International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 4, Number 1 (2012), pp. © International Research Publication House http://www.irphouse.com

Edge-Odd Gracefulness of the Graph $P_m + P_n$ for m = 2, 3, 4, 5, and 6

A. Solairaju, A. Sasikala and C. Vimala

¹Associate Professor of Mathematics
Jamal Mohamed College, Tiruchirapalli – 620 020, Tamil Nadu, India.

E-mail: solairama@yahoo.co.in

²Assistant Professors (SG), Department of Mathematics,
Periyar Maniammai University, Vallam, Thanjavur – Post, Tamil Nadu, India
E-mail: awshath@yahoo.co.in, email: vimalasakthi@yahoo.com

Abstract

A (p, q) connected graph is edge-odd graceful graph if there exists an injective map $f: E(G) \to \{1, 3, ..., 2q-1\}$ so that induced map $f_+: V(G) \to \{0, 1, 2, 3, ..., (2k-1)\}$ defined by $f_+(x) \equiv \Sigma f(x, y)$ (mod 2k), where the vertex x is incident with other vertex y and $k = \max\{p, q\}$ makes all the edges distinct and odd. this article, the Edge-odd gracefulness of $P_m + P_n$ for m = 2, 3, 4, 5, and 6 is obtained.

Keywords: Graceful Graphs, Edge-odd graceful labeling, Edge-odd Graceful Graph

Introduction

A.Solairaju and K.Chitra [2009] obtained edge-odd graceful labeling of some graphs related to paths. A. Solairaju et.al. [2009, 2010] proved that the graphs $C_5 \Theta P_n$ and $C_5 \Theta 2P_n$ are edge -odd graceful.

Here the edge-odd graceful labeling of $P_m + P_n$ for m = 2, 3, 4, 5, and 6 is obtained.

Edge-odd graceful labeling of $P_m + P_n$ for m = 2, 3, 4, 5, and 6

Definition 2.1: Graceful Graph: A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex set of G to the set $\{0, 1, 2, ..., m\}$ such that when each edge uv is assigned the label |f(u) - f(v)| and the resulting edge labels are distinct. Then the graph G is graceful.

Definition 2.2: Edge-odd graceful graph: A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: $E(G) \rightarrow \{1, 3, ..., 2q-1\}$ so that induced map $f_+: V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ defined by $f_+(x) \equiv \Sigma$ f(x, y) (mod 2k), where the vertex x is incident with other vertex y and $k = \max\{p, q\}$ makes all the edges distinct and odd. Hence the graph G is edge- odd graceful.

Edge-odd Gracefulness of the graph $P_2 + P_n$

Definition 3.1: $P_2 + N_n$ is a connected graph such that every vertex of P_2 is adjacent to every vertex of null graph N_n together with adjacency in both P_2 and P_n . It has n + 2 vertices and 3n edges.

Theorem 3.1: The connected graph $P_2 + P_n$ is edge – odd graceful.

Proof: The figure 1 is connected graph $P_2 + P_n$ with n + 2 vertices and 3n edges, with some arbitrary labeling to its vertices and edges as follows.

Figure 1: Edge – odd graceful Graph $P_2 + P_n$

Hence define f:
$$E(G) \rightarrow \{1, 3, ..., 2q-1\}$$
 by
For n is odd $f(e_i) = (2i-1)$, for $i = 1, 2, ..., (3n)$ (Rule 1)

For n is even and $i \neq 6$

$$f(e_i) = (2i-1),$$
 for $i = 1, 2, ..., (2n+1)$.
 $f(e_{3n-i}) = f(e_{2n+1}) + 2i + 2,$ for $i = 0, 1, 2, ..., (n-2)$.

Define f₊: $V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ by $f_+(v) \equiv \Sigma$ f(uv) mod (2k), where this sum run over all edges through v (Rule 2)

Hence the map f and the induced map f_+ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0, 1, 2, \ldots, (2k-1)\}$. Hence the graph $P_2 + P_n$ is edge-odd graceful.

3

Lemma 3.1: The connected graph $P_2 + P_6$ is edge – odd graceful.

Proof: The following graph in figure 2 is a connected graph with 8 vertices and 18 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 2: Edge – odd graceful Graph $P_2 + P_6$

Edge-odd Gracefulness of the graph $P_3 + P_n$

Definition 4.1: $P_3 + N_n$ is a connected graph such that every vertex of K_3 is adjacent to every vertex of null graph N_n together with adjacency in both P_3 and P_n . It has n+3 vertices and 4n+1 edges.

Theorem 4.1: The connected graph $P_3 + P_n$ for n = 1, 2, ..., (4n + 1) is edge – odd graceful.

Proof: The figure 3 is connected graph $P_3 + P_n$ with n + 3 vertices and 4n+1 edges, with some arbitrary labeling to its vertices and edges.

Case i: n = 1, 2, ..., (4n + 1) and $n \ne 8, 14, 20, 26, ... (6m + 2)$

Figure 3: Edge – odd graceful Graph $P_3 + P_n$

Hence define f: E(G)
$$\rightarrow$$
 {1, 3, ..., 2q-1} by

For n = 0 (mod 6)
 $f(e_i) = (2i-1)$, for i = 3, 4, 5, ..., (4n+1)
 $f(e_1) = 3$; $f(e_2) = 1$

For n = 1 (mod 6)
 $f(e_i) = (2i-1)$, for i = 1, 4, 5, 6, ..., (4n+1)
 $f(e_2) = 5$; $f(e_3) = 3$

(Rule 3)

For n = 3, 5 (mod 6)
 $f(e_i) = (2i-1)$, for i = 2, 4, 5, 6, ..., (4n+1)
 $f(e_1) = 5$; $f(e_3) = 1$

For n = 4 (mod 6)
 $f(e_i) = (2i-1)$, for i = 2, 3, ..., (4n)
 $f(e_1) = 2q - 1$; $f(e_{4n+1}) = 1$

Case ii: $n \neq 8, 14, 20, 26, \dots (6m + 2), m = 1, 2, \dots$

Figure 4: Edge – odd graceful Graph $P_3 + P_n$

Define f:
$$E(G) \rightarrow \{1, 3, ..., 2q-1\}$$
 by For $n \equiv 2 \pmod{6}$ $f(e_i) = (2i-1)$, for $i = 1, 2, ..., (n-1), (n+1), ..., (3n-1), (3n+1), ..., (4n+1)$ $f(e_n) = 6n - 1$; $f(e_{3n}) = 2n - 1$.

Define f₊: $V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ by $f_+(v) \equiv \Sigma$ $f(uv) \mod (2k)$, where this sum run over all edges through v (Rule 6)

Hence the map f and the induced map f_+ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0, 1, 2, ..., (2k-1)\}$. Hence the graph $P_3 + P_n$ is edge-odd graceful.

Lemma 4.1: The connected graph $P_3 + P_3$ is edge – odd graceful.

Proof: The following graph in figure 5 is a connected graph with 6 vertices and 13 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 5: Edge – odd graceful Graph $P_3 + P_3$

Lemma 4.2: The connected graph $P_3 + P_4$ is edge – odd graceful.

The following graph in figure 6 is a connected graph with 7 vertices and 17 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 6: Edge – odd graceful Graph $P_3 + P_4$

Lemma 4.3: The connected graph $P_3 + P_5$ is edge – odd graceful.

The following graph in figure 7 is a connected graph with 8 vertices and 21 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 7: Edge – odd graceful Graph P₃ + P₅

Edge-odd Gracefulness of the graph $P_4 + P_n$

Definition 5.1: $P_4 + N_n$ is a connected graph such that every vertex of P_4 is adjacent to every vertex of null graph N_n together with adjacency in both P_4 and P_n . It has n + 4 vertices and 5n+2 edges.

Theorem 5.1: The connected graph $P_4 + P_n$ for n = 1, 2, 3, 4, ..., (5n + 2) is edge – odd graceful.

Proof: The figure 8 is connected graph $P_4 + P_n$ with n + 4 vertices and 5n+2 edges, with some arbitrary labeling to its vertices and edges.

Case i: n = 1, 2, ..., (5n + 2) and $n \ne 8, 14, 20, 26, ... (6m + 2)$

Figure 8: Edge – odd graceful Graph P₄ + P_n

Hence define f: E(G)
$$\rightarrow$$
 {1, 3, ..., 2q-1} by

For n = 0 (mod 6)
 f(e_i) = (2i-1), for i = 4, 5, ..., (5n+2)

f(e₁) = 3; f(e₂) = 5; f(e₃) = 1

For n = 1(mod 6)
 f(e_i) = (2i-1), for i = 1, 2, ..., (5n+2)

For n = 3 (mod 6)
 f(e_i) = (2i-1), for i = 1, 2, ..., (5n+2); i ≠ 4 & 4n + 3

(Rule 7)

f(e₄) = 8n + 5; f(e_{4n} + 3) = 7

For n = 4 (mod 6)
 f(e_i) = (2i-1), for i = 4, 5, 6, ..., (5n+2)

f(e₁) = 5; f(e₂) = 1; f(e₃) = 3

For n = 5 (mod 6)
 f(e_i) = (2i-1), for i = 1, 2, 5, 6, ..., (5n+2)

f(e₃) = 7; f(e₄) = 5

Case ii: n = 8, 14, 20, 26, ... (6m + 2), m = 1, 2, ...,

Figure 9: Edge – odd graceful Graph $P_4 + P_n$

Define f:
$$E(G) \rightarrow \{1, 3, ..., 2q-1\}$$
 by For $n \equiv 2 \pmod{6}$ (Rule 8)

$$f(e_i) = (2i-1)$$
, for $i = 1, 2, ..., (5n+2)$; $i \ne 2n \& 4n-1$
 $f(e_{2n}) = 8n - 3$; $f(e_{4n-1}) = 4n - 3$

Define f₊: $V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ by $f_+(v) \equiv \Sigma$ f(uv) mod (2k), where this sum run over all edges through v (Rule 9)

Hence the map f and the induced map f_+ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0, 1, 2, ..., (2k-1)\}$. Hence the graph $P_4 + P_n$ is edge-odd graceful.

Lemma 5.1: The connected graph $P_4 + P_4$ is edge – odd graceful.

Proof: The following graph in figure 10 is a connected graph with 8 vertices and 22 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 10: Edge – odd graceful Graph $P_4 + P_4$

Lemma 5.2: The connected graph $P_4 + P_5$ is edge – odd graceful.

The following graph in figure 11 is a connected graph with 9 vertices and 27 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 11: Edge – odd graceful Graph $P_4 + P_5$

Edge-odd Gracefulness of the graph $P_5 + P_n$

Definition 6.1: $P_5 + N_n$ is a connected graph such that every vertex of P_5 is adjacent to every vertex of null graph N_n together with adjacency in both P_5 and P_n . It has n + 5 vertices and 6n+3 edges.

Theorem 6.1: The connected graph $P_5 + P_n$ for all $n \ne 7$ is edge – odd graceful.

Proof: The figure 12 is connected graph $P_5 + P_n$ with n + 5 vertices and 6n+3 edges, with some arbitrary labeling to its vertices and edges.

Figure 12: Edge – odd graceful Graph $P_5 + P_n$

Hence define f:
$$E(G) \rightarrow \{1, 3, ..., 2q-1\}$$
 by $f(e_i) = (2i-1)$, for $i = 1, 2, ..., (6n+3)$ [Rule 10]

Define f₊: $V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ by $f_+(v) \equiv \Sigma$ f(uv) mod (2k), where this sum run over all edges through v (Rule 11)

Hence the map f and the induced map f_+ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0, 1, 2, ..., (2k-1)\}$. Hence the graph $P_5 + P_n$ is edge-odd graceful.

Lemma 6.1: The connected graph $P_5 + P_7$ is edge – odd graceful.

The graph in figure 13 is a connected graph with 12 vertices and 45 edges with some arbitrary distinct labeling to its vertices and edges.

Figure 13: Edge – odd graceful Graph $P_5 + P_7$

Edge-odd Gracefulness of the graph $P_6 + P_n$

Definition 7.1: $P_6 + N_n$ is a connected graph such that every vertex of P_6 is adjacent to every vertex of null graph N_n together with adjacency in both P_6 and P_n . It has n + 6 vertices and 7n+4 edges.

Theorem 7.1: The connected graph $P_6 + P_n$ for all $n \ne 7$ and 8 is edge – odd graceful.

Proof: The figure 14 is connected graph $P_6 + P_n$ with n + 6 vertices and 7n+4 edges, with some arbitrary labeling to its vertices and edges.

Figure 14: Graph of $P_6 + P_n$

Hence define f:
$$E(G) \rightarrow \{1, 3, ..., 2q-1\}$$
 by $f(e_i) = (2i-1)$, for $i = 1, 2, ..., (7n+4)$ [Rule 12]

Define f₊: $V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ by $f_+(v) \equiv \Sigma$ f(uv) mod (2k), where this sum run over all edges through v [Rule 13]

11

Hence the map f and the induced map f_+ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0, 1, 2, ..., (2k-1)\}$. Hence the graph $P_6 + P_n$ is edge-odd graceful.

Lemma 7.1: The connected graph $P_6 + P_7$ is edge – odd graceful.

The graph $P_6 + P_7$ is a connected graph with 13 vertices and 53 edges. All the edges of the graph are labeled with distinct odd numbers in such a way that there will be distinct labeling for all its vertices.

That is, define f:
$$E(G) \rightarrow \{1, 3, ..., 2q-1\}$$
 by $f(e_i) = (2i-1)$, for $i = 1, 2, ..., 53$

Define f₊:
$$V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$$
 by

 $f_+(v) \equiv \Sigma$ f(uv) mod (2k), where this sum run over all edges through v

Hence the graph $P_6 + P_7$ is edge-odd graceful.

The graph with edge-odd graceful labeling is given in the figure 15

Figure 15: Graph of $P_6 + P_7$

Lemma 7.2: The connected graph $P_6 + P_8$ is edge – odd graceful.

The graph $P_6 + P_8$ is a connected graph with 14 vertices and 60 edges. All the edges of the graph are labeled with distinct odd numbers in such a way that there will be distinct labeling for all its vertices.

That is, define f:
$$E(G) \rightarrow \{1, 3, ..., 2q-1\}$$
 by $f(e_i) = (2i-1)$, for $i = 1, 2, ..., 60$

Define f₊:
$$V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$$
 by

 $f_+(v) \equiv \Sigma$ f(uv) mod (2k), where this sum run over all edges through v

Hence the graph $P_6 + P_8$ is edge-odd graceful.

The graph with edge-odd graceful labeling is given in the figure 16.

Figure 16: Graph of $P_6 + P_8$

Reference

- [1] A.Solairaju and K.Chitra Edge-odd graceful labeling of some graphs 'Electronics Notes in Discrete Mathematics' Volume 33, April 2009, Pages 15 20
- [2] A.Solairaju, A.Sasikala, C.Vimala, 'Edge-odd Gracefulness of a spanning tree of Cartesian product of P₂ and C_n', Pacific-Asian Journal of Mathematics, Vol. 3, No. 1-2. Jan-Dec. 2009, pp:39-42
- [3] A.Solairaju, C. Vimala, A.Sasikala, 'Edge-odd Gracefulness of ------ (communicated to Serial Publications)