A Partial Solution to an Open Problem in Strict Menger Probabilistic Metric Spaces

K.P.R. Sastry¹, G.A. Naidu², P.V.S. Prasad³ and S.S.A. Sastri⁴

 ¹8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam-530 017, India E-mail: kprsastry@hotmail.com
 ^{2,3}Department of Mathematics, Andhra University Visakhapatnam-530 003, India E-drgolivean@yahoo.com, pvsprasad10@yahoo.in
 ⁴Department of Mathematics, G.V.P. College of Engineering, Madhuravada, Visakhapatnam-530 048, India E-mail: sambharasas@yahoo.co.in

Abstract

In this paper, we give partial solution to the open problem 2.10 posed in [3].

Keywords: common fixed point, compatible maps and strict Menger space.

Mathematical subject classification (2000): 47H10, 54H25

Introduction

In Sastry et.al [3] an open problem in a strict Menger space is given, incidentally observing a fallacy in the argument of a result of Servet Kutucku and Sushil Sharma [6].

We use the notion of strict Menger space given in [3] and make use of this to prove a fixed point theorem (Theorem 2.1) in strict Menger spaces with min t-norm. An open problem (open problem 2.2) is also given at the end of the paper.

We start with

Definition 1.1: [4] A function $F: \mathbb{R} \to [0,1]$ is called a distribution function if F is non-decreasing, left continuous and $\inf_{x \in \mathbb{R}} F(x) = 0$ and $\sup_{x \in \mathbb{R}} F(x) = 1$.

Definition1.2: [4] A triangular norm $*: [0,1] \times [0,1] \rightarrow [0,1]$ is a function satisfying the following conditions:

- 1. $\alpha * 1 = \alpha \forall \alpha \in [0,1],$
- 2. $\alpha * \beta = \beta * \alpha \forall \alpha, \beta \in [0,1],$
- 3. $\gamma * \delta \ge \alpha * \beta \forall \alpha, \beta, \gamma, \delta \in [0,1]$ with $\gamma \ge \alpha$ and $\delta \ge \beta$,
- 4. $(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma) \forall \alpha, \beta, \gamma \in [0,1].$

A triangular norm is also denoted by t-norm. For any $a, b \in [0,1]$, if we define $a * b = \min \{a, b\}$, then * is a t-norm and is denoted by 'min'.

Definition1.3: [4] Let X be a non-empty set and let $F: X \times X \to \mathfrak{D}$ (The set of distribution functions). For $p, q \in X$, we denote the image of the pair (p, q) by $F_{p,q}$ which is a distribution function so that $F_{p,q}(x) \in [0,1]$, for every real x. Suppose F satisfies:

- 1. $F_{p,q}(x) = 1$ for all x > 0 if and only if p = q,
- 2. $F_{p,q}(0) = 0$,
- 3. $F_{p,q}(x) = F_{q,p}(x)$,
- 4. If $F_{p,q}(x) = 1$ and $F_{q,r}(y) = 1$ then $F_{p,r}(x + y) = 1$ where $p, q, r \in X$.

Then (X, F) is called a probabilistic metric space.

Definition1.4: [4] Let X be a non empty set, * a t-norm and $F : X \times X \rightarrow \mathfrak{D}$ satisfies:

- 1. $F_{p,q}(0) = 0 \forall p,q \in X$,
- 2. $F_{p,q}(x) = 1 \forall x > 0$ if and only if p = q,
- 3. $F_{p,q}(x) = F_{q,p}(x) \forall p,q \in X$,
- 4. $F_{p,r}(x + y) \ge * (F_{p,q}(x), F_{q,r}(y)) \forall x, y \ge 0 \text{ and } p, q, r \in X.$

Then the triplet (X, F, *) is called a Menger space.

Definition 1.5: [5]

- Let (X, F,*) be a Menger space and p ∈ X. For ε > 0, 0 < λ < 1, the (ε, λ)-neighbourhood of p is defined as U_p(ε, λ) = {q ∈ X: F_{p,q}(ε) > 1 − λ}. It may be observed that, if * is continuous then the topology induced by the family {U_p(ε, λ): p ∈ X, ε > 0, 0 < λ < 1} is a Hausdorff topology on X and is known as the (ε, λ) topology.
- 2. A sequence $\{x_n\}$ in X is said to converge to $p \in X$ in the (ε, λ) -topology, if for any $\varepsilon > 0$ and $0 < \lambda < 1$ there exists a positive integer $N = N(\varepsilon, \lambda)$ such that $F_{x_n,p}(\varepsilon) > 1 \lambda$ where n > N.
- A sequence {x_n} in X is said to be a Cauchy sequence in the (ε, λ)-topology, if for ε > 0 and 0 < λ < 1 there exists a positive integer N = N(ε, λ) such that F_{x_m,x_n}(ε) > 1 − λ for all m, n > N.
- 4. A Menger space (X, F, *), where * is continuous, is said to be complete if

344

every Cauchy sequence in X is convergent in the (ε, λ) -topology.

Definition 1.6: [1] Let * be a t-norm. For any $a \in [0,1]$, write $*_0(a) = 1$ and $*_1(a) = *(*_0(a), a) = *(1, a) = a$

In general define $*_{n+1}(a) = *(*_n(a), a)$ for $n = 0, 1, 2 \dots$

If $\{*_n\}$ is equicontinuous at 1, that is given $\varepsilon > 0$ there exists $\delta > 0$ such that $x > 1 - \delta$ implies $*_n(x) > 1 - \varepsilon \forall n \in N$. then we say that * is a Hadzic type t-norm.

We observe that 'min' t-norm is of Hadzic type.

Definitions 1.7: [6] Two self mappings A and B of a Menger space (X, F, *) are said to be

- 1. compatible of type (P) if $F_{ABx_n,BBx_n}(t) \to 1$ and $F_{BAx_n,AAx_n}(t) \to 1$ for all t > 0 whenever $\{x_n\}$ is a sequence in X such that $Ax_n, Bx_n \to z$ for some z in X as $n \to \infty$.
- 2. compatible of type (P₁) if $F_{ABx_n,BBx_n}(t) \to 1$ for all t > 0 whenever $\{x_n\}$ is a sequence in X such that $Ax_n, Bx_n \to z$ for some z in X as $n \to \infty$.
- 3. compatible of type (P₂) if $F_{BAx_n,AAx_n}(t) \to 1$ for all t > 0 whenever $\{x_n\}$ is a sequence in X such that $Ax_n, Bx_n \to z$ for some z in X as $n \to \infty$.

We need the following lemma.

Lemma 1.8: [2] Let (X, F, *) be a Menger space with Hadzic-type t-norm * and 0 < a < 1. Suppose $\{x_n\}$ is a sequence in X such that for any $s > 0, F_{x_n, x_{n+1}}(s) \ge F_{x_0, x_1}(\frac{s}{a^n})$.

Then $\{x_n\}$ is a Cauchy sequence.

Definition 1.9: [3] Let (X, F, *) be a Menger space such that $F_{x,y}(t)$ is strictly increasing in t whenever $x \neq y$. Then (X, F, *) is called a strict Menger space.

Example 1.10: [3] Let (X, d) be a metric space. Define $F_{x,y}(t) = \frac{t}{t+d(x,y)} \forall t > 0$ and $x, y \in X$. If t-norm * is $a * b = \min \{a, b\} \forall a, b \in [0,1]$, then (X, F, *) is a strict Menger space.

Main results

The following theorem is given in Sastry. et. al [3].

Theorem 2.1: [3] Let P, Q, R and C be self maps of a complete strict Menger space (X, F, *) with min t-norm * satisfying:

- 1. $P(X) \subseteq R(X), Q(X) \subseteq C(X),$
- 2. there exists a constant $k \in (0,1)$ such that $F_{Px,Qy}(kt) \ge F_{Cx,Ry}(t) * F_{Px,Cx}(t) * F_{Oy,Ry}(t) * F_{Px,Ry}(2t) * F_{Oy,Cx}(2t)$ for all $x, y \in X, t > 0$,

- 3. either P or C is continuous,
- 4. the pairs (P, C) and (Q, R) are both compatible of type (P_1) or type (P_2) .

Then P, Q, R and C have a unique common fixed point. The following open problem is posed in [3].

Open Problem 2.2: [3] Is Theorem 2.1 valid if 2t in condition (b) is replaced by αt where $\alpha \in (1,2)$?

Now we prove a fixed point theorem for four self maps on a complete strict Menger space which gives a partial solution to the open problem 2.2.

Theorem 2.3: Let P, Q, R and C be self maps of a complete strict Menger space (X, F, *) with min t-norm * satisfying:

- 1. $P(X) \subseteq R(X), Q(X) \subseteq C(X)$, there exists a constant $k \in (0,1)$ and $\alpha \in (2k,2)$ such that $F_{Px,Qy}(kt) \ge F_{Cx,Ry}(t) * F_{Px,Cx}(t) * F_{Qy,Ry}(t) * F_{Px,Ry}(\alpha t) * F_{Qy,Cx}(\alpha t)$ for all $x, y \in X, t > 0$,
- 2. either P or C is continuous,
- 3. the pairs (P, C) and (Q, R) are both compatible of type (P_1) or type (P_2) .

Then P, Q, R and C have a unique common fixed point.

Proof: Let $x_0 \in X$. By (a), there exist sequences $\{x_n\}$ and $\{y_n\}$ in X such that $Px_{2n} = Rx_{2n+1} = y_{2n}$ and $Qx_{2n+1} = Cx_{2n+2} = y_{2n+1}$ for n = 0, 1, 2 ... Step 1: By taking $x = x_{2n}, y = x_{2n+1}$ for all t > 0 in (b), we get $F_{Px_{2n},Qx_{2n+1}}(kt) \ge$ $F_{Cx_{2n},Rx_{2n+1}}(t) * F_{Px_{2n},Cx_{2n}}(t) * F_{Qx_{2n+1},Rx_{2n+1}}(t) * F_{Px_{2n},Rx_{2n+1}}(\alpha t) *$ $F_{Qx_{2n+1},Cx_{2n}}(\alpha t)$ $\Rightarrow \qquad F_{y_{2n},y_{2n+1}}(kt) \ge F_{y_{2n-1},y_{2n}}(t) * F_{y_{2n},y_{2n-1}}(t) * F_{y_{2n+1},y_{2n}}(t) * F_{y_{2n},y_{2n}}(\alpha t) *$ $F_{y_{2n+1},y_{2n-1}}(\alpha t)$ $\ge F_{y_{2n-1},y_{2n}}(t) * F_{y_{2n+1},y_{2n}}(t) * F_{y_{2n+1},y_{2n-1}}(\alpha t)$ $\ge F_{y_{2n-1},y_{2n}}(t) * F_{y_{2n+1},y_{2n}}(t) * F_{y_{2n+1},y_{2n-1}}(\alpha t)$ $\ge F_{y_{2n-1},y_{2n}}(t) * F_{y_{2n+1},y_{2n}}(t) * F_{y_{2n+1},y_{2n}}(\frac{\alpha t}{2}) * F_{y_{2n},y_{2n-1}}(\frac{\alpha t}{2})$ $\ge F_{y_{2n-1},y_{2n}}(\frac{\alpha t}{2})$ (∵ X is a strict Menger space)

Similarly, we can prove that $F_{y_{2n+1},y_{2n+2}}(kt) \ge F_{y_{2n},y_{2n+1}}\left(\frac{\alpha t}{2}\right)$ Hence $F_{y_n,y_{n+1}}(kt) \ge F_{y_{n-1},y_n}\left(\frac{\alpha t}{2}\right)$ for all $n \in N$ Therefore $F_{y_n,y_{n+1}}(t) \ge F_{y_{n-1},y_n}\left(\frac{\alpha t}{2k}\right) \forall t > 0$, $n \in N$ and $\frac{\alpha}{2k} > 1$ By Lemma 1.8, $\{y_n\}$ is a Cauchy sequence.

Since (X, F, *) is complete, it converges to a point z in X. Also its sub sequences $\{Px_{2n}\} \rightarrow z$, $\{Cx_{2n}\} \rightarrow z$, $\{Qx_{2n+1}\} \rightarrow z$ and $\{Rx_{2n+1}\} \rightarrow z$.

Case (i): C is continuous, (P, C) and (Q, R) are compatible of type (P₂) $CCx_{2n} \rightarrow Cz$, $CPx_{2n} \rightarrow Cz$ (:: C is continuous)

346

and $PPx_{2n} \rightarrow Cz$ (: (P, C) is compatible of type (P₂)) By taking $x = Px_{2n}, y = x_{2n+1}$ in (b), we get $F_{PPx_{2n},Qx_{2n+1}}(kt)$ $\geq F_{CPx_{2n},Rx_{2n+1}}(t) * F_{PPx_{2n},CPx_{2n}}(t) * F_{Qx_{2n+1},Rx_{2n+1}}(t)$ $* F_{PPx_{2n},Rx_{2n+1}}(\alpha t) *$ $F_{Qx_{2n+1},CPx_{2n}}(\alpha t)$ On letting $n \rightarrow \infty$, we get $F_{Cz,z}(kt) \geq F_{Cz,z}(t) * F_{Cz,Cz}(t) * F_{z,z}(t) * F_{Cz,z}(\alpha t) * F_{z,Cz}(\alpha t)$ $\geq F_{Cz,z}(t) * F_{Cz,z}(\alpha t)$ If $Cz \neq z$, $F_{Cz,z}(kt) < F_{Cz,z}(\alpha t)$ (: 0 < k < 1) and $F_{Cz,z}(kt) < F_{Cz,z}(\alpha t)$ (: $k < 2k < \alpha$) $\therefore F_{Cz,z}(kt) < F_{Cz,z}(t) * F_{Cz,z}(\alpha t) \leq F_{Cz,z}(kt)$, a contradiction. Hence Cz = z.

Step 3: By taking
$$x = z, y = x_{2n+1}$$
 in (b), we get
 $F_{PZ,QX_{2n+1}}(kt) \ge F_{CZ,RX_{2n+1}}(t) * F_{PZ,CZ}(t) * F_{QX_{2n+1},RX_{2n+1}}(t) * F_{PZ,RX_{2n+1}}(\alpha t)$
 $* F_{QX_{2n+1},CZ}(\alpha t)$
On letting $n \to \infty$, we get
 $F_{PZ,Z}(kt) \ge F_{Z,Z}(t) * F_{PZ,Z}(t) * F_{Z,Z}(\alpha t) * F_{Z,Z}(\alpha t)$
 $\ge F_{PZ,Z}(t) * F_{PZ,Z}(\alpha t)$
Thus $PZ = Z$.

Step 4: Since $P(X) \subseteq R(X)$, there exists $w \in X$ such that z = Pz = RwBy taking $x = x_{2n}, y = w$ in (b), we get $F_{Px_{2n},Qw}(kt) \ge F_{Cx_{2n},Rw}(t) * F_{Px_{2n},Cx_{2n}}(t) * F_{Qw,Rw}(t) * F_{Px_{2n},Rw}(\alpha t)$ $* F_{Qw,Cx_{2n}}(\alpha t)$ On letting $n \to \infty$, we get $F_{z,Qw}(kt) \ge F_{z,z}(t) * F_{z,z}(t) * F_{Qw,z}(t) * F_{z,z}(\alpha t) * F_{Qw,z}(\alpha t)$ $\ge F_{Qw,z}(t) * F_{Qw,z}(\alpha t)$ Thus Qw = z $\therefore Rw = Qw = z$

Since (Q, R) is compatible of type (P₂), we have RQw = QQw.

Therefore Rz = Qz.

Step 5: By taking $x = x_{2n}$, y = z in (b), we get $F_{Px_{2n},Qz}(kt) \ge F_{Cx_{2n},Rz}(t) * F_{Px_{2n},Cx_{2n}}(t) * F_{Qz,Rz}(t) * F_{Px_{2n},Rz}(\alpha t) * F_{Qz,Cx_{2n}}(\alpha t)$ On letting $n \to \infty$, ewe get $F_{z,Qz}(kt) \ge F_{z,Qz}(t) * F_{z,z}(t) * F_{Qz,Qz}(t) * F_{z,Qz}(\alpha t) * F_{Qz,z}(\alpha t)$ $\ge F_{Qz,z}(t) * F_{Qz,z}(\alpha t)$ Thus Qz = z. $\therefore Pz = Qz = Cz = Rz = z$. i.e. z is a common fixed point for P, Q, R and C.

Case (ii): P is continuous and (P, C), (Q, R) are both compatible of type (P₂) $PPx_{2n} \rightarrow Pz$, $PCx_{2n} \rightarrow Pz$ (:: P is continuous) $CPx_{2n} \rightarrow Pz$ (:: (P, C) is compatible of type (P₂))

Step 6: By taking $x = Px_{2n}$, $y = y_{2n+1}$ in (b), we get $F_{PPx_{2n},Qx_{2n+1}}(kt)$ $\geq F_{CPx_{2n},Rx_{2n+1}}(t) * F_{PPx_{2n},CPx_{2n}}(t) * F_{Qx_{2n+1},Rx_{2n+1}}(t)$ $* F_{PPx_{2n},Rx_{2n+1}}(\alpha t) *$ $F_{Qx_{2n+1},CPx_{2n}}(\alpha t)$ On letting $n \to \infty$, we get $F_{Pz,z}(kt) \geq F_{Pz,z}(t) * F_{Pz,Pz}(t) * F_{z,z}(t) * F_{Pz,z}(\alpha t) * F_{z,Pz}(\alpha t)$ $\geq F_{Pz,z}(t) * F_{Pz,z}(\alpha t)$ Thus Pz = z. Using step 4 and step 5, we get z = Qz = Rz.

Step 7: Since $Q(X) \subseteq C(X)$, there exists $w \in X$ such that z = Qz = Cw. By taking $x = w, y = x_{2n+1}$ in (b), we get $F_{Pw,Qx_{2n+1}}(kt) \ge F_{Cw,Rx_{2n+1}}(t) * F_{Pw,Cw}(t) * F_{Qx_{2n+1},Rx_{2n+1}}(t) * F_{Pw,Rx_{2n+1}}(\alpha t) *$ $F_{Qx_{2n+1},Cw}(\alpha t)$ On letting $n \to \infty$, we get $F_{Pw,Z}(kt) \ge F_{Z,Z}(t) * F_{Pw,Z}(t) * F_{Z,Z}(t) * F_{Pw,Z}(\alpha t) * F_{Z,Z}(\alpha t)$ $\ge F_{Pw,Z}(t) * F_{Pw,Z}(\alpha t)$ Thus z = Pw, since z = Qz = Cw, hence Pw = Cw. (P, C) is compatible of type (P₂), we have CPw = PPw i.e. Cz = Pz. $\therefore z = Pz = Cz = Qz = Rz$ i.e. z is a common fixed point for P, Q, R and C. $\therefore z$ is a common fixed point for P, Q, R and C when C is continuous(or P is continuous) and (P, C), (Q, R) are compatible of type P₂ (or P₁)

Step 8: For uniqueness v be common fixed point for P, Q, R and C. Take x = z, y = v in the condition (b), we get $F_{Pz,Qv}(kt) \ge F_{Cz,Rv}(t) * F_{Pz,Cz}(t) * F_{Qv,Rv}(t) * F_{Pz,Rv}(\alpha t) * F_{Qv,Cz}(\alpha t)$ $\Rightarrow F_{z,v}(kt) \ge F_{z,v}(t) * F_{z,z}(t) * F_{v,v}(t) * F_{z,v}(\alpha t) * F_{v,z}(\alpha t)$ $\ge F_{z,v}(t) * F_{z,v}(\alpha t)$

Thus v = z. We conclude our paper with an open problem. Open Problem 2.4: If $1 > k > \frac{1}{2}$ and $\alpha \in (2k, 2)$, is the result valid ?

References

- O. Hadzic: A Generalization of the contraction principle in probabilistic metric spaces, Univ. u. Nvom Sadu Zb. Road, Prirod-Mat. Fak. 10(1980), 13-21 (1981).
- [2] K.P.R. Sastry, G.V.R. Babu and M.L. Sandhya: Weak contractions in Menger spaces -II, Journal of Adv. Research in Pure Mathematics, Vol. 2, issue 1, (2010), 65-73.
- [3] K.P.R. Sastry, G.A. Naidu, P.V.S. Prasad and S.S.A. Sastri: A common fixed point theorem in Menger probabilistic metric spaces using compatibility, *Int. Journal of Math Analysis, Vol.5, 2011, no. 4, 157-164.*
- [4] B. Schweizer and A. Sklar: Probabilistic metric spaces, North Holland Series in Probability and applied Mathematics, (1983), MR0790314.
- [5] B. Schweizer and A. Sklar: Statistical metric spaces, North Holland Amsterdam, (1983).
- [6] Servet Kutukcu and Sushil Sharma: Compatible maps and common fixed points in Menger probabilistic metric spaces, Commun. Korean Math. Soc. 24 (2009), no.1, 17-27.