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Abstract 
 

A stochastic inventory model with deterministic constraint is analyzed here. 
First time we introduce the application of intuitionistic fuzzy geometric 
programming technique to solve this multi-objective inventory problem with 
uniform lead-time demand. Intuitionistic fuzzy geometric programming 
technique minimizes the expected annual cost more than the fuzzy geometric 
programming technique. Then this model is solved with fuzzy constraint. In 
this case fuzzy geometric programming technique perform better than fuzzy 
non-linear programming technique. Finally, all the numerical results are 
compared and analyzed. 
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Introduction 
Geometric Programming (GP) is an effective method to solve a non-linear 
programming problem. It has certain advantages over the other optimization methods. 
Here, the advantages are that is usually much simpler to work with the dual than 
primal. Degree of Difficulty plays a significant role for solving a non-linear 
programming problem by GP method. Since late 1960, GP has been known and used 
in various fields (like OR, Engineering Sciences etc.). Duffin, Petersen and Zener 
(1966) discussed the basic theories with engineering applications in their books. 
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Another famous book on GP and its application appeared in Beightler and Philips 
(1976). There are many references on application and the methods of GP in the survey 
papers (like Eckar (1980), Beightler et.al. (1979), Zener (1971). Hariri et. al. (1997) 
discussed the multi-item production lot-size inventory model with varying order cost 
under a restriction Jung and Klain (2001) developed single item inventory problems 
and solved by GP method. Ata Fragany and Wakeel (2003) considered some 
inventory problems solved by GP technique. Zadeh (1965) first gave the concept of 
fuzzy set theory. Later on Bellman and Zadeh (1970) used the fuzzy set theory to the 
decision making problem Tanaka (1974) introduced the objective as fuzzy goal over 
the α-cut of a fuzzy constraint set and Zimmerman (1978) gave the concept to an 
inventory and production problem. Banerjee and Roy (2008) discussed the single and 
multi-objective stochastic inventory model in fuzzy environment. Constrained and 
unconstrained Stochastic Inventory Model with Fuzzy cost components and Fuzzy 
random variable was analyzed by Banerjee and Roy (2010). Cao (1993) and his recent 
book (2002) discussed fuzzy geometric programming with zero degree of difficulty. 
Das et. al. (2000) developed a multi-item inventory model with quantity dependent 
inventory costs and demand dependent unit cost under imprecise objective function 
and constraint and solved by GP technique. Roy and Maiti (1997) solved single 
objective fuzzy EOQ model by GP technique. Recently Mondal et. al. (2005) 
developed a multi-objective inventory model and solved it by GP method. A multi-
objective fuzzy economic production quantity model is solved using GP approach by 
Islam and Roy (2004).  
 Intuitionistic Fuzzy Set (IFS) was introduced by K. Atanassov (1986) and seems 
to be applicable to real world problems. The concept of IFS can be viewed as an 
alternative approach to define a fuzzy set in case where available information is not 
sufficient for the definition of an imprecise concept by means of a conventional fuzzy 
set. Thus it is expected that, IFS can be used to simulate human decision-making 
process and any activitities requiring human expertise and knowledge that are 
inevitably imprecise or totally reliable. Here the degree of rejection and satisfaction 
are considered so that the sum of both values is always less than unity (1986). 
Atanossov also analyzed Intuitionistic fuzzy sets in a more explicit way. 
Atanassov(1989) discussed an Open problems in intuitionistic fuzzy sets theory. An 
Interval valued intuitionistic fuzzy sets was analyzed by Atanassov and 
Gargov(1999). Atanassov and Kreinovich(1999) implemented Intuitionistic fuzzy 
interpretation of interval data. The temporal intuitionistic fuzzy sets are discussed also 
by Atanossov[1999]. Intuitionistic fuzzy soft sets are considered by Maji Biswas and  
Roy(2001). Nikolova,  Nikolov, Cornelis and Deschrijver(2002) presented a Survey 
of the research on intuitionistic fuzzy sets. Rough intuitionistic fuzzy sets are 
analyzed by Rizvi,  Naqvi and Nadeem(2002). Angelov (1997) implemented the 
Optimization in an intuitionistic fuzzy environment. He (1995) also contributed in his 
another two important papers, based on Intuitionistic fuzzy optimization. Pramanik 
and Roy (2005) solved a vector optimization problem using an Intuitionistic Fuzzy 
goal programming. A transportation model is solved by Jana and Roy (2007) using 
multi-objective intuitionistic fuzzy linear programming. Banerjee and Roy (2009) 
considered application of the Intuitionistic Fuzzy Optimization in the Constrained 
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Multi-Objective Stochastic Inventory Model. Banerjee and Roy (2010) also discussed 
the solution of Single and Multi-Objective Stochastic Inventory Models with Fuzzy 
Cost Components by Intuitionistic Fuzzy Optimization Technique.  
 A stochastic inventory model with deterministic and then with fuzzy constraint is 
analyzed here. We solve this multi-objective inventory problem with uniform lead-
time demand by intuitionistic fuzzy geometric programming technique. We also 
compare the results solved by Fuzzy Geometric programming technique and it is 
observed that our Intuitionistic Fuzzy Geometric programming always performs better 
than the Fuzzy Geometric programming. 
 
 
Mathematical Model 
Backorder Case: Stockout Cost Per Unit  
Here the policy is to order a lot size Q when the inventory level drops to a reorder 
point r ant it is supposed that the inventory position of an item is monitored after 
every transaction. The demand in any given interval of time is a random variable and 
the expected value of demand in a unit of time, say a year, is D. We let x denote the 
demand during the lead time and f(x) denote its probability distribution. 
 With backorders, there is no loss of sales, since the customer awaits the arrival of 
the order if stock is not available. The expected safety stock is defined as  

  S = ∫ ∫ ∫
∞ ∞ ∞

−=−=−
0 0 0

)()()()( xrdxxxfdxxfrdxxfxr   

 The number of backorders per lead time is zero if x – r < 0 and x – r if x – r > 0. 
The expected number of backorders per lead time is  

  E(x > r ) = ∫
∞

−
r

dxxfrx )()(  

 Here, annual safety stock cost = holding cost + stock out cost 

 i.e.  TC = SH + ∫
∞

−
r

dxxfrx
Q

KD
)()(  

  = H +− )( xr  ∫
∞

−
r

dxxfrx
Q

KD
)()(  

 The following mathematical notations are used: 
 For the ith item:-  
 ri = reorder point in units, 
 Si = safety stock in units, 
 Hi = holding cost per unit of inventory per year, 
 Ki = backordering cost per unit, 
 x = lead time demand in units (a random variable), 
  = average lead time demand in units, 
 x – ri = size of stock out in units 
 pi =  purchasing price of each product 
 TC = expected annual cost of safety stock, 
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 B=total budget 
Multi Objective Stochastic Inventory Model with Deterministic Constraint 
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Multi Objective Stochastic Inventory Model with Fuzzy Constraint 
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 (Here wavy bar ‘~’ indicates “fuzzification” of the parameters). 
 
 
Mathematical Analysis 
Geometric Programming Problem 
Geometric programming (GP) can be considered to be an innovative modus operandi 
to solve a nonlinear problem in comparison with other nonlinear techniques. It was 
originally developed to design engineering problems. It has become a very popular 
technique since its inception in solving nonlinear problems. The advantages of this 
method is that, this technique provides us with a systematic approach for solving a 
class of nonlinear optimization problems by finding the optimal value of the objective 
function and then the optimal values of the design variables are derived. Also. This 
method often reduces a complex nonlinear optimization problem to a set of 
simultaneous equations and this approach is more amenable to the digital computers. 
 GP is an optimization problem of the form: 
  )( 0 tgMin   (3.1) 

 subject to 
  1)( ≤tg j , 

  j = 1, 2, ………, m. 
  1)( =thk ,               k=1, 2, ……….., p 

  0>it ,                    I = 1, 2, ………., n                    

where, )(tg j ( j = 1, 2, ………, m) are posynomial or signomial functions and )(thk       

k=1, 2, ……….., p) are monomials it ( i = 1, 2, ………., n )  are decision variable 

vector of n components it ( i = 1, 2, ………., n ). 

 The problem (3.1) can be written as: 
  )( 0 tgMin  
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subject to 
  1)( ≤′ tg j ,               j = 1, 2, ………, m. 

 t > 0, [since 1)( ≤tg j , 1)( =thk ⇒ 1)( ≤′ tg j  where =′ )((tg j gj(t)/hk(t)) be a 

posynomial(j=1, 2, ………, m ; k=1, 2, ………, p)]. 
 
Posynomial Geometric Programming Problem 
A Primal problem 
  )( 0 tgMin   (3.1.1) 

subject to 
  1)( ≤tg j ,               j = 1, 2, ………, m. 

  ti > 0, (i =1, 2, …………..,n) 

where ∑ ∏
= =

=
j

jki

N

k

n

i
ijkj tctg

1 1

)( α  

here, cjk > 0 and αjki (i=1, 2, ………,n ; k=1, 2, ………, Nj ; j=0, 1, ………,m) are 
real numbers. 
  T=( t1, t2, ………., tn)

T. 
 It is a constrained posynomial primal geometric problem (PGP). The number of 
inequality constraints in the problem (3.1.1) is m. The number of terms in each 
posynomial constraint function varies and is denoted by Nj for each j=0, 1, 2, ……, 
m. 
 The degree of difficulty (DD) of a GP is defined as (number of terms in a PGP) –
(number of variables in PGP)-1. 
 
Dual Problem 
The dual problem of (3.1.1) is as follows: 
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kw                        (normality condition) 

 ∑∑
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0 1

,0α  (i=1, 2, ………, n)       (orthogonality condition) 

 ∑
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0

1
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N

k
jkj ww , 0≥jkw , (i=1, 2, ………,n ; k=1, 2, ………, Nj), .100 =w  

 There are n+1 independent dual constraint equalities and ∑
=

=
m

j
jNN

1

independent 

dual variables for each term of primal problem. In this case  DD=N-n-1. 
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Signomial Geometric Programming Problem 
Primal problem 
 )( 0 tgMin   (3.1.2) 

subject to 
 jj tg δ≤)( ,               j = 1, 2, ………, m. 
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 here, cjk > 0 and αjki 1±=jδ   (j = 2, …..,m)  

 ±=jkδ 1 (k=1, 2, ………, Nj ; j= 1, ………,m) are real numbers. 

 T=( t1, t2, ………., tn)
T. 

 
Dual Problem 
The dual problem of (8.1.1) is as follows: 
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Functional Substitution  
When a non-linear programming problem (NLP) is of the following form: 
  )())(()()( xhxqxfxMiny n+=      x  > 0,  n  > 0. 
 Where, )(xf , )(xq  and )(xh  are single or multi-term functionals of posynomial 
or signomial form. This generalized formulation is not directly solvable using 
geometric programming; however, under a simple transformation it can be changed 
into standard geometric programming form. Let )(xqP =  and replace the above 
problem with the following one: 
  )()()( xhPxfxyMin n+=  
subject to 
  1))((1 ≤− xqP                      
  Px,  > 0. 
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 The rationale  used in constructing the equivalent problem with an inequality 
constraint is based on the following logic. Since )(xy is to be minimized, if )(xq  is 
replaced by P, then it is correct to say that )(xqP ≥ , realizing that in the minimization 
process P will remain as small as possible. Hence  )(xqP =  at optimality. Note that 

)(xh and/or )(xq are permitted to be multiple term expressions and that the optimal 
(minimizing) solution to )(xy is obviously the same as the optimal solution to )(xy . 
 
Fuzzy Non-linear Programming (FNLP) Technique to Solve Multi-Objective 
Non-Linear Programming Problem (MONLP) 
A Multi-Objective Non-Linear Programming (MONLP) or Vector Minimization 
problem (VMP) may be taken in the following form: 
  T

k xfxfxfxM ))(,),........(),(()inf( 21=  

 Subject to },......,2,1)(:{ mforjbororxgRxXx jj
n =≥=≤∈=∈   (3.2.1) 

and    ),....,2,1( niuxl ii =≤≤          

 Zimmermann (1978) showed that fuzzy programming technique could be used to 
solve the multi-objective programming problem. 
 To solve MONLP problem, following steps are used: 
 
Step 1: Solve the MONLP of equation (3.2.1) as a single objective non-linear 
programming problem using only one objective at a time and ignoring the others, 
these solutions are known as ideal solution. 
 
Step 2: From the result of step1, determine the corresponding values for every 
objective at each solution derived. With the values of all objectives at each ideal 
solution, pay-off matrix can be formulated as follows:  
  )(........)()( 21 xfxfxf k  
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 Here kxxx ,......,, 21 are the ideal solutions of the objective functions 

)(),.......,(),( 21 xfxfxf k  respectively. 

  So )}(),.......(),(max{ 21 krrrr xfxfxfU =  

  and   )}(),.......(),(min{ 21 krrrr xfxfxfL =  

 [Lr and Ur be lower and upper bounds of the thr objective functions )(xf r  
),.....,2,1 kr = ] 

 
Step 3: Using aspiration level of each objective of the MONLP of equation (3.2.1) 
may be written as follows: 
 Find x so as to satisfy 
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 rr Lxf ≤~)(          ),........,2,1( kr =           
 Xx ∈   
 Here objective functions of equation (3.2.1) are considered as fuzzy constraints. 
These type of fuzzy constraints can be quantified by eliciting a corresponding 
membership function: 
 0)(( =xf rrμ  or 0→  if rr Uxf ≥)(    

 = )(( xf rrμ   if  rrr UxfL ≤≤ )(  ),........,2,1( kr =  

     =  1              if   rr Lxf ≤)(   (3.2.2) 

 Having elicited the membership functions (as in equation (3.2.2)) )(( xf rrμ  for r 
= 1, 2, …… , k, introduce a general aggregation  function  

 
))).((....,)),.......(()),((()( 2211~ xfxfxfGx kkD

μμμμ =  

 So a fuzzy multi-objective decision making problem can be defined as  
 Max )(~ x

D
μ  

 subject to Xx ∈   (3.2.3) 
 Here we adopt the fuzzy decision as:  
 Fuzzy decision based on minimum operator (like Zimmermann’s approach (1978). 
In this case equation (3.2.3) is known as FNLPM. 
 Then the problem of equation (3.2.3), using the membership function as in 
equation  (3.2.2), (according to addition operator) 

 Max  ∑
=

k

r
rr xf

1

)]([μ   

 Subject to  
 x є X ,   0 ≤ µr [fr(x)]   ≤  1 ,   r = 1, 2, …….., k  (3.2.4) 
 
Step 4: Solve the equation (3.2.4) to get optimal solution. 
We apply Fuzzy Programming Technique to solve MOSIM of section 4 and thus 
according to step 2 Pay-off matrix is formulated as follows: 
 ),( 111 rQTC            ),( 222 rQTC  
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Q
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 Now, U1, L1, U2, L2 (where L1 ≤ ),( 111 rQTC  ≤ U1 and L2 ≤ ),( 222 rQTC ≤ U2 ) are 

identified and ),( 1
1

1
1

1 rQQ = , ),( 2
2

2
2

2 rQQ =  are the ideal solutions of the objective 

functions  ),( 111 rQTC and ),( 222 rQTC  .  

 Here, for simplicity, fuzzy linear membership functions 
1TCμ and 

2TCμ for the 

objective functions ),( 111 rQTC  and ),( 222 rQTC  respectively are identified as follows: 
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Weights in FNLP 
Here, positive weights wr reflect the decision maker’s preferences regarding the 
relative importance of each objective goal fr(x) for r = 1, 2,  ….. , k. These weights 
can be normalized by taking ∑ wi = 1. In the fuzzy non-linear programming the 
decision maker assigns different weights as coefficients of the individual terms in 
simple additive/ product achievement function to reflect their relative importance. 
 To achieve the same objective, suitable inverse weights are assigned to different 
membership functions in the fuzzy non- linear programming FNLPM method. So 
introducing normalized weights in FNLP, using additive operator (3.2.4) becomes,  

 Max  ∑
=

k

r
rrr xfw

1

))((μ  

subject to  
 x є X, 0 ≤ µr(fr(x)) ≤ 1   for r = 1, 2, ……, k 

where          ∑
=

k

r
rw

1

= 1,  0 < rw <1   (for r = 1, 2, …, k) 

 
Fuzzy Geometric Programming Problem 
Multi-objective geometric programming (MOGP) is a special type of a class of 
MONLP problems. Biswal (1992) and Verma(1990) developed a fuzzy geometric 
programming technique to solve a MOGP problem. Here, we have discussed a fuzzy 
geometric programming technique based on max-min and max-convex combination 
operators to solve a MOGP. 
 To solve the MOGP we use the Zimmerman’s technique. The procedure consists 
of the following steps. 
 
Step 1. Solve the MOGP as a single GP problem using only one objective at a time 
and ignoring the others. These solutions are known as ideal solutions. Repeat the 
process k times for k different objectives. Let x1, x2, ………, xk be the ideal solutions 
for the respective objective functions, where 
  xr = (x1

r , x2
r, ………………….,xn

r) 
 
Step 2. From the ideal solutions of Step1, determine the corresponding values for 
every objective at each solution derived. With the values of all objectives at each 
solution, the pay-off matrix of size (k x k) can be formulated as follows: 
 
 



198  Soumen Banerjee and Tapan Kumar Roy 

 

 )(........)()( 21 xfxfxf k  

 

kx

x

x

....

2

1

  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

)(....)()(

................

)(....)()(

)(....)()(

*
21

22*
2

2
1

11
2

1*
1

k
k

kk

k

k

xfxfxf

xfxfxf

xfxfxf

 

 

 
Step 3. From the Step 2, find the desired goal Lr and worst tolerable value Ur of fr(x), 
r = 1, 2, …….., k as follows: 
 Lr ≤ fr ≤ Ur , r = 1, 2, …….., k 
 Where, Ur = max {fr(x

1), fr(x
2),…….,fr(x

k) } 
 Lr = min {fr(x

1), fr(x
2),…….,fr(x

k) } 
 
Step 4. Define a fuzzy linear or non-linear membership function µr [fr(x)] for the r-th 
objective function fr(x),  r = 1, 2, …….., k 
 µr [fr(x)] =  0 or → 0  if fr(x) ≥ Ur 
 =  dr(x)        if Lr ≤ fr(x) ≤ Ur (r = 1, 2, …… , k)                                      
 =  1 or → 1 if  fr(x) ≤ Lr   
 Here dr(x) is a strictly monotonic decreasing function with respect to fr(x). 
 
Step 5. At this stage, either a max-min operator or a max-convex combination     
operator can be used to formulate the corresponding single objective optimization 
problem. 
 
Formulation of Intuitionistic Fuzzy Optimization [IFO] 
When the degree of rejection (non-membership) is defined simultaneously with 
degree of acceptance (membership) of the objectives and when both of these degrees 
are not complementary to each other, then IF sets can be used as a more general tool 
for describing uncertainty. 
 To maximize the degree of acceptance of IF objectives and constraints and to 
minimize the degree of rejection of IF objectives and constraints, we can write: 
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 Where )(Xiμ denotes the degree of membership function of )(X to the thi IF sets 

and )(Xiν  denotes the degree of non-membership (rejection) of )(X  from the thi IF 

sets. 
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An Intuitionistic Fuzzy Approach for Solving MOIP with Linear Membership 
and Non-Membership Functions 
To define the membership function of MOIM problem, let acc

kL and acc
kU  be the 

lower and upper bounds of the thk objective function. These values are determined as 
follows: Calculate the individual minimum value of each objective function as a 
single objective IP subject to the given set of constraints. Let **

2
*

1 ,......, kXXX  be the 

respective optimal solution for the k different objective and evaluate each objective 
function at all these k optimal solution. It is assumed here that at least two of these 
solutions are different for which the thk objective function has different bounded 

values. For each objective, find lower bound (minimum value) acc
kL and the upper 

bound (maximum value) acc
kU . But in intuitionistic fuzzy optimization (IFO), the 

degree of rejection (non-membership) and degree of acceptance (membership) are 
considered so that the sum of both values is less than one. To define membership 
function of MOIM problem, let rej

kL  and rej
kU be the lower and upper bound of the 

objective function )(XZ k  where acc
kL ≤ rej

kL ≤ rej
kU ≤ acc

kU . These values are 

defined as follows: 
 The linear membership function for the objective )(XZk  is defined as: 
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Figure-1 : Membership and non-membership functions of the objective goal 
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Lemma: In case of minimization problem, the lower bound for non-membership 
function (rejection)) is always greater than that of the membership function 
(acceptance). 
 Now, we take new lower and upper bound for the non-membership function as 
follows: 
  )( acc

k
acc

k
acc

k
rej

k LUtLL −+= where 10 << t  

  )( acc
k

acc
k

acc
k

rej
k LUtUU −+= for 0=t  

 Following the fuzzy decision of Bellman-Zadeh [2] together with linear 
membership function and non-membership functions of (3.5.1) and (3.5.2), an 
intuitionistic fuzzy optimization model of MOIM problem can be written as: 
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 The problem of equation (3.5.3) can be reduced following Angelov (1997) to the 
following form: 
  Max βα −   
 Subject to 
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 Then the solution of the MOIM problem is summarized in the following steps: 
 
Step 1. Pick the first objective function and solve it as a single objective IP subject to 
the constraint, continue the process K-times for K different objective functions. If all 
the solutions (i.e.  n),1,2,......j ;,.....,2,1(...... **

2
*

1 ===== miXXX k  same, then one 

of them is the optimal compromise solution and go to step 6. Otherwise go to step 2. 
However, this rarely happens due to the conflicting objective functions. 
 Then the intuitionistic fuzzy goals take the form 
  )(XZk kk XL *)(~≤ .,.......,2,1 Kk = ,    

 
Step 2. To build membership function, goals and tolerances should be determined at 
first. Using the ideal solutions, obtained in step 1, we find the values of all the 
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objective functions at each ideal solution and construct pay off matrix as follows: 
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Step 3. From Step 2, we find the upper and lower bounds of each objective for the 
degree of acceptance and rejection corresponding to the set of solutions as follows: 
  acc
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 For linear membership functions, 
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Step 4. Construct the fuzzy programming problem of equation (3.5.3) and find its 
equivalent LP problem of equation  (3.5.4). 
 
Step 5. Solve equation (3.5.4) by using appropriate mathematical programming 
algorithm to get an optimal solution and evaluate the K objective functions at these 
optimal compromise solutions 
 
Step 6. STOP. 
Solution of Different Models 
 
Stochastic Model: Demand follows Uniform distribution  
We assume that demand for the period for the ith item is a random variable which 
follows uniform distribution and if the decision maker feels that demand values for 
item i below ai or above bi are highly unlikely and values between ai and bi are equally 
likely, then the probability density function fi(x) are given by:  
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 Where, 
2

ii
i

ba +
=μ . 

 
Solution of Multi-objective Stochastic Inventory Model with fuzzy constraint by 
Geometric   Programming Technique 
The model (2.2) can be formulated as an equivalent non-linear programming problem 
following Bellman and Zadeh(1970), Tiwari, Dharmar and Rao(1987) as: 
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 Here iw and Bw  are positive weights of ),......,,,,......,,( 2121 nni rrrQQQTC and 

budgetary constraints. They are also considered as normalized weights as: 
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(4.2.1) is equivalent to: 
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 When the Demand follows uniform distribution, using the section 4.1 and 
suppressing the term iiH μ  as, it is a constant we get:   
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 As the first expression of the right hand side of the above expression is 
independent of the decision variables so omitting it and using section 3.1.3, we 
consider the problem given below to the standard form of signomial geometric 
programming problem as: 
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 Clearly, (For i= 1, 2) it is a constrained signomial geometric programming 
problem with degree of difficulty 10 – 6 – 1= 3 
 The dual of the above signomial geometric programming problem for two items 
(i.e. for i=1, 2) can be written as: 
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 Where, ,11 =iσ ,12 =iσ ,13 =iσ ,14 =iσ ,15 −=iσ 21 1 σσ == (for i=1, 2). 

 Using section 3.1 we have, for i = 1, 2: 
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 Using the above ten equations we can easily determine the optimal dual variables 
and according to primal-dual relation 
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 The optimal values of the decision variables are obtained from the relations 
 (For i =1, 2) 
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 Using these values of *
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Solution of Constrained Multi-Objective Inventory Model By Fuzzy Geometric 
Programming Technique [FGPT] 
We consider the model described in (2.1) and applying the above method when the 
Demand follows uniform distribution, using the section 4.1 and suppressing the term 

iiH μ  as, it is a constant and also using section 3.2 and section 3.1.3, we proceed and 

according to section 3.2.1 we solve: 
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 Thus the following signomial GPP can be constructed as 
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 Clearly, it is a constrained signomial geometric programming problem with 
degree of difficulty 10 – 6 – 1= 3 
 The dual of the above signomial geometric programming problem can be written 
as: 
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 Where, 13 =iσ ,  14 −=iσ , 15 =iσ (for i=1, 2). 

 Using sections 3.1.2A and 3.1.2B we have, for i = 1, 2: 
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 Again for )(wMaxd , we have: 
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 Using the above ten equations we can easily determine the optimal dual variables 
and according to primal-dual relation 
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 The optimal values of the decision variables are obtained from the relations 
 (For i =1, 2) 
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Solution of Constrained Multi-Objective Inventory Model By Intuitionistic 
Fuzzy Geometric Programming Technique [IFGPT] 
We consider the model described in (2.1) and applying the method of section 4.1. 
Now according to section (3.5) we have to solve the following problem:  
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 Thus using section 3.1.3 as earlier, the following signomial GPP can be 
constructed as 
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 Clearly, it is a constrained signomial geometric programming problem with 
degree of difficulty 10 – 6 – 1= 3 
 The dual of the above signomial geometric programming problem can be written 
as: 
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 Where, 13 =iσ ,  14 −=iσ , 15 =iσ  (for i=1, 2). 

 Using the similar method as described in section 4.1 we solve the above problem 
and we can easily determine the optimal dual variables and according to primal-dual 
relation: 
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 The optimal values of the decision variables are obtained from the relations 
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 Numericals 
 To solve the model (2.1) and (2.2) we consider the following data: 
 1H =$9; D1=2400; a1=10; b1=40; 1K =$11; =1p $4; 2H =$10; D2=2000; a2=20; 

b2=50; 2K =12; =2p $3; B=$12000, .200;60;50 21 === Bδδδ   
 22.411 =accU , 22.411 =rejU , 30.17872 =accU , 30.17872 =rejU , ,43.361 =accL

381 =rejL , 94.16872 =accL , 17122 =rejL . 

 
Table A : Boundary level of decision variables: 

 
i  

iQ  ir  

 Lower limit (
iQl ) Upper limit (

iQu ) Lower limit (
ir

l ) Upper limit (
ir

u ) 

1 400 600 20 50 
2 300 500 20 50 

 
Table B: Target expenditure of total annual cost ( ),....2,1,0 niTC i =  

 
i il (min value of iTC without 

tolerance) 
iL (min value of iTC with 

tolerance ) 

),min(0 iii LlTC =  

1 50.76 61.97 50.76 
2 1802.56 1843.11 1802.56 
 
 
 Using the above data and section 4.2 and 4.1 the results of TABLE 1 and TABLE 
2 are obtained. Similarly using section 3.2, 4.3 and section 3.4, 3.5 and 4.4, the results 
of TABLE 3 and TABLE 4 are achieved. 

 
 

Table 1  : Solution of the model (2.2) by FNLPT 
 

TC1
*($) TC2

*($) Q1 Q2 r1 r2 BUDGET($) TYPE WEIGHTS 
(w1,w2,wB) 

43.76 1723.98 471 372 37 25 9096 I (1/3, 1/3, 1/3) 
34.43 1737.32 488 414 29 24 9147 II (3/5, 1/5, 1/5) 
44.07 1738.44 517 417 34 28 9118 III (1/5, 3/5, 1/5) 
43.98 1714.87 528 384 32 27 8089 IV (1/5, 1/5, 3/5) 
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Table 2 Solution of the model (2.2) by FGPT 
 

TC1
*($) TC2

*($) Q1 Q2 r1 r2 BUDGET($) TYPE WEIGHTS 
(w1,w2,wB) 

41.33 1718.43 489 376 35 27 9088 I (1/3, 1/3, 1/3) 
33.98 1735.06 487 409 30 23 9137 II (3/5, 1/5, 1/5) 
42.67 1732.65 519 422 32 30 9114 III (1/5, 3/5, 1/5) 
41.02 1711.07 518 393 31 25 8076 IV (1/5, 1/5, 3/5) 

 
 

Table 3 : Solution of the model (2.1) by FPT and FGPT 
 

METHOD TC1
*($) TC2

*($) Q1 Q2 r1 r2 Aspiration level 
FPT 41.43 1741.87 418 378 37 25 μ1=0.812 

μ2=0.798 
FGPT 39.44 1739.23 432 391 31 21 μ1=0.889 

μ2=0.801 
 
 

Table 4 : Solution of the model (2.1) by IFPT and IFGPT 
 

METHOD TC1
*($) TC2

*($) Q1 Q2 r1 r2 Aspiration Level 
μ ν 

IFPT 39.33 1737.21 437 371 36 26 μ1=0.872 
μ2=0.863 

ν1=0.073 
ν2=0.098 

IFGPT 38.41 1728.45 428 402 32 23 μ1=0.887 
μ2=0.899 

ν1=0.071 
ν2=0.083 

 
 
 Following observations can be made from the above results: 

1. If we consider TABLE 1 and TABLE 2 separately then it is observed that 
when w1=0.6 i.e. more importance is given to TC1, lowest value is obtained in 
case of TYPE II, in comparison to other two TYPES. Similarly for TC2 lowest 
value is obtained in case of TYPE III corresponding to the weight 
0.6.Similarly for the budget B, minimum value occurs for TYPE IV, 
corresponding to the weight 0.7. 

2. But, if we compare TABLE 1 and TABLE 2 then, the values of TC1 and TC2 
as well as budget B are more minimized in case of Fuzzy Geometric 
Programming Technique [FGPT] than usual Fuzzy Non-linear Programming 
Technique [FNLPT], in all the four types of data. 

3. From TABLE 3 we conclude that, Fuzzy Geometric Programming Technique 
[FGPT] obtained more minimized values of TC1 and TC2 , in comparison to  
Fuzzy  Programming Technique [FPT]. 

4. From TABLE 4 we conclude that, Intuitionistic Fuzzy Geometric 
Programming Technique [IFGPT] obtained more minimized values of TC1 
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and TC2 , in comparison to Intuitionistic Fuzzy  Programming Technique 
[IFPT]. 

5. Two important conditions of Intuitionistic fuzzy Optimization [IFO] 
viz. ii νμ >   and ]2,1[1 =<+ iii νμ  are also satisfied from the results of 

TABLE 4. 
6. Intuitionistic Fuzzy Geometric Programming Technique [IFGPT] determines 

the lowest values of TCi (i=1, 2) and from TABLE 3 and TABLE 4 we 
conclude that 

iiii TCTCTCTC FPTFGPTIFPTIFGPT <<< (i=1, 2) 

 
 
Conclusion 
We solve this multi-objective inventory problem with uniform lead-time demand by 
fuzzy geometric programming technique. We consider this model with deterministic 
constraint and then with a fuzzy constraint. Objective of this paper is to prove that 
intuitionistic fuzzy geometric programming always obtains the better value of the 
objective function than the usual fuzzy geometric programming.  
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