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Abstract 
 

In this paper, we deal with free convention flow through a porous medium 
along a vertical wall under the influence of transverse magnetic field. The 
horizontal walls are adiabatic. The magnetic field applied perpendicular to the 
rectangular channel. The governing flow equations in the fluid region are 
governed by Brinkman extended Darcy model. The flow problem axis 
described by means of parabolic partial differential equations and solutions are 
obtained by an implicit finite difference technique. The velocity and the 
temperature fields are obtained and their behaviour is discussed 
computationally for different values of governing parameters. 
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Introduction 
Magneto hydro dynamic (MHD) free convection of a viscous incompressible fluid 
along a vertical wall in porous medium must be studied if we are to understand the 
behavior of fluid motion in many applications as for example, in MHD electrical 
power generation, geophysics, astrophysics, etc. The problem of free convection 
flows of viscous incompressible fluids past a semi-infinite vertical wall has received a 
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great deal of attention in recent years because of its many practical applications, such 
as in electronic components, chemical processing equipment, etc. Magneto 
hydrodynamic free convection flow of an electrically conducting fluid in different 
porous geometries is of considerable interest to the technical field due to its frequent 
occurrence in industrial, technological and geothermal applications. As an example, 
the geothermal region gases are electrically conducting and undergo the influence of 
magnetic field. Also, it has applications in nuclear engineering in connection with 
reactors cooling. The interest in this field is due to the wide range of applications 
either in engineering or in geophysics, such as the optimization of the solidification 
processes of metals and metal alloys, the study of geothermal sources, the treatment 
of nuclear fuel debris, the control of underground spreading of chemical wastes and 
pollutants and the design of MHD power generators. Many papers concerned with the 
problem of MHD free convection flow in porous media have been published in the 
literature. The problem of free convection flow of non-conducting fluids in open-
ended vertical porous channels is considered by Ettefagh et al.[12], Kou and Lu [23]. 
Al-Nimr and Hader [1] investigate Analytical solutions for fully developed free 
convection flows in open-ended vertical porous channels are presented. Four 
fundamental boundary conditions have been investigated and the corresponding 
fundamental solutions are obtained. Numerous works have studied this problem, the 
first of which, Ganesan and Rani [16] solved the unsteady free-convection flow over a 
vertical cylinder.  Harris et al. [18] investigated the transient free convection from a 
vertical plate when the plate temperature is suddenly changed, obtaining an analytical 
solution (for small time values) and a numerical solution until the steady-state is 
reached. Polidori et al. [30] proposed a theoretical approach to the transient dynamic 
behaviour of a free convection boundary-layer flow when a step variation of the 
uniform heat flux is applied, using the Karman–Pohlhausen integral method. Kassem 
[21] solved the problem for unsteady free-convection flow from a vertical moving 
plate subjected to constant heat flux. Pantokratoras [29] solved the problem in a 
stationary situation using the finite-difference method, with isothermal and uniform 
flux boundary conditions in the wall, taking into account viscous dissipation. 
Soundalgekar et al., [36] solved the transient problem with an isothermal vertical 
wall. When heat and mass transfer occurs simultaneously, it leads to a complex fluid 
motion (the combination of temperature and concentration gradients in the fluid will 
lead to buoyancy-driven flows). This problem arises in numerous engineering 
processes, for example, biology and chemical processes, nuclear waste repositories 
and the extraction of geothermal energy. El-Hakiem [12] studied the unsteady MHD 
oscillatory flow on free convection-radiation through a porous medium with a vertical 
infinite surface that absorbs the fluid with a constant velocity. Ghaly [15] employed 
symbolic computation software Mathematica to study the effect of radiation on heat 
and mass transfer over a stretching sheet in the presence of a magnetic field. The free-
convection effect on flow problems is very important in heat transfer studied and 
hence has attracted the attention of numerous investigators. The flow past a vertical 
plate moving impulsively in its own plane was studied by Soundalgekar [38], where 
the effects of natural convection currents due to the cooling or heating of the plate 
were discussed. Over recent several decades, fluid flow in porous media has 
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intensively been studied and it has become a very productive field of research. The 
interest in the topic stems from its widespread practical applications in modern 
industries and in many environmental issues (as e.g. nuclear waste management, 
building thermal insulations, spread of pollutants, geothermal power plants, grain 
storage, packed-bed chemical reactors, oil recovery, ceramic processing, enhanced 
recovery of petroleum reservoirs, food science, medicine, etc.). This circumstance has 
resulted in a vast amount of both theoretical and experimental research work. The 
mechanical and thermal characteristics of fluid flow in porous media are today well 
understood for a large number of surface geometries and (temperature and flux) 
boundary conditions. In this respect an enormous amount of scientific material has 
been collected and analyzed comprehensively works by Bejan [6], Ingham and Pop 
[20], Nield and Bejan [28], Vafai [43, 44], Pop and Ingham [31] and Bejan et al., [5]. 
One of the earliest studies on laminar, fully developed mixed convection in a vertical 
channel with viscuss dispation investigated by Barletta [3, 4]. Malashetty and 
Umavathi were studied [25] combined free and forced convective magneto hydro 
dynamic flow in a vertical channel is analyzed by taking into account the effect of 
viscous and ohmic dissipations. The theoretical treatments of free convection along a 
vertical wall from Sparrow and Gregg [42], most of the works have been mainly 
concerned with the heat transfer knowledge occurring between the wall and the 
adjacent fluid. Guillaume et al., [17] investigate the transient dynamic behaviour of a 
free convection boundary layer-type flow. Sundalgekar [37, 39] has studied the free 
convection effects on the oscillatory flow past an infinite vertical porous plate with 
constant suction. Engineering processes in which a fluid supports an exo-thermic 
chemical or nuclear reaction are very common today, and the process design requires 
accurate correlations for the heat transfer coefficients at the boundary surfaces. Free 
convection is a phenomenon often accruing in nature and also in industrial processes, 
where ever heated surfaces immersed in fluids are involved. If the fluid be already in 
motion due to other external causes such as a pressure gradient or the motion of the 
solid surface, the flow is frequently referred to as due to combined free and forced 
convection and has been quite an interesting subject of study. Despite its increasing 
importance in the technological and physical problems, free and forced convection 
studies have received relatively little treatment. Again Soundalgekar [40] has studied 
the problem of two-dimensional unsteady flow of an electrically-conducting fluid past 
an infinite vertical porous plate with uniform suction at the plate. Georgantopoulos et. 
al [14] extended the problem of Soundalgekar and studied the effects of free 
convection and mass transfer in a conducting liquid, when the fluid is subjected to a 
transverse magnetic field. Unsteady free-convection flows past vertical infinite or 
semi-infinite plate were studied by many authors by formulating simple models and 
studying theoretically or experimentally the behavior either for hydrodynamic or 
magneto hydro dynamic case. The flow past a vertical infinite plate moving 
impulsively or oscillating harmonically in its own plane was studied by Soundalgekar 
[41], where the effects of free convection currents due to the heating or cooling of the 
plate were discussed. The effects of an external magnetic field on convection flows in 
porous media has gained through the years an increasing attention, as pointed out in 
the comprehensive review by Nield and Bejan [29]. The analysis of hydro magnetic 
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flows in porous media has been the subject of several recent papers [7, 8, 9, 10, 24, 
26, 32, and 35]. These investigations can be considered as theoretical extensions of 
the deep knowledge reached in the last decades regarding MHD effects in fluid 
dynamics and convection heat transfer. Most of the publication published papers on 
convection and porous media under the action of a magnetic field deal with external 
flows and consider cases such that the magnetic field is uniform.  Chamkha and 
Quadri [9] consider hydro magnetic natural convection from a horizontal permeable 
cylinder and obtain a numerical solution of the non similar boundary layer problem by 
using a finite difference method. El-Amin [11] investigates external free convection 
from either a horizontal plate or a vertical plate. Postelnicu [32] analyzes 
simultaneous heat and mass transfer by natural convection from a vertical flat plate 
with uniform temperature in an electrically conducting fluid saturated porous 
medium. Kamel [21] more recently considered the transient one-dimensional 
magneto-convective heat and mass transfer through a Darcian porous medium 
adjacent to an infinite vertical porous plate using the Laplace transform technique and 
the state space approach. Krishna et al., [24] studied hydro magnetic convection 
boundary layer heat transfer through a Darcian porous medium in a rotating parallel 
plate channel, presenting analytical solutions and discussing the structure of the 
different boundary layers. Studies of Couette magneto hydrodynamic flows, although 
without consideration of porous media effects include the analysis by Soundalgekar et 
al., [41] and more recently the transient model presented by Attia [2]. Nield and Bejan 
[27] summarized the study on the phenomena of free convection in porous media. 
Rastogi and Poulikakos [34] studied the free convection heat and mass transfer from a 
vertical surface in a porous region saturated with a non-Newtonian fluid. In this paper, 
we deal with free convention flow through a porous medium along a vertical wall 
under the influence of transverse magnetic field. The horizontal walls are adiabatic. 
The magnetic field applied perpendicular to the rectangular channel. The governing 
flow equations in the fluid region are governed by Brinkman extended Darcy model. 
The flow problem described by means of parabolic partial differential equations and 
solutions are obtained by an implicit finite difference technique.  
 
 
Nomenclature 
W : Channel width 
h : Convective heat transfer coefficient 
ρ  : Density  
X, Y : Dimensionless axial and transverse coordinate 
θ  : Dimensionless temperature 
U  : Dimensionless axial velocity 

,v tβ β  : Dimensionless variables 
μ  : Dynamic viscosity 
σ  : Electrical conductivity 

1s  : Fluid properties on the cool wall 
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2s  : Fluid properties on the hot wall 
Gr  : Grashoff number 
g  : Gravitational acceleration  
v  : Kinematic viscosity 
Kn  : Knudsen number 
λ  : Molecular mean free path,  
M : Magnetic field Parameter (Hartman number)  
Nu  : Nusselt number 
Pr  : Prandtl number 
p  : Pressure  

Tr  : Ratio of wall temperature differences 
Re  : Reynolds number 

su  : Slip velocity  

pc  : Specific heat at constant pressure. 
γ  : Specific heat ratio  
F  : Tangential momentum accommodation coefficient 
T : Temperature 

sT  : Temperature of the gas at the wall  

iF  : Thermal accommodation co-efficient 
k  : Thermal conductivity  
α  : Thermal diffusivity 
β  : Thermal expansion coefficient  
u  : Velocity in the axial direction ‘ x ’  

wT  : Wall temperature  
ν  : Kinematic viscosity 
k : Permeability of the porous medium 
u0 : Uniform Velocity 
g : Acceleration due to gravity 
 
 
Formulation and Solution of the problem 
We consider a steady two dimensional magneto hydro dynamic free convection flow 
along a vertical wall through a porous medium in a rectangular channel.  The wall is 
maintained at different temperatures.  The horizontal walls are adiabatic.  The 
magnetic field is applied perpendicular to the rectangular channel.  Let the x′ - axis be 
taken along the plate and y′ - axis normal to the plate. The fluid is subjected to a 

constant transverse magnetic field of strength 0B . Let 0(0, ,0)B B
−

=  and q = (u, v, 0) 

be the applied magnetic field and velocity field respectively. The governing equations 
for the steady, viscous incompressible flow of an electrically conditioning fluid for 
the Brinkman-extended Darcy model are:  
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and generalized Ohm’s law 

     (   ) (   )J E V B J B
B

ω τσ= + Χ + Χ  (2.7) 

 
The following assumptions are made: 

1. The flow is only in x and y direction 
2. Electric field E and induced magnetic field are neglected. 
3. The energy dissipation is neglected 
4. Pressure term will be neglected. 
5. The Boussinesq approximations have been used. 

 

 Since      0(0, ,0)B B
−

= and q = ( u, v, 0 ),  the generalized Ohm’s law gives 
 0&0 uBmJJmJJ xzzx σ=−=−  
 
 On solving these equations, we have, 
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 Where 
 m ωτ= is the Hall parameter  
 
 Here 
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 Using the above assumptions and the generalized Ohm’s law in presence of Hall 
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currents, the equations (2.1) to (2.6) for the Brinkman extended Darcy model are 
given by   
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 The boundary conditions are 
 u = 0,             T = T∞      for x = 0 and 0≤y≤ ∞ 
 u = 0, v = 0,   T = Tw      for y = 0 and x > 0 (2.12) 
 u = 0,             T = T∞      for y → ∞ and x >0 
 
 The equations (2.9) to (2.11) and boundary conditions (2.12) are put in non-
dimensional form by using the following transformations 
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 Making use of non-dimensional variables, the governing equations represent the 
flow are 
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 Where         

 
μ

σμ 22
0

2
e2 LH

M =   is the magnetic parameter (Hartmann number)     

 
2L

k
D =  is the Darcy parameter  and        

 Pr PCμ
κ

=  is the Prandtl number 

 m ωτ=  is the Hall parameter 
 
 The boundary conditions are 
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 U = 0, V =0, θ =1              for Y =0 and X.>0 
 U = 0,  θ =0                       for X >0 and Y→ ∞ (2.16) 
 U = 0,  θ =0                       for X =0 and 0≤Y≤∞ 
 
 Writing equations (2.13), (2.14) and (2.15) in finite difference form and applying 
them to the (i, j) mesh point of a rectangular grid figure as shown below. 

 

 
 

Figure : Mesh network for difference representations 
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 The difference form selected here is highly implicit, i.e., not only all Y-direction 
derivatives are evaluated at i+1 but the coefficient of non-linear convective terms are 
also evaluate at i+1.  This representation is necessary since the usual implicit scheme 
in which the coefficients are evaluated at ‘i’ is inconsistent for these conditions. 
 The difference equations (2.17) to (2.19) become 
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 Equations (2.20) to (2.22) together with the boundary conditions (2.16) are solved 
by Gauss Elimination Method which consists of solving the set of equations (2.20), 
(2.22) and (2.21) in that order repeatedly. 
 Writing equations (2.20), (2.21) and (2.22) in finite difference form and applying 
them to the (i, j) mesh point of rectangular grid as shown in the figure. The finite 
difference approximation to the derivatives (2.13) to (2.15) as follows 
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 The finite difference approximations are not perfectly symmetrical nor are they 
same form in all equations.  This is done so as to ensure stability of the computer 
solution and to enable the equations to be uncoupled from each other.  If small mesh 
spacing is used all of these forms approach the real derivative. Form the nature of the 
last three expressions it can be seen that (2.22) is the only expression involving the 
temperatures, and therefore it may be solved separately from (2.20) and (2.21).  By 
determining an additional equation involving only unknowns which appear in (2.21), 
this equation may be uncoupled from (2.20) and solved separately.  This additional 
equation or equation of constraint may be obtained by solving (2.20) to obtain the 
velocity at the wall V (j+1, N+1) which is zero, in terms of the center line velocity V 
(j+1, 0) which is also zero.  The resultant equation becomes 
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 A set of simultaneous equation (2.21) together with (2.23) may be written. One 
equation can be formed about each mesh point in a column as shown 
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 This set of equations can be solved by Gauss-Jordan Method.  Application of the 
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newly found axial velocities (U’s) together with those in the column behind into 
equation (2.20) determines the new transverse velocities (V’s). Equation (2.20) can be 
written as using finite-difference equations as shown 
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 The set of velocities are now placed into a set of finite-difference equations 
written about each mesh point in a column for the equation (2.22) as shown 
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 The same techniques may be used to solve this set of equations as were used to 
solve the momentum equation. Finally, we find the skin friction analytically and 
discussed computationally with reference to different variations in the governing 
parameters. 
 
 
Results and Discussion 
The flow governed by the non-dimensional parameters M the Hartmann number, D 
the Darcy parameter and Pr the prandtl number. The figures (1-6) and (7-12) 
represent the velocity and the temperature profiles for X=0 and X=1 levels 
respectively with reference to different variations in the governing parameters being 
other parameters fixed. We are fixing non-dimensional stream wise velocity U as well 
as V non-dimensional transverse velocity. The Fig.(1-3) and fig.(8-10) represent the 
velocity profiles at levels X=0 and X=1; The Fig.(4-7) and fig.(11-14) represent the 
temperature profiles at levels X=0 and X=1,  while the tables (I-II) represent the skin 
friction coefficient at upper and lower walls. We notice that the velocity component 
reduces with increasing the intensity of the magnetic field M and enhances with 
increasing the Darcy parameter D. Lower the permeability of the porous medium 
lesser the fluid speed in the entire region (Fig. 1-2). The velocity component enhances 
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with increasing the hall parameter m (Fig. 3). The temperature experiences retardation 
with increasing the intensity of the magnetic field M (Hartmann number) while it 
enhances with increasing the Darcy parameter D, Prandtl number Pr and hall 
parameter m (Fig. 4-7). Likewise the similar behaviour of the flow at X=1 level with 
reference to different variations in the governing parameters (Fig. 8-14). 
 From the above we observe that the velocity of the fluid motion is decreases with 
increase in the magnetic parameter M.  The behaviors of velocity happen with the 
intention of the induced magnetic field effects the fluid motion containing the porous 
medium.  Likewise the porous medium effects the velocity of the clean fluid region 
since the magnitude of the velocities in the clean fluid region relatively high 
comparable to filling with porous materials throughout the fluid region. 
 The skin friction at the lower wall enhances with increasing the intensity of the 
magnetic field M (Hartmann number) and hall parameter m, while it reduces with 
increasing the Darcy parameter D. Similarly the skin friction at the upper wall 
enhances with increasing both the intensity of the magnetic field M and the Darcy 
parameter D but it reduces with increasing the hall parameter m. 
 
The Velocity and Temperature profiles at level X=0: 

 

 
 

Figure 1: The velocity profile for different M with D=1, Pr =0.71, m=1 
 

 
 

Figure 2: The velocity profile for different D with M=2, Pr =0.71, m=1 
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Figure 3: The velocity profile for different m with D=1, Pr =0.71, m=1 
 

 
 

Figure 4: The temperature profile for different M with D=1, Pr =0.71, m=1 
 

 
 

Figure 5: The temperature profile for different D with M=2, Pr =0.71, m=1 
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Figure 6: The temperature profile for different Pr with M=2, D =1, m=1 
 

 
 

Figure 7: The temperature profile for different m with M=2, D =1, Pr=0.71 
 
The Velocity and Temperature profiles at level X=1: 

 

 
 

Figure 8: The velocity profile for different M with D=1, Pr =0.71, m=1 
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Figure 9: The velocity profile for different D with M=2, Pr =0.71, m=1 
 

 
 

Figure 10: The velocity profile for different m with D=1, Pr =0.71, m=1 
 

 
 

Figure 11: The temperature profile for different M with D=1, Pr =0.71, m=1 
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Figure 12: The temperature profile for different D with M=2, Pr =0.71, m=1 
 

 
 

Figure 13: The temperature profile for different Pr with M=2, D =1, m=1 
 

 
 

Figure 14: The temperature profile for different m with M=2, D =1, Pr=0.71 
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Table I: Skin friction coefficient (τ ) at X=0 level 
 

 I II III IV V 
M=2 0.161228 0.142625 0.125552 0.185542 0.255652 
M=5 0.244668 0.215515 0.185595 0.366526 0.558585 
M=8 0.395652 0.261145 0.232551 0.411521 0.655685 
M=10 0.532556 0.396655 0.265528 0.744854 0.900145 

 
 I II III IV V 

D 1 2 3 1 1 
m 1 1 1 2 3 
Pr 0.71 0.71 0.71 0.71 0.71

 
 

Table II: Skin friction coefficient (τ ) at X=1 level 
 

 I II III IV V 
M=2 0.275345 0.399642 0.465552 0.225652 0.185454 
M=5 0.344549 0.445852 0.585855 0.266585 0.225651 
M=8 0.655281 0.801142 0.964663 0.399856 0.300258 
M=10 0.797655 0.965555 1.302265 0.512215 0.385545 

 
 I II III IV V 

D 1 2 3 1 1 
m 1 1 1 2 3 
Pr 0.71 0.71 0.71 0.71 0.71
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