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Abstract

A stochastic inventory model with deterministic constraint is analyzed here.
First time we introduce the application of intuitionistic fuzzy geometric
programming technique to solve this multi-objective inventory problem with
uniform lead-time demand. Intuitionistic fuzzy geometric programming
technique minimizes the expected annual cost more than the fuzzy geometric
programming technique. Then this model is solved with fuzzy constraint. In
this case fuzzy geometric programming technique perform better than fuzzy
non-linear programming technique. Finally, all the numerical results are
compared and analyzed.
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Introduction

Geometric Programming (GP) is an effective method to solve a non-linear
programming problem. It has certain advantages over the other optimization methods.
Here, the advantages are that is usually much smpler to work with the dual than
primal. Degree of Difficulty plays a significant role for solving a non-linear
programming problem by GP method. Since late 1960, GP has been known and used
in various fields (like OR, Engineering Sciences etc.). Duffin, Petersen and Zener
(1966) discussed the basic theories with engineering applications in their books.
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Another famous book on GP and its application appeared in Beightler and Philips
(1976). There are many references on application and the methods of GP in the survey
papers (like Eckar (1980), Beightler et.al. (1979), Zener (1971). Hariri et. al. (1997)
discussed the multi-item production lot-size inventory model with varying order cost
under a restriction Jung and Klain (2001) developed single item inventory problems
and solved by GP method. Ata Fragany and Wakeel (2003) considered some
inventory problems solved by GP technique. Zadeh (1965) first gave the concept of
fuzzy set theory. Later on Bellman and Zadeh (1970) used the fuzzy set theory to the
decision making problem Tanaka (1974) introduced the objective as fuzzy goa over
the o-cut of a fuzzy constraint set and Zimmerman (1978) gave the concept to an
inventory and production problem. Banerjee and Roy (2008) discussed the single and
multi-objective stochastic inventory model in fuzzy environment. Constrained and
unconstrained Stochastic Inventory Model with Fuzzy cost components and Fuzzy
random variable was analyzed by Banerjee and Roy (2010). Cao (1993) and his recent
book (2002) discussed fuzzy geometric programming with zero degree of difficulty.
Das et. a. (2000) developed a multi-item inventory model with quantity dependent
inventory costs and demand dependent unit cost under imprecise objective function
and constraint and solved by GP technique. Roy and Maiti (1997) solved single
objective fuzzy EOQ model by GP technique. Recently Monda et. a. (2005)
developed a multi-objective inventory model and solved it by GP method. A multi-
objective fuzzy economic production quantity model is solved using GP approach by
Islam and Roy (2004).

Intuitionistic Fuzzy Set (IFS) was introduced by K. Atanassov (1986) and seems
to be applicable to real world problems. The concept of IFS can be viewed as an
aternative approach to define a fuzzy set in case where available information is not
sufficient for the definition of an imprecise concept by means of a conventional fuzzy
set. Thus it is expected that, IFS can be used to simulate human decision-making
process and any activitities requiring human expertise and knowledge that are
inevitably imprecise or totally reliable. Here the degree of rgjection and satisfaction
are considered so that the sum of both values is aways less than unity (1986).
Atanossov also anayzed Intuitionistic fuzzy sets in a more explicit way.
Atanassov(1989) discussed an Open problems in intuitionistic fuzzy sets theory. An
Interval valued intuitionistic fuzzy sets was analyzed by Atanassov and
Gargov(1999). Atanassov and Kreinovich(1999) implemented Intuitionistic fuzzy
interpretation of interval data. The temporal intuitionistic fuzzy sets are discussed also
by Atanossov[1999]. Intuitionistic fuzzy soft sets are considered by Maji Biswas and
Roy(2001). Nikolova, Nikolov, Cornelis and Deschrijver(2002) presented a Survey
of the research on intuitionistic fuzzy sets. Rough intuitionistic fuzzy sets are
analyzed by Rizvi, Nagvi and Nadeem(2002). Angelov (1997) implemented the
Optimization in an intuitionistic fuzzy environment. He (1995) also contributed in his
another two important papers, based on Intuitionistic fuzzy optimization. Pramanik
and Roy (2005) solved a vector optimization problem using an Intuitionistic Fuzzy
goal programming. A transportation model is solved by Jana and Roy (2007) using
multi-objective intuitionistic fuzzy linear programming. Banerjee and Roy (2009)
considered application of the Intuitionistic Fuzzy Optimization in the Constrained
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Multi-Objective Stochastic Inventory Model. Banerjee and Roy (2010) also discussed
the solution of Single and Multi-Objective Stochastic Inventory Models with Fuzzy
Cost Components by Intuitionistic Fuzzy Optimization Technique.

A stochastic inventory model with deterministic and then with fuzzy constraint is
analyzed here. We solve this multi-objective inventory problem with uniform lead-
time demand by intuitionistic fuzzy geometric programming technique. We aso
compare the results solved by Fuzzy Geometric programming technique and it is
observed that our Intuitionistic Fuzzy Geometric programming always performs better
than the Fuzzy Geometric programming.

Mathematical M odel
Backorder Case: Stockout Cost Per Unit
Here the policy is to order a lot size Q when the inventory level drops to a reorder
point r ant it is supposed that the inventory position of an item is monitored after
every transaction. The demand in any given interval of time is a random variable and
the expected value of demand in a unit of time, say a year, is D. We let x denote the
demand during the lead time and f(x) denote its probability distribution.

With backorders, there is no loss of sales, since the customer awaits the arrival of
the order if stock is not available. The expected safety stock is defined as

S= D](r - X) f (x)dx = roj[f (x)dx—]'xf (X)dx=r—-X

The number of backorders per lead timeiszeroif x—r<Oand X —rif x—r > 0.
The expected number of backorders per lead timeis

Ex>r)= [(x-r)f(x)dx
Here, annual safety stock cost = holding cost + stock out cost
. KD
i.e. TC=SH+ — |(x—r)f(x)dx
o

=H(r-X)+ %j(x—r)f(x)dx

The following mathematical notations are used:
For theith item:-

r, = reorder point in units,

S = safety stock in units,

H; = holding cost per unit of inventory per year,
Ki = backordering cost per unit,

x = lead time demand in units (arandom variable),
¥ = average lead time demand in units,

X —r; = size of stock out in units

pi = purchasing price of each product

TC = expected annual cost of safety stock,
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B=total budget
Multi Objective Stochastic Inventory Model with Deter ministic Constraint

MINTC, (Q0, Qs Qo1 ) = SH, 41120 Q I(X—r)f(X)dX

subject to the constraints

> PQ<Bly<Q<uy, I <r<uy (2.1)
i=1

Multi Objective Stochastic Inventory Model With Fuzzy Constraint

MIATC, (Qu Qs Qe by ) = SH, 4120 Q j(x ), (x)dx

subject to the constraints
> pQ<B Q,r>0Vi=12...,n (22)

(Herewavy bar ‘~' indicates “fuzzification” of the parameters).

Mathematical Analysis
Geometric Programming Problem
Geometric programming (GP) can be considered to be an innovative modus operandi
to solve a nonlinear problem in comparison with other nonlinear techniques. It was
originaly developed to design engineering problems. It has become a very popular
technique since its inception in solving nonlinear problems. The advantages of this
method is that, this technique provides us with a systematic approach for solving a
class of nonlinear optimization problems by finding the optimal value of the objective
function and then the optimal values of the design variables are derived. Also. This
method often reduces a complex nonlinear optimization problem to a set of
simultaneous equations and this approach is more amenabl e to the digital computers.
GP is an optimization problem of the form:

Min g, (t) (31)
subject to

g;(t) <1,

j=1,2,......... , m.

h (t) =1, k=1,2, ....c..... P

t >0, 1=1,2, ... ,n
where, g, () (j=1,2, ......... , m) are posynomial or signomial functions and h, (t)
k=1, 2, ........... , p) ae monomials t (i =1,2 ......... , N) are decision variable
vector of ncomponents t, (i =1,2, .......... ,n).

The problem (3.1) can be written as:
Min g, (t)
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subject to
g;(t) <1, =12, ......... , m.
t > 0, [since g,(t)<1, h(t)=1=g](t) <1 where g|(t)(=g(t)/h(t)) be a
posynomia(j=1, 2, ......... ,m;k=1,2,......... , P)].

Posynomial Geometric Programming Problem
A Primal problem

Min g, (t) (3.1.1)
subject to

g(t)<1 =12, ......... , m.

t. >0,(0=1,2,ccccvvnnnnnn. ,n)

where g, (t) = Z:c]kl_[t"’lk

here, cx > 0 and Oljki (|—1, 2, . N5 k=1, 2, ... ,N;j;j=0,1, .........
real numbers.
T=(t1, to) cvvennen. )"

It is a constrained posynomia primal geometric problem (PGP). The number of
inequality constraints in the problem (3.1.1) is m. The number of terms in each
posynomial constraint function varies and is denoted by N; for each j=0, 1, 2,
m.

The degree of difficulty (DD) of a GP is defined as (number of termsin a PGP) —
(number of variablesin PGP)-1.

Dual Problem
The dual problem of (3.1.1) isasfollows:

m | C Wlk
Max d(w) =] ( JkWJOJ

j=0 k1| Wik
Subject to
ZWok =1 (normality condition)
k=1
m N;j
z a W, =0, (I=1, 2, ........., n) (orthogonality condition)
j=0 k=1
W, ZWIkZO W, 20, (i=1,2, .........n; k=1, 2, o, N, Wy =1

There are n+1 independent dual constraint equalities and N = Z N, independent
j=1
dual variables for each term of primal problem. In thiscase DD=N-n-1.
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Signomial Geometric Programming Problem
Primal problem

Min g, (t) (31.2)
subject to

g;(t) <9, j=1,2, 0 ,m.

t>0,3(0=12 .............. ,n)

N, n
where g, (t) =Y d,c, J [t
k=1 i=1

here, Cik > Oand Oliki 5J-

=11 (=2,.....m)

O =11(k=12, ......... CNj =1, ,m) are real numbers.
T=(t1, t2, cuvennen.. )T
Dual Problem
The dual problem of (8.1.1) isasfollows:
Maxd(w) = & (HH{ 'kWJO} ) (3.1.3)
0 k=1 k
Subject to
Z Oy Wy, = O (normality condition)

M I

0, W, =0, (I=1,2, ......... ,N)  (orthogonality condition)

=11 (j=2,....m) &, =+1-1.
xk=t1 (k:1, 2, i, SN =1, ,m) are real numbers.

Functional Substitution
When a non-linear programming problem (NLP) is of the following form:
Miny(x) = f(X)+(q(x))"h(x) x>0, n>0.

Where, f(x), g(x) and h(x) are single or multi-term functionals of posynomial
or signomial form. This generalized formulation is not directly solvable using
geometric programming; however, under a simple transformation it can be changed
into standard geometric programming form. Let P=q(x) and replace the above
problem with the following one:

Miny(x) = f (X) +P"h(x)
subject to

P™(q(x) <1

x,P >0.
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The rationale used in constructing the equivalent problem with an inequality
constraint is based on the following logic. Sincey(x)is to be minimized, ifq(x) is

replaced by P, then it is correct to say that P > q(X), realizing that in the minimization
process P will remain as small as possible. Hence P =q(x) at optimality. Note that
h(x) and/or q(x) are permitted to be multiple term expressions and that the optimal
(minimizing) solution to y(x)isobviously the same as the optimal solutionto y(x).

Fuzzy Non-linear Programming (FNLP) Technique to Solve Multi-Objective
Non-Linear Programming Problem (MONLP)

A Multi-Objective Non-Linear Programming (MONLP) or Vector Minimization
problem (VMP) may be taken in the following form:

M inf(x) = (f,(X), f,(X),ceenvee )T
Subject to xe X ={xe R":g;(X)<or =or >b, forj =1,2,......,m} (3.2.1)
and |, <x<u(i=12...,n)

Zimmermann (1978) showed that fuzzy programming technigue could be used to
solve the multi-objective programming problem.
To solve MONLP problem, following steps are used:

Step 1. Solve the MONLP of equation (3.2.1) as a single objective non-linear
programming problem using only one objective at a time and ignoring the others,
these solutions are known asidea solution.

Step 2: From the result of stepl, determine the corresponding values for every
objective at each solution derived. With the values of all objectives at each ideal
solution, pay-off matrix can be formulated as follows:

£ (0 . f ()

X)) 03 . f.08)
X | f(x%) (X)) ... £ (XP)
x* fl.(;k) fz'(");") fk*“(.>'<")

Here x',x°,...,x“are the ideal solutions of the objective functions
f.(X), f,(X),.enene , f (X) respectively.
SoU, =max{f, (%), f, (X,),.oeo.. T, (%)}
and L, =min{f, (x), f, (,),.....f, (X)}
[L, and U, be lower and upper bounds of the r™" objective functions f_(x)

Step 3: Using aspiration level of each objective of the MONLP of equation (3.2.1)
may be written as follows:
Find x so asto satisfy
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f()<L  (r=12.....k)

xe X

Here objective functions of equation (3.2.1) are considered as fuzzy constraints.
These type of fuzzy constraints can be quantified by eliciting a corresponding
membership function:

£ (f.(x)=00r -0if f (x)=2U,

=u (f.(x) if L, <f (X)<U, (r=12,..... ,K)

=1 if f,(x)<L, (3.22)

Having elicited the membership functions (as in equation (3.2.2)) x, (f,(x) forr
=12 ...... , k, introduce a general aggregation function

115 (%) = Gty (£,00), 125 (5 (X))s-veeevees i (£ ().

So a fuzzy multi-objective decision making problem can be defined as

Max u5(X)

subject to xe X (3.2.3)

Here we adopt the fuzzy decision as:

Fuzzy decision based on minimum operator (like Zimmermann's approach (1978).
In this case equation (3.2.3) is known as FNLPy.

Then the problem of equation (3.2.3), using the membership function as in
equation (3.2.2), (according to addition operator)

k

IDWAHEY

Subject to
xeX, O<i[f(¥)] <1, r=12,........  k (3.2.49)

Step 4: Solve the equation (3.2.4) to get optimal solution.
We apply Fuzzy Programming Technique to solve MOSIM of section 4 and thus
according to step 2 Pay-off matrix isformulated as follows:

TCl (Ql’ rl) TCZ (QZ’ r‘2)

Q" TC* Q') TC(Q,\r,)

Q° [TC@Q'r)  TC* Q)

Now, Uy, Ly, Uy, Ly (WhereLy < TC,(Q,,1})) <Uiand L, < TC,(Q,,1,)< Uy ) are
identified and Q" =(Q,1,)), Q% =(Q,%,r,") are the ideal solutions of the objective
functions TC,(Q,,r,) and TC,(Q,,r,) .

Here, for simplicity, fuzzy linear membership functions s and g4 for the

objective functions TC,(Q,,r,) and TC,(Q,,r,) respectively are identified as follows:
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0 for TC,(Q,,r) <L,
te, Q1) = Ji _UTCE(LQ"r‘) for L, <TC, (Q,r)<U,

1 for TC,(Q,r) 2 U,
Vi=12

Weightsin FNLP
Here, positive weights w; reflect the decision maker's preferences regarding the
relative importance of each objective goa f.(x) forr =1, 2, ....., k. These weights
can be normalized by taking Y w; = 1. In the fuzzy non-linear programming the
decision maker assigns different weights as coefficients of the individual terms in
simple additive/ product achievement function to reflect their relative importance.

To achieve the same objective, suitable inverse weights are assigned to different
membership functions in the fuzzy non- linear programming FNLPy method. So
introducing normalized weights in FNLP, using additive operator (3.2.4) becomes,

Max > w, i, (f, (X))

r=1
subject to
xeX,0<pu(f(x)) <1 forr=1,2,......  k
k

where dw, =1, 0<w<l (forr=1,2 ...,k
=1

Fuzzy Geometric Programming Problem
Multi-objective geometric programming (MOGP) is a specia type of a class of
MONLP problems. Biswa (1992) and Verma(1990) developed a fuzzy geometric
programming technique to solve a MOGP problem. Here, we have discussed a fuzzy
geometric programming technique based on max-min and max-convex combination
operators to solve a MOGP.

To solve the MOGP we use the Zimmerman'’s technique. The procedure consists
of the following steps.

Step 1. Solve the MOGP as a single GP problem using only one objective at a time
and ignoring the others. These solutions are known as ideal solutions. Repeat the
process k times for k different objectives. Let X', X2, ......... , X be the ideal solutions
for the respective objective functions, where

X = (X1, X2, e X))

Step 2. From the ideal solutions of Stepl, determine the corresponding values for
every objective at each solution derived. With the values of all objectives at each
solution, the pay-off matrix of size (k x k) can be formulated as follows:
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£.0 (0 . f.(X)
L) 038 . ()
> | £,(x3) f, (X% .. f.(xP)
x| () L) f (XN

Step 3. From the Step 2, find the desired goal L, and worst tolerable value U, of f.(x),
r=>1,2,...... , k asfollows:

L<fi<Ur,r=1,2, ........  k

Where, U, = max {frgxl), £.0),....... (X}

L, = min {f.(xY), f.)........ < }
Step 4. Define a fuzzy linear or non-linear membership function i, [f(x)] for the r-th
objective function f,(x), r=1,2, ........ Kk

Hr [fe(X)] = 0or — O if f(x) = Uy

= di(X) ifL<fi(x)<U,(r=1,2,...... , K)

=lor—1if f(x)<L,
Here d(x) isastrictly monotonic decreasing function with respect to f(x).

Step 5. At this stage, either a max-min operator or a max-convex combination
operator can be used to formulate the corresponding single objective optimization
problem.

Formulation of Intuitionistic Fuzzy Optimization [I FO]
When the degree of rgection (non-membership) is defined simultaneously with
degree of acceptance (membership) of the objectives and when both of these degrees
are not complementary to each other, then IF sets can be used as a more genera tool
for describing uncertainty.

To maximize the degree of acceptance of IF objectives and constraints and to
minimize the degree of rejection of |F objectives and constraints, we can write:

max i (X), XeR,i =1,2,......,K +n
minv, (X), XeR,i =1,2,......,K +n
Subject to
v, (X) =0,
(X)) 2 v, (X)
ﬂi(i)+vi(i)<l
X >0
Where 1 (X) denotes the degree of membership function of (X)to the i" IF sets
and v, (X) denotes the degree of non-membership (rejection) of (X) from the i"™ IF
sets.



A Constrained Stochastic Inventory Model 199

An Intuitionistic Fuzzy Approach for Solving MOIP with Linear Membership
and Non-Member ship Functions

To define the membership function of MOIM problem, let L **and U,* be the
lower and upper bounds of the k™ objective function. These values are determined as
follows. Calculate the individual minimum value of each objective function as a
single objective IP subject to the given set of congtraints. Let X, , X, ,.....X, bethe

respective optimal solution for the k different objective and evaluate each objective
function at all these k optimal solution. It is assumed here that at least two of these

solutions are different for which the k™ objective function has different bounded
values. For each objective, find lower bound (minimum value) L **and the upper

acc

bound (maximum value) U,™ . But in intuitionistic fuzzy optimization (IFO), the

degree of rgection (non-membership) and degree of acceptance (membership) are
considered so that the sum of both values is less than one. To define membership

function of MOIM problem, letL, " and U, be the lower and upper bound of the

objective function Z,(X) where L ** <L ¥ <U,' <U, . These values are
defined as follows:
The linear membership function for the objective Z, (X) is defined as:

1 if Z, (X)<L™
U -Z,(X)

1 (Z (X)) = L L <Z (X)sU,™ (3.5.1)
Uk _Lk
0 if Z, (X)>U*
1 if Z,(X)>U,"™
_ Z.(X)-L" . - = -
v (Z (X)) =42 =k jfL "<z (X)<U, ™ 35.2
«(Z (X)) U, L° K (X)sU, (35.2)
0 if Z,(X)<L,"
M Z (X)) 1
1
Vi (Z,(X)
A
]'__kacc ]'__krej [_Tkacc::'[]'krej Z-k(;)

Figure-1: Membership and non-membership functions of the objective goa
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Lemma: In case of minimization problem, the lower bound for non-membership
function (rgection)) is always greater than that of the membership function
(acceptance).

Now, we take new lower and upper bound for the non-membership function as
follows:

L% =L +tU,* -L,**)where 0<t <1
U™ =U+tU**-L)fort=0
Following the fuzzy decision of Bellman-Zadeh [2] together with linear

membership function and non-membership functions of (3.5.1) and (3.5.2), an
intuitionistic fuzzy optimization model of MOIM problem can be written as.

max u, (X), XeR, k=1,2,......,K
minv, (X), XeR, k =1,2,......,.K
Subject to
v, (X) =0,
#(X) 2 v, (X)
#(X)+ 0, (X) <1
X >0
The problem of equation (3.5.3) can be reduced following Angelov (1997) to the
following form:
Max a — 3
Subject to
Z(X)<U*™ —a(U,™ - L)
Z,(X)<L+BU -L)
£ =0
a>f
o+ <1
X >0
Then the solution of the MOIM problem is summarized in the following steps:

(3.5.3)

Step 1. Pick the first objective function and solve it as a single objective I P subject to
the constraint, continue the process K-times for K different objective functions. If all

the solutions (i.e. X, =X, =.....= X, (i=12,....,m j=12,.....,n) same, then one
of them is the optimal compromise solution and go to step 6. Otherwise go to step 2.
However, thisrarely happens due to the conflicting objective functions.
Then the intuitionistic fuzzy goals take the form
Z,(X) <L (X)«k=12,.....K.,

Step 2. To build membership function, goals and tolerances should be determined at
first. Using the ideal solutions, obtained in step 1, we find the values of all the
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objective functions at each ideal solution and construct pay off matrix as follows:

Z(X) Zy (X)) e Z (X))
Z(X,) Zy (X)) e Z (X))
(Z,(X) Z,(X) e e e Z (X)) ]

Step 3. From Step 2, we find the upper and lower bounds of each objective for the
degree of acceptance and rejection corresponding to the set of solutions as follows:
U, = max(Z,(X,)) and L= min(Z, (X))
1<r <k 1<r<k
For linear membership functions,
L' =L +t(U** - L *)where 0<t <1

U/ =U " +tU*-L )fort=0

Step 4. Construct the fuzzy programming problem of equation (3.5.3) and find its
equivalent LP problem of equation (3.5.4).

Step 5. Solve equation (3.5.4) by using appropriate mathematical programming
algorithm to get an optimal solution and evaluate the K objective functions at these
optimal compromise solutions

Step 6. STOP.
Solution of Different Models

Stochastic Model: Demand follows Uniform distribution

We assume that demand for the period for the ith item is a random variable which
follows uniform distribution and if the decision maker feels that demand values for
item i below g or above by are highly unlikely and values between & and b; are equally
likely, then the probability density function f;(x) are given by:

1 .
—— ifa <x<b
b —a .
f.(x) = , fori=1,2,...,n.
0 otherwise

D.K.
TN (b =r)? ,
Q06 -a) "))
KiDi(bl_ri)2

And TC.(Q.r)=Hi( — )+ o s
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a+b

Where, y, =

Solution of Multi-objective Stochastic Inventory Model with fuzzy constraint by
Geometric Programming Technique

The model (2.2) can be formulated as an equivalent non-linear programming problem
following Bellman and Zadeh(1970), Tiwari, Dharmar and Rao(1987) as:

MaXW(Qlina ------ ,Qn,l’l,rz, ..... 'rn):

S (Wbt (Qu Qv Qo Py ly) + Wi (@1, Qg1 Q) (4.2.1)
Subject to
e, (Q Qv s Qi Fyeenenene ,rn)zl—TC'(Ql’QZ' """" ’Qg’rl' """" M) = TG
2. PQ-B
U (Qy Qe Q) :1_i=15—
0< e (Q, Qyyevnvenee L Qi My )<L, 0 145(Q,Q,,.....Q,) <1
5 =TCy~TC/
Here wand w, are positive weights of TC (Q,Q,,......Q,,l,l,,......,T,) and

budgetary constraints. They are also considered as normalized weights as.
> w+wg =1
i=1

(4.2.1) isequivaent to:
MInV(Q,, Qe Q1 gy 1) =

Zn:(%TCi (S0 N o 1Y 4 S ,rn)+% pQ)

When the Demand follows uniform distribution, using the section 4.1 and
suppressing theterm H, x4 as, it isaconstant we get:

As the first expression of the right hand side of the above expression is
independent of the decision variables so omitting it and using section 3.1.3, we
consider the problem given below to the standard form of signomial geometric
programming problem as:

MinV(Q,,Q,,......, QoMo r,M,M,,...., M,)=
Minz (Cyr, +CuM iZQi _1+C3iQi)

i=1
Subject to
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Cy,M, " —CyM, ' <1
Q,r,M, >0, Vi=12,..... .n.
WH. D.K. W, p
Where, C, =—,C,, =———,C, =—2+,C, =h,C, =1.
T A ey T, T

Clearly, (For i= 1, 2) it is a constrained signomial geometric programming
problem with degree of difficulty 10—-6 —1=3

The dual of the above signomial geometric programming problem for two items
(i.e. for i=1, 2) can be written as:

Maxd(w) =

H((Cll ) | ( 2| )Wz ( 3| )W3 ( 4| )04\W4| ( 5| )ffs\Ws. (i W4jo-4j)f74iW| (iWSjO-Sj )UsiWE)

| 2 3
Where, o,=10,=10y, —ZL o, =1 0'5i ——l, o, =1=o0,(fori=1, 2).
Using section 3.1 we have, fori =1, 2:
W — W, =0, Wy — W, =0, 2W2i — Wy + W =0

2
and (W +wy+wy) =1
i=1

SO, W, =W,
41 - 2W21 + Wll
W5, = Wi,
1-w, —wW, —2w.
W, =Wy, = 11 12 21
2

Wy, =1-w,; — 2w,
Thus d(w)can be expressed in terms of w;,,w,,w,and to determine
Maxd(w) we also get the following equations:

od oo od _ od
oW, oW, OW,,
Now
logd = Z(M(log&wwz.(Iog—z')+w3(log%)wm.(Iogi+logza4,vv4,)
=1 i
C.
+O'5|W5|(|Og +|OgZO-SJW51))
5i
1 od C C
= (lo ¢+— log—2 — Cor +(lo lo 1+ logw,
dow (gwﬂ 2( ng2 w32) (gw4l 9W42) 05 (1+logwg,)

o0, —0,
+ 0-41 |Og(ZO-4IW4J ) 0-42 quZO-4IW4J ) + 0-41W41(M) + 0-42W42( 241 42 )

. . 2 04 ZO'MWM

j=1
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2
+ 0'51(|ng O-SjWSj) + 0-51W51(2L) =0
- 2 OsWs,
=t
LM _ 1032 - L(0gZ2 - 10g=2) - o (1 logn, —— %2 %% _|ogy o, ;) =0
d o, W, 2 Wop W ZO-S_WS_ =
] ]

[E

1d _, G G Cy
=(log—2 2Iogﬁ lo 2+Iogi+lo ) oy, (1+1ogwg,) +
dow, © wy oW, ow,w * '

0,4, —0,
0-41|09Q0-4JW41) 20_42|0qzo-41\/\41,)+20-4lw41( L

)+ 20, Wo( 2-41_0-42 )=0

2110-41\’\/41' ZG4J'W4]
i= =

Using the above ten equations we can easily determine the optimal dual variables
and according to primal-dual relation

V*(Q;’Qz*’rl*rz*!Ml*’Mz*):d(W*)
Where,

. 2 c Moo * Gy o+ Co v’ e+ L2, .
dw) =TI G2y Gy Gy’ Sy (Sw 6, ) (S o)™

HV\L wow w wg ;1‘”‘” ;1%5‘

The optimal values of the decision variables are obtained from the relations
(Fori=1,?2)
C,r =d'w,
C3iQi* = d*W3i*
C2i (Mi*)Z(Qi*)il = d*WZi*

W;

(Mi )7lri =

ZWSj*O-Sj
=
Using these values of Q,Q,,r, r, we can obtain easily the optimal values of
TCi (Ql* ) Qz* ) r]_* ) rz*) fori = 1,2

Solution of Constrained Multi-Objective Inventory Model By Fuzzy Geometric
Programming Technique [FGPT]

We consider the model described in (2.1) and applying the above method when the
Demand follows uniform distribution, using the section 4.1 and suppressing the term
H.u as, it isa constant and also using section 3.2 and section 3.1.3, we proceed and

according to section 3.2.1 we solve:
MaxV (Q,, Q,, 1y, 1) = Wytty (Q, 1) +Wort, (Q,,1)
Subject to
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2.PQ<B
0 for TC,(Q,,r) <L,
1 (Qur)= St for L, <TC, (Q.1) <U,
1 for TC,(Q,,r,) = U,
Vi=1.2.

0< tire (Q, Qi1 15) <1

Q,Q,, 1,1, >0
V@) =W W@QuQun)
1 21122 — — (UI —LI) 17 2171172

Thus the following signomial GPP can be constructed as
MinW(Q,,Q,,r,,r,,M;,M,) =

2
Mi nz (Cyf, +CuM Q™)
i

Subject to

CsiMiil_CmMiilri <1

ZCSiQi <1

i=1

Q,r,M, >0, Vi=12 (4.3.1)

H, DK, P
Where, C, = L _C,= (e C.=—,C,=1C, =b,w, =w,.
T e U M - R R B
Clearly, it is a constrained signomial geometric programming problem with
degree of difficulty 10-6—-1=3
The dua of the above signomial geometric programming problem can be written
as.

2 C:_ﬁ W g c; C;i o Q—, 2 . 2 2

Maxd(w) = [ [EH) )% )3 E) ™ )5 O w,g,)™ O W) O Wo)™™)
g W W W W W = = =1

Where, 0, =1, 0, =-1,0, =1(fori=1, 2).

Using sections 3.1.2A and 3.1.2B we have, fori =1, 2

Wi = Wp;

Wy = Wy

Wy = 2W,; + W,

2
Z W, + W, =1
i=1

Again for Maxd(w) , we have:
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od _0= od _ ad

anl anZ aWZl

1 od :(Iogﬁ—logi—Zlogﬁ+Iogﬁ—logﬁ—l)—aﬂ(HIogwAl)
d anl h1 7) 32 31 52

- 20, o,
+0yl OgQ0-3JV\{’>J ) =20, quzo-3j\l\é] )+ 0-31\’\%1( ) + o, W, 41 42)

Jz_llo?n Wi 20'41 hj

+a4l(logza4jw4.>+ca1 . )++052(Iogzas,vvsj)+amvv51( %5 )=
Z%.WA. Zasjwsj
= j=1
~(og.? Cz_ og%_m C2 _1og™2 42—, (1+1ogw,— 4% __log> o, ;)

d a’\{z W, W, W,

=
2041 WH
=1

2
W. oW,
—20'32(I09203jw3].+ 2 )-8 =),

2

= DOy D OgW

j=1 j=1

o —('09 L 2log = —log "= +log 5 +log " —4)+

d a 21 32 W52 W51 W31

—O, 0,,—0O,
2031'09(203,%,) 2632l09(203,vv3,)+2031w31( T0=%2) 4 26, (8" %%2)

2‘731"‘61 2‘741 hj

0-51

asnogczos,wsj) aszlog(zos,vxgj)wslmel( T 792 _ g, g, (S —02) =0
20-51\’\‘51 20-51'\”51‘
j=L

j=l
Using the above ten equations we can easily determine the optimal dual variables
and according to primal-dual relation

W(Q,Q,,nr M M) =d(w)
Where, *
. 2(;"3‘1(%(; - G G R B I
dw)=][6) G E™E)™ E™QOW a)™ QW a)™ DWwag)™)
il;[w woowow w j;w‘" j;vm J;VM

The optimal values of the decision variables are obtained from the relations
(Fori=1,?2)

Cy ri* = d*Wli*

Cs (Mi*)_l = d*WSi*

Czi M i*)z(Qi*)il = d*WZi*
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N1k W.*
(Mi) == 4I*
D W, 0y
=1
piQi _ W5i
B <& -
D Wy, O,
=1
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Using these values of Q,,Q, ,r, r, we can obtain easily the optimal values of

TCi (Q]_* ) QQ* ’ r]_* y rZ*) fOI’ | =

Solution of Constrained Multi-Objective Inventory Model By Intuitionistic
Fuzzy Geometric Programming Technique [IFGPT]
We consider the model described in (2.1) and applying the method of section 4.1.
Now according to section (3.5) we have to solve the following problem:

MaxV'(Q,, Q,.1,

)= (1(Q1) %, Q1)

Subject to
Z pQ <B
0 for TC,(Qu1) <L*
(QI, I) UiaCC :C;I-Ci(g(l;’ |) for Liacc STCI (Q“ |)<U acc
U™ -L
1 for TC.(Q,r)> U™
Vi=1.2.
0 for TC,(Q,,r)>U,"™
TCi(Q|’|) Lrej rej r
v, Q)= 0L forL,"¥ <TC, (Q,r)<U,™
1 for TC,(Q,r)<L."™
Vi=1.2.
0< /6 (Q.r)<1
OSVTQ(Qi’ri)Sl
Q.Q,,r,r,>0
V’ acc Uirq
(QuQuifil) = <Z<(U =) V@)

Thus using section 3.1.3 as earlier, the following signomia GPP can be

constructed as
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MinW’(Q1’Q21rl’r2’M1’M2)_ MInZ( 1i |+C2| M Q_l)

Subject to

C,M,*-C,Mr <1

ZCSiQiSl

i=1

Q.M 20, Vi=12 (4.4.1)
o~ 1 1 ’ DK, 1 P

Where, C, =H,(—+—),C, = —+-—),C, =—,C, =1C, =h.
i |(Ni NI) 2 2(b al)(N ) 5 B A :L 3

N, = (Uiacc - Liacc)y Ni, = (Uirej - Lirej)-
Clearly, it is a constrained signomial geometric programming problem with
degree of difficulty 10-6—-1=3

The dua of the above signomial geometric programming problem can be written
as.

’V!i ’
_2 g\/\g(\a%%gqﬁ%g%%z @uwz f%wz oW
Maxd - S . e o j“a j i i O3
axd(w) [l[(%) (o o™ o (™ S Sy S
Where, 0, =1, o, =-1,0, =1 (fori=1, 2).

Using the similar method as described in section 4.1 we solve the above problem

and we can easily determine the optimal dual variables and according to primal-dual
relation:

W*(Ql* 1Q2* !rl* rz* ’Ml* 1M2* ) = d(W* )
Where,

d(w )= HH (9 s (S Sy GopS S q,)"”m cg,)%wm @)
Twowow W w

The optimal values of the decision variables are obtained from the relations

(Forl1=1,2)

Cli,ri* =d’ Wli*

’

C3i (Mi* )_l =d’ W3i*
C2i (Mi* )Z(Qi* )_l =d’ W2i*

’ ’ W*,
(Mi )_lri =2 4

Z 0'41
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’

piQi — WSi*
B & -
2 W O
=1
US'”Q these ValUGS of Q ,Q, ,r, r, we can obtain easily the optimal values of
TC@Q Q.1 , )forl =12
Numericals

To solve the model (2.1) and (2.2) we consider the following data:
H,=$9; D;=2400; &,=10; =40; K,=%$11; p, =%$4; H,=$10; D,=2000; a=20;
b,=50; K,=12; p, =$3; B=$12000, ¢, = 50; 0, = 60; 55 = 200.

U =41.22,U9 =41.22 U, _1787 30 U, _1787 30,L,*° =36.43,
L% =38 L, =1687.94 L, =1712.
Table A : Boundary level of decision variables:
' Q I
Lower limit (1) | Upper limit (ug ) | Lower limit (1) | Upper limit (u, )
1 | 400 600 20 50
2 | 300 500 20 50

Table B: Target expenditure of total annual cost (TC;,i =1.2,....n)

i | I, (minvaue of TC, without L. (min value of TC. with TC, =min(l;, L)
tolerance) tolerance)

1| 50.76 61.97 50.76

2 | 1802.56 1843.11 1802.56

Using the above data and section 4.2 and 4.1 the results of TABLE 1 and TABLE
2 are obtained. Similarly using section 3.2, 4.3 and section 3.4, 3.5 and 4.4, the results
of TABLE 3 and TABLE 4 are achieved.

Table 1l : Solution of the model (2.2) by FNLPT

TC,($) [ TC,($) [Q. [Q, | |1, | BUDGET($) | TYPE | WEIGHTS
(W1,W2,Wg)
4376 | 1723.98 | 471 | 372 | 37 | 25 | 9096 | (1/3, 1/3, 1/3)
3443 | 1737.32] 488 | 414 | 29 | 24 | 9147 I (3/5, 1/5, 1/5)
4407 [1738.44 517|417 ]34 ] 28] 9118 1 (1/5, 3/5, 1/5)
43.98 [1714.87 528384 [ 32| 27 | 8089 IV (1/5, 1/5, 3/5)
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Table 2 Solution of the model (2.2) by FGPT

TC.($) [ TC,($) [Q: [Q, | |12 | BUDGET($) | TYPE | WEIGHTS
(W1,W2,Wg)
41.33 [1718.43[489 | 376 | 35| 27 | 9088 | (1/3, 1/3, 1/3)
33.98 [1735.06 | 487 | 409 | 30 | 23 | 9137 I (3/5, 1/5, 1/5)
42.67 [1732.65]519 | 422 [ 3230 ] 9114 1 (1/5, 3/5, 1/5)
41.02 [1711.07 518|393 [ 31| 25| 8076 IV (1/5, 1/5, 3/5)
Table 3: Solution of the model (2.1) by FPT and FGPT
METHOD | TC, ($) | TC,($) | Q1 | Q2 |1 |12 | Aspiration level
FPT 4143 |1741.87 | 418|378 | 37 | 25 | n1=0.812
11,=0.798
FGPT 39.44 |1739.23 (432|391 |31 | 21| u;=0.889
11,=0.801

Table 4 : Solution of the model (2.1) by IFPT and IFGPT

METHOD | TC, ($) | TC,($) | Q1 | Q2. |1 |ro | Aspiration Level
u \

IFPT 30.33 | 1737.21 437|371 |36 | 26 | 11=0.872 | v;=0.073
12=0.863 | v,=0.098

IFGPT 3841 |[1728.45] 428|402 |32 | 23| 11=0.887 | v;=0.071
12=0.899 | v,=0.083

Following observations can be made from the above results:

1.

If we consider TABLE 1 and TABLE 2 separately then it is observed that
when w;=0.6 i.e. more importance is given to TC,, lowest value is obtained in
case of TYPE Il, in comparison to other two TYPES. Similarly for TC, lowest
value is obtained in case of TYPE Il corresponding to the weight
0.6.Similarly for the budget B, minimum value occurs for TYPE 1V,
corresponding to the weight 0.7.

But, if we compare TABLE 1 and TABLE 2 then, the values of TC; and TC,
as well as budget B are more minimized in case of Fuzzy Geometric
Programming Technigue [FGPT] than usual Fuzzy Non-linear Programming
Technique [FNLPT], in al the four types of data.

From TABLE 3 we conclude that, Fuzzy Geometric Programming Technique
[FGPT] obtained more minimized values of TC; and TC, , in comparison to
Fuzzy Programming Technique [FPT].

From TABLE 4 we conclude that, Intuitionistic Fuzzy Geometric
Programming Technique [IFGPT] obtained more minimized values of TC;
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and TC, , in comparison to Intuitionistic Fuzzy Programming Technique
[IFPT].

Two important conditions of Intuitionistic fuzzy Optimization [IFO]
viz.g, >v,  and g +v, <i=12] are aso satisfied from the results of
TABLE 4.

Intuitionistic Fuzzy Geometric Programming Technique [IFGPT] determines
the lowest values of TC; (i=1, 2) and from TABLE 3 and TABLE 4 we
concludethat IFGPT,. <IFPT <FGPT,. <FPT. (i=1,2)

Conclusion

We solve this multi-objective inventory problem with uniform lead-time demand by
fuzzy geometric programming technique. We consider this model with deterministic
constraint and then with a fuzzy constraint. Objective of this paper is to prove that
intuitionistic fuzzy geometric programming aways obtains the better value of the
objective function than the usual fuzzy geometric programming.

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]
[8]
[9]

Abou-El-Ata, M.O., Fergany H.A. and E1- Wakedl M.F. (2003), “ Probabilistic
Multi-item Inventory Model With Varying Order Cost Under Two Restrictions:
A Geometric Programming Approach” Intl. J. Productions Economics, 83: 223-
231.

Banerjee S. and Roy T. K. (2008), “Single and Multi-objective Stochastic
Inventory Problems in Fuzzy Environment”, The Journa of Fuzzy
Mathematics, Vol. 16, No. 4, 875-897.

Banerjee S. and Roy T. K. (2009), “Application of the Intuitionistic Fuzzy
Optimization in the Constrained Multi-Objective Stochastic Inventory Model”
J. Tech, September 2009, Vol. XXXXI, pp. 83-98.

Banerjee S. and Roy T. K. (2010), “Solution of Single and Multi-Objective
Stochastic Inventory Models with Fuzzy Cost Components by Intuitionistic
Fuzzy Optimization Technique” Advances in Operations Research (Accepted).
Banerjee S. and Roy T. K. (2010), “Constrained and Unconstrained Stochastic
Inventory Model with Fuzzy cost components and Fuzzy random variable”, Int.
J. Appl. Math. Stat.; Vol. 19; No. D10; 72-89.

Bellman, R. E. and Zadeh, L. A.(1970), “Decison-making in a fuzzy
environment”, Management Science, 17, B141-B164.

Beightler, G.S. and Phillips, D.T. (1976), “Applied Geometric Programming”,
Willey, New Y ork.

Beightler, G.S. and Phillips, D.T. and Wild, D.J. (1979), “Foundation of
optimization”, Prentice-Hall, Englewood Cliffs, NJ.

Biswa M.P. (1992), “Fuzzy Programming Technique to solve multi-objective
geometric programming problem”, Fuzzy Sets and Systems, 51: 67-71.



212
[10]
[11]

[12]

[13]
[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]

Soumen Banerjee and Tapan Kumar Roy

Cao, B.Y. (1993), “Fuzzy geometric programming ()", Fuzzy Sets and
Systems, 53, 135-153.

Cao, B.Y. (2002), “Fuzzy geometric programming’, Kluwer Academic
Publishers, London.

Das, K., Roy T.K. and Maiti, M. (2000), “Multi-item inventory model with
quantity dependent inventory costs and demand-dependent unit cost under
imprecise objective and restrictions. a geometric programming approach”,
Production Planning and control, 11(8), 781-788.

Duffin, R.J., Peterson, E.L. and Zener, C. (1966), “Geometric Programming
Theory and Applications’, Willey, New Y ork.

Eckar, J. (1980), “Geometric programming methods, computational and
applications’, SIAM Rev., 22, 338-362.

Hariri, A.M.A and Abou-El-Ata, M.O. (1997), “Multi-item EOQ inventory
model with varying holding cost under two restrictions. a geometric
programming approach” ,Production Planning & Control, 8(5), 608-611.

Islam Saidul and Roy T.K. (2004), “An economic production quantity model
with flexibility and reliability consideration and demand dependent unit cost
with negetive degree of difficulty: Geometric Programming Approach”,
Tamsui Oxford Journal of Management Science, Taiwan, vol. 20(1), pp. 01-17.
Jung, H. and Klein, C.M. (2001), “Optimal inventory Plolicies under
decreasing cost functions via geometric programming”, European Journal of
Operationa Research, 132,628-642.

K. Atanassov(1986): “ Intuitionistic fuzzy sets and system”, 20, 87-96.

K. Atanassov , G. Gargov, (1989) “Interval valued intuitionistic fuzzy sets’,
Fuzzy Setsand Systems, Vol. 31, No. 3, 343-349.

K. Atanassov, V. Kreinovich, (1999) “Intuitionistic fuzzy interpretation of
intetrval data’, Notes on Intuitionistic Fuzzy Sets, Vol. 5, No. 1, 1-8.

K. Atanassov (1999) , “Intuitionistic Fuzzy Sets’, Springer Physica-Verlag,
Berlin.

K. Atanassov, “Open problems in intuitionistic fuzzy sets theory”, Proceedings
of 6-th Joint Conf. on Information Sciences, Research Triangle Park (North
Carolina, USA.

Kaufmann, A. and Gupta, M., (1988), “Fuzzy Mathematicad Models in
Engineering and Management Science”, North Holland.

Magji PK., R. Biswas, A.R. Roy, (2001)“Intuitionistic fuzzy soft sets’, The
Journal of Fuzzy Mathematics, Vol. 9, No. 3, 677-692.

Mandal, N.K., Roy, T.K. and Maiti, M. (2005), “Multi-objective Fuzzy EOQ
model with three constraints. A geometric programming approach”, Fuzzy Sets
and Systems, 150(1), 87-106.

Nikolova M., N. Nikolov, C. Cornelis, G.Deschrijver, (2002) “Survey of the
research on intuitionistic fuzzy sets’, Advanced Studies in Contemporary
Mathematics, Vol. 4, No. 2, 127-157.

P.P.Angelov, (1995), “Intuitionistic fuzzy optimization”, Notes on Intutionistic
Fuzzy Sets, 1, 27-33.



A Constrained Stochastic Inventory Model 213

[28]
[29]

[30]

[31]

[32]
[33]
[34]
[35]
[36]
[37]
[38]

P.P.Angelov, (1995), “Intuitionistic fuzzy optimization” , Notes on Intutionistic
Fuzzy Sets, 1(2), 123-129.

P.P.Angelov, (1997): “Optimization in an intuitionistic fuzzy environment”
fuzzy sets and systems 86, 299-306.

Pramanik, S. and Roy, T.K., (2005), “An Intuitionistic Fuzzy goal
programming approach to vector optimization problem”, Notes on Intutionistic
Fuzzy Sets, 11(1), 1-14.

Rizvi S.,, H.J. Nagvi, D. Nadeem. (2002)“Rough intuitionistic fuzzy sets’,
Proceedings of 6-th Joint Conf. on Information Sciences, Research Triangle
Park (North Carolina, USA), March 8-13, 101-104.

Tanaka, H., Okuda, T. and Asai, K. (1974), “On fuzzy mathematical
programming”, Journal of Cybernetics, 3(4), 37-46.

Tiwari, R.N., Dharmar, S. and Rao, J.R. (1987), “Fuuzzy goal programming: an
additive model”, Fuzzy Sets and Systems, 24, 27-34.

Verma R. K. (1990), “Fuzzy geometric programming with several objective
functions’, Fuzzy Sets and Systems, 35: 115-120.

Zadeh, L. A.(1965), “Fuzzy sets’, Information and Control 8, 338-356.

Zener, C. (1971), “Engineering design by geometric programming”, Wiley.
Zimmerman, H. J.(1976), “Description and optimization of fuzzy system”,
International Journal of General Systems, 2, 209-215.

Zimmermann, H.J. (1978), “Fuzzy linear programming with several objective
functions’, Fuzzy Sets and Systems, 1, 46-55.



