fuzzy soft ring over R. 
 
Proof 
Let a ∈ Ψ−1(B) and x1, x2 ∈ X. 
 
(FSR1) φ−1 (ga) (x1 + x2) = gΨ (a) (φ (x1 . x2) 
  = gΨ (a) (φ (x1) . (x2)) 
  ≥ T { gΨ (a) φ(x1) . gΨ (a) φ (x2)} 
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  ≥ T {φ−1 (ga) (x1), φ−1 (ga) (x2)} 
 
and similarly, we have 
  φ−1 (ga) (–x) ≥ φ−1 (ga) (x) and 
  φ−1 (ga) (x1 x2) ≥ {φ−1 (ga) (x1), φ−1 (ga) (x2)} 
 Therefore, 1( , )−φ ψ gb is fuzzy soft ring over R. 
 
 
Conclusions 
This paper summarized the basic concept of fuzzy soft set. We then presented a 
detailed theoretical study of fuzzy soft set, which led to the definition of new 
algebraic structures in ring structures. This work focused on fuzzy soft rings, 
homomorphism of fuzzy soft rings, and pre-image of fuzzy soft rings. To extend this 
work one could study the properties of fuzzy soft sets in other algebraic structures 
such as near rings, Groups, ideals, fields and G-modules. 
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