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Abstract 
 

A singularly perturbed boundary value problem with an exponential boundary 
layer is considered. The problem is discretized on the boundary layer domain 
with layer adapted grids using up to sixth order finite difference schemes. 
Numerical error is maintained at the same level for a family of extremely 
small values of the singular perturbation parameter. Numerical experiments 
support the analytical claims. 
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In the early twentieth century, Prandtl gave the light of theoretical understanding of 
the singular perturbation phenomena of hydrodynamics to the Third International 
Congress of Mathematics. Since then, a great deal of effort has been made to conquer 
this anomaly. Analytically, the asymptotic expansion of O’Malley [9] and the a’priori 
bound theorem of Chang and Howes [1] were among the prominent approaches. With 
the advance of unprecedented computing power, there has been a flow of literatures 
on numerical solutions from the nineteen eighties. Miller, O'Riordan and Shishkin 
[10] constructed the Shishkin-type mesh to gain the independence of error estimation 
with respect to the singular perturbation parameter. Schultz and his students [2] and 
[6], successfully developed the stabilized high order finite difference methods. 
 We consider the two point boundary value problem, 
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where f and g are continuous. By the improved a’priori bounds of Zhang [11], if 
0),( <−≤ kuxf  for a positive constant k and ),( bax∈ , it can be analytically 

approximated by the two differential equations on the boundary layer and non 
boundary layer domain respectively, 
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where the turning point is εwat +=  and w is a constant for a family of values of ε. 
 If 0),( >≥ kuxf  for a positive constant k and ),( bax∈ , the equation (1) can be 
analytically approximated by the following two differential equations on the boundary 
layer and non boundary layer domain respectively, 
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where the turning point is εwbt −=  and w is a constant for a family of values of ε. 
Note that the boundary value tv  at the transition point t of the equations (3) and (5) is 
not known. To find it, we substitute )(tRb  for tv  into equation (3) and substitute 

)(tRa  for tv  into equation (5) respectively. 
 The reduced problems can be solved with Runge Kutta methods. On the boundary 
layer domain, we improve the 4th order method of Ilicasu [6], and develope the 5th and 
6th methods. Through the paper, let N, Nn and Nb be the numbers of mesh points on 
the entire domain, on the non boundary layer domain and on the boundary layer 
domain repectively. Let hn and hb be the grid spacing on the non boundary layer 
domain and on the boundary layer domain respectively. 
 Here is the boundary value problem with an exponential boundary layer, 
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 The exact solution in [-1, 1] is given as 
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feature of the solution u is that, as a function of (x, ε), it does not behave uniformly as 
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(x, ε) approaches (-1, 0), that is, 1lim
0

−=
+→
u

ε
 for x>-1; but, 0lim

1
=

−→
u

x
 for ε>0. For 

decreasing values of ε, the graphs of u are shown from right to left in the figure.  
 

 
 

Figure 1: Graphs of the solutions of the boundary value problem (6) with ε=0.3, 0.2, 
0.1, 0.01 and 0.001 from right to left 
 
 
 We apply the approximation schemes to get two differential equations 
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 Choose the boundary layer parameter 30=w  for 1210−≥ε . The layer occurs at 
the left boundary. The turning point is εwt +−= 1 . 
 
 
An improvement on the 4th order method 
First, the BVP (6) was solved with the 4th order method for the singular perturbation 
parameter 210−=ε  and 310−=ε . The maximum error was 510*0.1 −  and 210*30.1 −  

respectively. For simplicity, let 
ε

ω 1
=  where ε is the singular perturbation parameter. 

Then, we have, 
   '" uuu ω= , 

  ")'('" 2 uuuu ωω += , and 
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 We use the 4th order finite differences to approximate the BVP (6). 
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 The derivative '
iu  of 3A , 4A  and 4B  is replaced with 

h
uu

u ii
i 2

11' −+ −
= . We now use 

4th order finite difference to replace the derivative '
iu . For 1,...,2,1 −= Ni , let the first 

order derivative be given by 11213
'

−+ ++= iiii ucucucu  where 123   and   , ccc  are 
constants. 
 Using Taylor series expansion, we get 
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 Equating the corresponding coefficients, we have 
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of which, 13 cc +  and 13 cc −  are solved with Cramer’s rule, 
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 Therefore, we obtain 
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 The error term is 
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 In comparison to the approach of Ilicasu and Schultz [6], 3c  and 1c  are updated to 
the 4th order accuracy. The improvement of the method is verified by numerical 
experiments and shown in Table 1 and Table 2.  
 
 
The 5th and 6th Order Methods 
The second improvement is to add more terms from the Taylor series to approximate 
the BVP (6). We expand the 1+iu  and 1−iu  up to the sixth order derivatives.  
 The following is a development of the 6th order method. The 5th order method is 
developed by dropping 6th order derivative terms. First, we consider the 5th order and 
6th order derivatives: 
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 For simplicity, we rewrite the derivatives 
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 Equating the corresponding coefficients of both sides, we get the following 
system: 
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 Note that the derivatives contained in 543 ,, AAA  and 543 ,, BBB  are replaced with 
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 Numerical comparison among different methods are shown in Table 1 and Table 2 
for ε=0.01 ε=0.001 respectively. For the improved 4th order, 5th order and 6th order 
methods, the number Nn of mesh points on the non boundary layer domain is 170 and 
the number Nb of mesh points on the boundary layer is 300. The total number of mesh 
points for our approximation is 470=+= bn NNN , compared to N=2000 for that of 
other researchers using the uniform mesh on the entire domain. As a significant 
advantage, higher accuracy is obtained with less computing, which is reflected with 
less numbers of mesh points and iterations, 

 
 

Table 1: Maximal error of different methods with ε=0.01. 
 

Method Number of Points Number of Iterations Max Error 
Choudhury’s Method  2000 Not known 2.91*10-2 
2nd order  2000 3201 2.61*10-4 
4th order  2000 3152 1.00*10-5 
Improved 4th order method 470 697 8.40*10-5 
5th order method  470 697 1.34*10-7 
6th order method  470 697 7.71*10-8 
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Table 2: Maximal error of different methods with ε=0.001. 
 

Method Number of Points Number of Iterations Max Error 
4th order  2000 5102 1.30*10-2 
Improved 4th order 470 697 8.41*10-5 
5th order method  470 697 1.54*10-7 
6th order method  470 697 7.56*10-8 

 
 
 For the methods of this paper, the tolerance of iteration is set at 10-10; the over 
relaxation factor is 1.9. 
 The convergence of the improved 4th order method and 6th order method is shown 
in Table 3 and Table 4 with singular perturbation parameter as small as 1210−=ε . 

 
 

Table 3: The convergence of the improved 4th order method. 
 

Number of Points Maximal Error 
ε=10-5 ε=10-10 ε=10-12 

N=350 (Nn=200, Nb=150) 
 

3.53*10-4 3.53*10-4 3.56*10-4 

N=400 (Nn=200, Nb=200) 
00 

1.91*10-4 1.94*10-4 1.94*10-4 

N=450 (Nn=200, Nb=250) 1.20*10-4 1.22*10-4 1.35*10-4 
N=500 (Nn=200, Nb=300) 8.39*10-5 8.40*10-5 9.71*10-5 

 
 

Table 4: The convergence of the 6th order method. 
 

Number of Points Maximal Error 
ε=10-5 ε=10-10 ε=10-12 

N=350 (Nn=200, Nb=150) 
 

1.19*10-6 1.16*10-6 2.79*10-5 

N=400 (Nn=200, Nb=200) 
00 

4.51*10-7 4.18*10-7 2.64*10-5 

N=450 (Nn=200, Nb=250) 1.29*10-7 2.88*10-7 2.42*10-5 
N=500 (Nn=200, Nb=300) 7.49*10-8 7.49*10-8 2.39*10-5 

 
 
 As expected, numerical error decreases when the higher order finite difference 
methods are applied. We compare numerical results of different orders in Table 5.  
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Table 5: Maximal error comparison among the different methods with 300 points on 
the boundary layer. 
 

Finite Differences Maximal error 
ε=10-5 ε=10-10 

Central Difference 3.77*10-4 3.77*10-4

4th Order Difference 1.02*10-4 1.02*10-4

Improved 4th Order 8.40*10-5 8.40*10-5

6th Order Difference 7.49*10-8 7.49*10-8

 
 
 The graph of the numerical solution from the 6th order method for the BVP (6), is 
shown in Figure 2, which reflects the existence of a boundary layer. 

 

 
 

Figure 2: The graph of the numerical solution of the BVP (6). 
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