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Abstract

The geometry of flow of a dusty viscous conducting fluid between a non-
torsional oscillating parallel plate and a long wavy wall in an anholonomic
coordinate system has been studied. The velocity distribution of fluid and dust
for different pressure gradients is obtained analytically. The effect of strength
of magnetic field on velocity profiles at fixed time has been discussed with the
help of graphs. Finally the skin fraction at the boundaries is calculated.

Keywords: Frenet frame field system; non-torsional oscillating plate, long
wavy wall, conducting dusty fluid; velocity of dust phase and fluid phase,
magnetic field, laminar flow, skin friction.

AMS Subject Classification (2000): 76T10, 76T15;

Introduction

The study of the flow of dusty fluids has attracted many researchers to his
applications in the fields of fluidization, combustion, use of dust in gas cooling
systems, centrifugal separation of matter from fluid, petroleum industry, purification
of crude oil, electrostatic precipitation, polymer technology, high-energy solid rocket
propellant, fluid-droplet sprays, the electro static precipitation of dust, blood flow
fluid droplets sprays and so on.

The importance of study of fluids having non-conducting fine dust particles was
traced out by many mathematicians. In 1962 Saffman [16] has given the equations
describing the motion of gas containing the small dust particles. On basis of these
equations Rossow [15] studied the flow of a viscous, incompressible and electrically
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conducting fluid in presence of an external magnetic field due to the impulsive motion
of an infinite flat plate.

Srinivasacharya, G.Radhakrishnamacharya and Ch.Srinivasulu [19] has discussed
the effects of wall properties on peristaltic transport of a dusty fluid, Liu [11], Michael
and Miller [13] have studied the flow produced by the motion of an infinite plane in a
steady fluid occupying the semi-infinite space above it. A.Eric et al. [5] has studied
the quantitative assessment of steady and pulsatile flow fields in a parallel plate flow
chamber. Thierry Feraille et al. [17] discussed the channel flow induced by wall
injection of fluid and particles.

During the second part of the 20th century, some researchers like Kanwal [10],
Truesdell [18], Indrasena [9], Purushotham [14], Bagewadi and Gireesha [1], [2] have
applied differential geometry techniques to investigate the kinematical properties of
fluid flows in the field of fluid mechanics. Further, recently the authors [6], [7], have
studied two-dimensional dusty fluid flow in Frenet frame field system. The paper
deals with the study of flow of an electrically conducting viscous incompressible fluid
which suspended non-conducting small spherical dust particles between a non-
torsional oscillating plate and a long wavy wall. The flow is due to the presence of a
uniform transverse magnetic field, non-torsional oscillations of the plate and time
dependent pressure gradient. Initially it is assumed that both the conducting fluid and
the non-conducting dust particles are to be at rest. Applying Laplace transform
technique, the velocity fields for fluid and dust particles have been obtained. Also the
skin friction at both the walls has been calculated. Finally the graphs are plotted for
different values of Hartmann number and number density.

Equations of Motion
The modified Saffman’s [16] equations for the conducting dusty gas and non-
conducting dust particle are:

For fluid phase

(2.1) V-u=0
(Continuity)

(2.2) Z—Ltl+(1_i-V)17=—p"1Vp+vV2ﬁ+k7N(ﬁ—ﬁ)+%(fx B)
(Linear Momentum)

For dust phase

(2.3) V- =0

(Continuity)

(2.4) TH@ V=2 - D)
(Linear Momentum)

We have following nomenclature:
u - velocity of the fluid phase, v - velocity density of dust phase, p - density of the
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gas, p - pressure of the fluid, N - number of density of dust particles, v - Kinematic
viscosity, K = 6émau - Stoke’s resistance (drag coefficient ), a - spherical radius of
dust particle, m - mass of the dust particle, u - the co-efficient of viscosity of fluid
particles, t - time and fand B- given by Maxwell’s equations and Ohm’s law, namely,
(2.5) VxH=4n],VxB=0,VXE =0,] =c[] + 4 x B]

Here H - magnetic field,f- current density, B- magnetic Flux, E - electric field.

It is assumed that the effect of induced magnetic fields produced by the motion of
the electrically conducting gas is negligible and no external electric field is applied.
With those assumptions the magnetic field J x B of the body force in (2.2) reduces
simply to —aB31 where B, - the intensity of the imposed transverse magnetic field.

Frenet Frame Field System

Let 3,7, b be triply orthogonal unit vectors tangent, principal normal, binormal
respectively to the spatial curves of congruence’s formed by fluid phase velocity and
dusty phase velocity lines respectively as shown in the figure-1.

Ah

N

m.v

=

Figure 1: Frenet Frame Field System.

Geometrical relations are given by Frenet formulae [3]

95, - on _ 3 ab _

as s ds Ts Yas Tsn,

aﬁ ) = 65 N a§ [

5, = ks, —05 8,5 = —on,b — k,n,
aE "— a"_i "> a§ " — "
%zkb S,—bZ—O'b S,ab—O'bn kbb,
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where %,aa—nand % are the intrinsic differential operators along fluid phase velocity

(or dust phase velocity) lines, principal normal and binormal. The functions
(kg, kn, kp) and (z4, 0 5, oy, )are the curvatures and torsions of the above curves and
6,s and 6,.are normal deformations of these spatial curves along their principal
normal and binormal respectively.

Formulation and Solution of the Problem
Consider a flow of an unsteady viscous incompressible, dusty fluid between a non-
torsional oscillating plate and a long wavy wall as shown in the figure-2. Both the
fluid and the dust particle clouds are supposed to be static at the beginning. The
number density of the dust particles is taken as a constant throughout the flow and
these are assumed to be spherical in shape, uniform in size and electrically non-
conducting. The flow is due to magnetic field of uniform strength B,, non-torsional
oscillations of the plate and under the influence of time dependent pressure gradient.
Under these assumptions the flow will be a parallel flow in which the streamlines are
along the tangential direction and the velocities are varies with binormal direction and
time ¢, since we extended the fluid to infinity in the principal normal direction.

For the above described flow the velocities of fluid and dust phase are of the form

U =uS, v = vSs.

where (us, u,, up)and (vg, v, vy)are velocity components of fluid and dust
particles respectively.

Figure 2: Geometry of the flow.

By virtue of system of equations (3.1) the intrinsic decomposition of equations
(2.2) and (2.4) give the following forms

dus _ _10p [62us

(4.1) Fr p 0s ob2

kN
- Crus] + T(US - us) — Eug,
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10 n 0 Jus k" Ous

(4.2) 2ulk, = —-—”+v[z 2k S ]
(43) 0= _;E + v[usksrs],

vy k
(4.4) === (ug — ),
(4.5) 202k, = 0,
where E = 228 and C, = k% + o2 + kY + o1, + K1} is called curvature number
[2].

From equation (4.5) we see that v2k, = 0 which implies either v, = 0 or k, = 0.
The choice v = 0 is impossible, since if it happens then ug = 0, which shows that the
flow doesn’t exist. Hence k, = 0, it suggests that the curvature of the streamline
along tangential direction is zero. Thus no radial flow exists.

Let us consider the following non-dimensional quantities,

tu ph? s
* S ’

* ush * - —_
2P ~ vz’ )

— —Ush g _
W= =S =

where U is the characteristic velocity and # is the characteristic length.
Using the above non-dimensional quantities we get the non-dimensionalised form
of the equations are as follows

h 42
dus _ 9p | g0 Us h3Cr
(4.6) at as+ ab2 Re + (US us) — Mus,

(4.7 B = e (e — ),

2
where Re = Uh/v is the Reynold’s number, and M = % is the Hartmann number,

a = a*/h is the non-dimensional amplitude parameter and g = f*h is the non-
dimensional frequency parameter.

Initial condition: att =0, u; = 0,v, =0

(4.8) Boundary condition for t > 0,u; = f(t),atb =0
and uy, = —asin(t + B),atb =1 —€ecost
where € is a constant.

We define Laplace transformations of ug and v, as
(4.9) Us = fooo e *t udtand V, = foooe‘xt vedt,

By applying Laplace transform to the equations (4.6) and (4.7) one can obtains

h d?Us  h3cC, h?1
(4.10) xUg —P(x)+R 02— Re U5+E(VS—US)—MUS,
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h2
(4.11) XV = 2 (Us — 1)),

where [ = mTN and 7 = % Equation (4.11) implies

hZ
—U
(h24+xUT) S’

(4.12) Vs =

Eliminating V; from (4.10) using (4.12) we obtain the following equation

(4.13) a US—Q Us = — =2 P(x),
2 = p2g, 4 MR 2R (g PR
where Q“ = h“C, + +—(1 (er+h2))'

Case 1: Impulsive Motion

Suppose —g—f = py6(t), is imposed on the flow and f(t) = uy6(t), where p, and u,
are constant and &(t) is the Dirac delta function. Now, solving the equation (4.13)
with the boundary conditions (4.8), one can obtain the fluid and dust phase velocities
as follows,

_ ugsinh[(by—b)X4] 2hUGT oo o . (rln[(bz—b)xl])
$ ™ sinh(byXy) Reb? Y =o(—1)™ 1y sin

2

e*3t(h?+x3 U'[)2 e*4t(n? +x4UT)2
x3[(h2+x3UT)2+1h*] x4 [(h2+x4,UT)2+1h*]

kysint—kq cost 2ham b
B [ (C2+D2) ] Reb? Zr=o(=D)" 1y sm( )

e*3t(h2+x; U‘L')2 (cos B+x3sinB) = e*+t(n? +x4U‘c) (cos B+x4sin B)
(x2+1)[(h2+x3UT)2+1h*] (x2+1)[(h2+x4UT)2+1h*]

__ Repo [sinh(bX1)+sinh[(b2 —b)Xl]—sinh(bzXl)]
hx? sinh(b,X;)

2 2
_ 2po Z [( 1)r— 1] sin (rlrtb) e*3t(h2+x3U1) e*4t(h2+x,Ut)
= b, x3[(R2+x3UT)2+1h%]  x4[(h24+x,UT)2+1h4]

_ 8Dug 51nh[(b2—b)X1] 2h3ugym
s sinh(b,X1) Reb?

[ e*3t(h?+x3Ut) e*4t(h?+x,Ut) l

. . (r1m[(ba—Db)X4]
B =0(= 1) ry sin (FPERR)

x3[(h2+x3UT)2+1h*] x4[(h2+x4UT)2+1h*]

L, sint—Lq cost 2h2am
2 2 1 )
[(CZ+DZ)(h4+r2u2)] Reb?Z Yr=o(=1)"1 Sm(

>)

Iex3t(h2 +x3Ut) (cosB+xszsinB) | e**t(h?+x,Ut) (cospB+xysin B)l

(x2+1)[(h2+x3UT)2+1h*] (x2+1)[(h2+x4UT)2+1h*]

__ Repo [sinh(bX1)+sinh[(b2 —b)Xl]—sinh(bzXl)]
hx? sinh(b,X;)
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_ 2poh? oo [(—1)’"1—1] sin (rlnb) e*3t(h?+x3Ut) n e*4t(n?+x,Ut)
T =0 6] x3[

b, (h2+x3UT)2+1h*]  x4[(h2+x,UT)2+1h*]

Shearing Stress (Skin Friction): The Shear stress at the boundaries b = 0 and
b =1 -€cost are given by

2 2
D = —uoXy cosh[(bX))] = 2huem?ry | e*3t(h?+x3UT) e*4t(h2+x,Ut)
0~ sinh(b,X;) Reb3 | x3[(h2+x3UT)2+1h*] ' x4[(h2+x,UT)2+1h4]

, 2
kj sintki, cost 2han? e*3t(h?+x3UT)" (cos f+x3sin B)
(C2+D?) Reb3 (x2+1)[(h2+x3UT)2+1h*]

ex4t(h2 +x4 U'[)2 (cos B+xysin B)] Repg [1—cos h(bzXl)]
(x2+1)[(h2+x4UT)2+1h*] hX, sinh(b,X;)

__ 2P0 Zrl 0[1 _ ( l)rl] [ e*3 (h2+x3U7_—) n 3x4t(h2+X4U‘L') ]

x3[(hW24+x3UT)2+1h%]  x4[(h2+x,UT)2+1h4]|

—UgX; 2hu0n , e*3t(h? + x3UT)?
D1 == 2 Z( 1) ! rl 2 2 4
51nh(b2X1) Reb3 x3[(h? + x3UT)? + Lh*]

ex4t(h2+x4UT) = k;'sintk{! cost 2han?r} e*3t(h2+x3 Ur)2 (cos B+x5 sin B)
x4[(R2+x,UT)2+1h%] (C?+D?) Reb? (x2+1)[(h2+x3UT)2+1h*]

ex4t(h2 +x4 U'[)2 (cos B+xysin B)] Repg [1—cos h(bzXl)]
(x2+1)[(h2+x4UT)2+1h*] hX, sinh(b,X;)

_ 2po Zrl 0[1 — (=1)"] [ e 3t(h2+x3U‘c) X4t (h2 42, UT) ]

x3[(h2+x3UT)2+1h%]  x4[(h2+x,UT)2+1R4] |

Case 2: Transition Motion: Suppose _Z_Z: poH(t)e ™t where p, and A, are

constants and H(t) is the Heaviside unit step function. By Solving the equation (4.13)
when subject to the boundary conditions (4.8), with £(t) = uyH(t)e *1t,

For this case one can obtain the expressions for both fluid and dust velocities as

H(®)uge Mtsinh[(b,—b)Y]  2hugm r . (rimby
= : — Y —o(—=1)™ 7y sin
sinh(b,Y) Rebj 1 b,
e*3t(h?+x3 U'[)2 e*4t(n? +X4U‘L')2
(X3 +Al)[(h2 +Xx3 UT)2+lh4] (x4+)»1)[(h2+x4U‘E)2+lh4]
ko sint—k, cos t] 2harn [47)
- 1) 7y sin
[ (C2+D2) RebZ 27"1 O( ) 1

e*3t(h2+x; U‘L')2 (cos B+x3sinB)  e*+t(n? +x4U‘c) (cos B+x4sin B)
(x2+1)[(h2+x3UT)2+1h*] (x2+1)[(h2+x4UT)2+1h*]

_ Repge Mt [sinh(bY)+sinh[(bz —b)Y]-sinh(b, Y)]
hy sinh(b,Y)

2 2
_ 2po Z [( 1)71- 1] sin (rlnb) e*3t(h?+x3Ut) e*4t(h?+x,4Ut) s
n= by J |x3[(h2+x3U01)2+1h*]  x4[(h2+x,UT)2+1h*]
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ug h2e~Mtsinh[(b,—b)Y 2h3ugm . (rTm
v = ey herg Sri-o(~ 1" sin ()
(h2—=A4tU)sinh(b,Y) Rebs 1 b,
e*3t(h?+x3Ut) e*4t(h?+x,Ut)
(X3+Al)[(h2+X3UT)2+lh4] (x4+211)[(h2+x4UT)2+lh4]
L, sint—L4 cost 2h%am b
2 2 1
—ah ] + Ditr sm( )
(C2+D%)(h*+72U?) Reb? Zrl o(=D"n b,

e*3t(h?+x3Ut) (cosP+xzsinB) | e*4t(h?+x,Ut) (cospP+x,sinp)
(x2+1)[(h2+x3UT)2+1h*] (x2+1)[(h2+x4UT)2+1h*]

Repg he M1t [sinh(bY)+sinh[(b2 —b)Y]-sinh(b, Y)]

(h2-2,7U) sinh(b,Y)
2poh? yoo [(—1)“—1] sin (rlrtb) e*3t(h2+x3UT) e*4t(n?+x,Ut)
= 1 b, x3[(R2+x3UT)241h4]  x4[(W24x,UT)2+1R4]|

Case 3: Periodic Motion for a Finite Time: In this case, we take —Z—Z = po sin(at)

and f(t) = u, sin(at), where p, and u, are constants. Now one obtains the velocity
profiles for both fluid and dust phase as, we obtain the fluid and dust phase velocities
as

2hugmat oo r . r17Th
u ks sin(at) + k4 cos(at —o(—1)" 7 sin
S C +DZ[ 3 ( ) 4 ( )] Reb% Zrl_o( ) 1 b,
ex3t(h2+x3UT)2 ex4t(h2+x4UT)2
(x3+a?)[(h2+x3UT)2+1h*] (xa+a?)[(h2+x4,UT)2+1h*]
kysint—kq cost 2ham b
- 1
[ (C2+D?) ] Reb2 Zr=o(=1)"ny sm( )

e*3t(h2+x; U‘L')2 (cos B+x3sinB) = e*+t(n? +x4U‘c) (cos B+x4sin B)
(x2+1)[(h2+x3UT)2+1h*] (x2+1)[(h2+x4UT)2+1h*]

Repy [k7 sin(at)+kg cos(at)
hY sinh(b,Y)

2 2
2P0 oo (-1)"1-1] . (rimb e*3t(h2+x3Ut) e*4t(h2+x,Ut)
- sin
1 T b, x3[(h2+x3UT)2+1h*]  x4[(h2+x,UT)%2+1h*]

v = uohz
S 7 (C2+D2)(h*+a2U?%12)

h3 b
_2 ¥ _o(—1)" 7y sin (rlbn )

[kg sin(at) — kq cos(at)]

Reb?
e*3t(h?+x3Ut) e*4t(h?+x,Ut)
(x3+a)[(h2+x3UT)2+1h*] (xg+a@)[(h2+x,UT)2+1h*]
k,sint—kq cost 2h2%an rimh
- 1
[ (C2+D2) ] Reb2 Zr=o(=D"n sm( 2 )

e*3t(h?+x3Ut) (cosP+xzsinB) | e*4t(h?+x,Ut) (cospP+x,sinp)
(x2+1)[(h2+x3UT)2+1h*] (x2+1)[(h2+x4UT)2+1h*]
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. Repo[ k11 sin(at)—kq, cos(at) ]
(c2+D?)(y2+22)(h*+a?72U?)

_ 2poa yo [(—1)r1—1] sin (rlnb) e*3t(h?+x3Ut) e*4t(h2+x4Ut)
n= o) b, (x3+a?)[(h24+x3UT)2+1h4]  (xa+a?)[(h2+x,UT)2+1h4]|
where
Eh? MRe
M=—,X, = [h2C, +——,b2 =1—€cost,a; = Reb?tU,

U h
a, = h3C,tU b3 + MRebitU + Re b2h? + Relh?b? + rin?htU,

—az+ ’a 4(11(13
as = h®C.b% + MReb3h? + rim?h3, x5 = A et

2(11

_ —az—\,az 4aiaz hZC n e+ RelhtU

X4 = V1= (h2+72U2)’

2 _Re+ RelhtU yit y1+21 Y1t 3’1+Z1
T (h2+72U2)’

A = sinh(y,b) cos(z,b), B = cosh(y,b) sin(z,b), C = sinh(y,b,) cos(z,b,)
D = cosh (y,b,) sin(z,b,), k; = —cos B(BC — AD) + sin B(AC + BD),
kz = COSﬁ(AC + BD) - Slnﬁ(BC - AD) 'Ll = klhz + szU, LZ = klzhz - szU,

2
\/hZC _I_MRe ARe(1+ Ih ) :\/hZCr_}_M:e_}_ aRelhUt

)

h (h2-AtU) BE (h2+a272U2)’
Rea aReh3 y%+\}y§+z§ —y§+’,y§+z§
Ly = — _— = —_— 7, = — N
3 n | (hZ+azrzpz)’ V4 2 » 44 2 ’

A, = sinh(y,b;) cos(z4b1), By = cosh(y,b;) sin(z,b;), A, = sinh(y,b) cos(z,b),

B, = cosh(y,b) sin(z,b), C; = sinh(y,b,) cos(z,b,),D; =
cosh(y,b_2) sins(z,4b;),

ks =A,+A; —Cy,kg = By + By — Dy, ky = y3(ksCy + kgD1) + 23(keCy — ksDy),

kg = y3(k¢Cy — ksDy) — z3(ksCy + kgD1), kg = k3h2 —kyatU, kg = k4h2 +
ksatU

kll = k7h2 - k80{TU, klz = k8h2 + k70{TU,
ki = cos(B) (Cz; — Dy,) —sin(B) (Cy, + Dzy),
k; = cos(B) (Cy, + Dzp) — sin(B) (Cz, + Dy,
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kit =
cos(B) [(Cz; — Dy,) cosh(y,z,b,) cos(z;b;) + (Cy, — Dz;) sinh(y,b,) sin(z,b,)]

—sin(p) [(Cy, + Dz,) cosh(y,2z;b,) cos(z;by) —
(Czy — Dy,) sinh(y,b,) sin(z;b,)]

11 _
ky; =

cos(f) [(Cy, + Dz;) cosh(y,z,b,) cos(z,b,) — (Cz, — Dy,) sinh(y,b,) sin(z;b,)]

—sin(p) [(Cz, — Dy,) cosh(y,z;b,) cos(z,b,) +
(Cy, + Dz,) sinh(y,b,) sin(z;b;)]

Conclusion

One can observe the parabolic in nature of velocity profiles for the fluid and dust
particles plotted as in graphs 3 to 8. It is observed that velocity of fluid particles is
parallel to velocity of dust particles. It is evident from the graphs 3-5 that, as we
increase the strength of the magnetic field, it has an appreciable effect on the
velocities of fluid and dust particles. i.e., the magnetic effect has retarding influence.
If we increase the number density of the dust particles it effect on the flow, i.e it
decreases the velocities of both fluid and dust phase. Further one can can observe that
if the dust is very fine i.e., mass of the dust particles is negligibly small then the
relaxation time of dust particle decreases and ultimately as T — 0 the velocities of
fluid and dust particles will be the same.

0.5 0.5
04F \\ M 04F N\
\\ 5 AN
03 N 3 M=50 N
) N _\\‘_& - » M=75 0 ‘\\\ i
g N ANNY =
g 02 Rt g NS M=50
3 i 202 N
~ ~ =
T 01 AN = \\\.’\ M=
£ AN Z 01 R
0 \\*\\\ < AN
R 0 N
0.1 S ™
R =
=
0.2 0.1 SN 1
L N S
AN AN
0.3 N 02 AN
N
04l i ; . . 03 ; ; ; . J
0 02 04 , 06 0.8 1 0 0.2 04 5 06 0.8 1

Figure 3: Variation of fluid and phase velocity with b (case-1).
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Figure 4: Variation of fluid and phase velocity with b (case-2).
03 03
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Figure 5: Variation of fluid and phase velocity with b (case-3).
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Figure 6: Variation of fluid and phase velocity with b (case-1).
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