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Abstract 
 

The concept of mixed quadrature rules has been used for construction of such 
types of rules of precision 5, 7, and 9. The error associated with these rules has 
been analyzed and some definite real integrals have been approximately 
evaluated by the rules and found to yield good approximation to the exact 
values of the integrals otherwise obtained. 
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Introduction 
Basically, there are two types of quadrature rules, which are:  

1. Newton-Cotes type of rules and  
2. Gauss- type rules, for evaluating definite integrals: 

  ( )I f  = 
1

1
( )f x dx

−∫   
(1.1) 

 
numerically.  
 It is a well-known fact that the Gauss-type rules integrate more accurately than the 
Newton-Cotes type of rule even though both have same number of nodes and 
moreover the degree of precision of the Gauss- type rules is greater than the Newton-
Cotes type of rule having equal number of nodes. 
 However, if Gauss- type rule with certain precision (say) d is suitably coupled 
with Newton-cotes types of rules having same precision, an integration rule of higher 
precision is produced. The precision of such rule is at least two more than each of the 
quadrature rules used for the construction of the new rules. Such rules have been 
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defined as mixed quadrature rules by Das and Pradhan [1]. For example we state here 
the mixed quadrature rule: 

  
[ ]1,2 1 2

1
( ) 2 ( ) 3 ( )

5
R f R f R f= +

 (1.2) 

formulated by Das and Pradhan [1]. This rule is the weighted mean of the well-known 

Simpsons 
1

3
rd  rule: 

  
( )1

1
[ ( 1) 4 (0) (1) ]

3
R f f f f= − + +

 (1.2a) 

of Newton-cotes type and  Gauss-Legendre two point rule:
 

  
( )2

1 1
[ ( ) ( ) ]

3 3
R f f f= − +

 (1.2b)
 

  And it is to be noted that the precision of these rules given in equations (1.2a) and 
(1.2b) is three; where as the precision of the mixed quadrature rule 1,2 ( )R f  is five; 

two more than that of Simpsons 
1

3
rd  rule 1( )R f  and Gauss-Legendre two point rule: 

2 ( )R f . 

 It may be noted here that the coefficients of 1( )R f  and 2( )R f in the mixed 
quadrature rule given in equation (1.2) are simple fractions 
2 3

0.4 0.6 .
5 5

and respectively= =  So there is no addition of errors like truncation error, 

round off error or machine error due to finite precision of computing machine, if the 
integral given in equation (1.1) is numerically integrated by this rule or by any other 
rules of this class of rules. 
 Further, it may be mentioned here that the degree of accuracy to a desired decimal 
place of the approximate value of the integral by a single quadrature rule can not be 
ascertained; but the same may be assured of to some extent from the approximate 
values obtained by numerically integrating the integral by the two rules and the mixed 
quadrature rule constructed out of these rules. 
 Here it is noteworthy that, no additional evaluation of function is required while 
numerically integrating the integral by a mixed quadrature rule. The formulation of 
mixed quadrature rule from the existing rules of numerical integration is quite simple 
but yields result of greater accuracy. 
 Thus, in this paper we intend to construct a quadrature rule of mixed types of 
precision 5, other than one given in equation (1.2),and two rules of precision 7 in the 
same vain, as it is done by Das and Pradhan [1] in succeeding articles. 
 In addition to the formation of mixed quadrature rules a complete program in C++ 
is appended at the end of this paper to facilitate the evaluation of definite integrals by 
mixed quadrature rules and to study the differences in accuracies by such rules and 
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the rules which have been used in construction of such mixed quadrature rules. 
 A set of five definite integrals: 1I  to 6I  whose exact values are otherwise known 
have been numerically integrated by the mixed quadrature rules constructed in this 
paper and results have been depicted in table’s no. 3.1 – 3.6.  
 Again all the numerical calculations have done by machine (PIV) in double 
precision using the program appended in this paper. 
 
Formulation of mixed quadrature rule of precision 5: 
For the construction of 2nd mixed quadrature rule of precision 5, we choose the 
following rule of Newton-cotes type: 

  
( ) ( ) ( ) ( ) ( )3

1 1 11 3 1 ;3 34
R f f f f f⎡ ⎤⎡ ⎤−= − + + +

⎢ ⎥⎣ ⎦⎣ ⎦
 

which is well known Simpson’s (3/8) th rule of precision three, besides the Gauss-
Legendre two point rule: 2 ( )R f

 
given in equation (1.2b). 

 Let ( )2E f and ( )3E f respectively denote the error in approximating the real 

definite integral given in (1.1) by the qudrature rules ( )2R f and ( )3R f . Thus, 

  ( ) ( ) ( )2 2I f R f E f= +
  

 (2.1) 

and 

  ( ) ( ) ( )3 3I f R f E f= +
  

(2.2) 

 Let us assume here that, the function ( )f x is sufficiently differentiable in the 

range of integration[ ]1, 1− . Then expanding   ( )f x  about x = 0, in Taylor’s series 

we have: 

  ( ) 2 3
0 1 2 3 ....f x c c x c x c x= + + + +

  
(2.3) 

where 

  

( ) ( )
( )

0

!

n

n

f
c

n
=   ;   1,2,3.....n =  

 As the series given in (2.3) is uniformly convergent in [-1, 1], we obtain by 
integrating both sides of the series (2.3) term by term  

  
( ) 0 2 4

2 2
2 ....

3 5
I f c c c= + + +

  
(2.4) 

where 

  

( ) ( )
( )

2

2

0

2 !

n

n

f
c

n
= ;  0,1,2,3.....n =  
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 Further substituting 1
3

x −=  and 1
3

x =  successively in the Taylor’s 

expansion of ( )f x  given in equation (2.3) we get 

  

1 2 3
0

1 2 3
0

1 ....
3 33 3 3

1 ....
3 33 3 3

c c c
f c

c c c
f c

⎫⎛ ⎞− = − + − +⎜ ⎟ ⎪⎝ ⎠ ⎪
⎬

⎛ ⎞ ⎪= + + + +⎜ ⎟ ⎪⎝ ⎠ ⎭

  (2.5) 

 Further, putting the Taylor’s expansions given in equation (2.5) in ( )2R f  we 

have: 

  
( )2 0 2 4

2 2
2 ....

3 9
R f c c c= + + +

  
(2.6) 

 Proceeding in the same way we obtained a result similar to equation (2.6) for the 
rule ( )3R f  as: 

  
( )3 0 2 4

2 14
2 ....

3 27
R f c c c= + + +

  
(2.7) 

and the error terms corresponding to the rules ( )2R f and ( )3R f as 

  

( )

( )

2 4 6

3 4 6

8 40
........

45 189
16 368

....
135 1701

E f c c

E f c c

= + +

−= − −
   

respectively. 
 Therefore, 

  
( ) ( )2 4 6

8 40
....

45 189
I f R f c c= + + +

  
(2.8) 

  
( ) ( )3 4 6

16 368
....

135 1701
I f R f c c= − − −

  
(2.9) 

 Here it is pertinent to note that the coefficients of 4c  in ( )2E f and ( )3E f are of 

opposite sign which is a very basic requirement for improvement in accuracy of the 
approximation by the mixed quadrature rule to be formulated as the linear 
combination of rules ( )2R f  and ( )3R f . In such a situation, the sign of the 

coefficients of rules ( )2R f  and ( )3R f  do not change in sign in mixed quadrature 

rule. As a result, there is no chance of lose of significant digits when the definite 
integral given in equation (1.1) is numerically integrated by the mixed quadrature rule 
claimed to be of higher precision 5.   
 Now multiplying the equation (2.8) by 2 and equation (2.9) by 3; then adding the 
resulting series, we obtained after simplification: 
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( ) ( ) ( )2 3 6 8

1 1 128 320
2 3 ...

5 5 567 729
I f R f R f c c

⎡ ⎤
⎡ ⎤= + − + +⎣ ⎦ ⎢ ⎥⎣ ⎦   

(2.10) 

and we claim that: 

  
( ) ( )2 3

1
2 3

5
R f R f⎡ ⎤+⎣ ⎦  

is the new quadrature rule of precision 5. If this rule is denoted by ( )2,3R f , then 

  
( ) ( ) ( )2,3 2 3

1
2 3

5
R f R f R f⎡ ⎤= +⎣ ⎦

  
(2 .11) 

 Thus, 

  ( ) ( ) ( )2,3 2,3I f R f E f= +  

where ( )2,3E f  is the analytical error associated with the rule ( )2,3R f  and it is given 

as: 

  
( ) ( ) ( )2,3 2 3

1
2 3

5
E f E f E f⎡ ⎤= +⎣ ⎦

 (2.12) 

 Further from equations (2.10) – (2.12) it follows that 

  ( )2,3E f  6 8

1 128 320
...

5 567 729
c c

⎡ ⎤= − + +⎢ ⎥⎣ ⎦  (2.13)
 

 
Degree of precision of ( )2,3R f : 

For ( ) ; 0,1,2,3 :if x x i wehave= =  

  
( ) ( ) ( )2,3 2 3

1
2 3

5
i i iE x E x E x⎡ ⎤= +⎣ ⎦

 

  0= , 
since  

  ( )2
iE x  0= ,   ( )3

iE x  0=   

as each of these rules: ( )2R f and ( )3R f  is of degree of precision three. 

 Further  

  
( ) ( )

1
4 4 4

2 2

1

E x x dx R x
−

= −∫  
8

45
=   

and 

  
( ) ( )

1
4 4 4

3 3

1

E x x dx R x
−

= −∫  
16

135

−=  

  ⇒  
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( )4

2,3

1 16 16

5 45 45
E x

⎡ ⎤= −⎢ ⎥⎣ ⎦
      0=  

 Further the mixed quadrature rule ( )2,3R f  integrates all monomials of odd degree 

since it is a symmetric quadrature rule.  
 Also  

  
( )6

2,3

377
0

8505
E x =− ≠ ,  

suggests that the degree of precision of the rule ( )2,3R f  is 5. 

 
Error bound of ( )2 3,R f  

Let  

  M =  ( ) ( )
1 1− ≤ ≤

iv

x
Max f x  

Now  

  
( )2,3E f  ( ) ( )2 3

1
2 3

5
E f E f⎡ ⎤= +⎣ ⎦  

  
( ) ( )2 3

1
2 3

5
E f E f⎡ ⎤≤ +⎣ ⎦

 (2.14)
 

But 

  ( ) ( ) ( )4
2 1 1

1
; 1 1

135
E f f η η= − < <  

and 

  ( ) ( ) ( )4
3 2 2

2
; 1 1

405
E f f η η= − − < <  

 
 (Ref. [5]; page 266,276) along with (2.14), leads to the following theorem on the 
error bound for the rule ( )2,3R f . 

 
Theorem: 2.1 If ( )f x  is assumed to be sufficiently differentiable in the interval [-1, 

1] and its fourth derivative is bounded by M  in this interval [-1, 1], then  

  ( )2,3

4

675
E f M≤   (2.15) 

 In the next sub article of this article we construct such type of rules of precision 
seven. 
 
Formulation of mixed quadrature rules of precision 7 
For the construction of quadrature rules of precision 7, we take Gauss-Legendre three 
point rule denoted as ( )4R f  and given by: 

  ( ) ( ) ( ) ( )4

1 3 35 8 0 55 59
R f f f f⎡ ⎤= − + +⎢ ⎥⎣ ⎦
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which is of precision 5. 
 We combine this rule and the rule ( )1,2R f  given in equation (1.2) to produce one 

mixed quadrature rule of precision 7 and the rule ( )4R f  is again combined with the 

rule ( )2,3R f  given in equation (2.11) to produce 2nd mixed quadrature rule of 

precision 7. These rules are respectively denoted as  ( )1,2;4R f  and ( )2,3;4R f . 

 Now without repeating the technique that we adopted in the formulation of mixed 
quadrature rule of precision 5, we simply state the rules below. 

  
( ) ( ) ( )1,2;4 1,2 4

1
9 5

14
R f R f R f⎡ ⎤= +⎣ ⎦   (2.16) 

and  

  
( ) ( ) ( )2,3;4 2,3 4

1
81 80

161
R f R f R f⎡ ⎤= +⎣ ⎦

  
(2.17) 

 Denoting the corresponding error terms by ( )1,2;4E f  and ( )2,3;4E f  we have: 

  
( ) ( ) ( )1,2;4 1,2 4

1
9 5

14
E f E f E f⎡ ⎤= +⎣ ⎦

 (2.18)
 

and  

  
( ) ( ) ( )2,3;4 2,3 4

1
81 80

161
E f E f E f⎡ ⎤= +⎣ ⎦

 (2.19) 
 
Degree of precision ( )1 2 4, ;R f and ( )2 3 4, ;R f  

Now  

  
( ) ( ) ( )1,2;4 1,2 4

1
9 5

14
i i iE x E x E x⎡ ⎤= +⎣ ⎦

   0= ; for    ( )0 1 5i =  

since both   

  ( )1,2
iE x  0=  = ( )4

iE x ; ( )0 1 5i =  

as each rule ( )1,2R f  and ( )4R f  is of precision 5. 

 Further 

  ( )6
1,2;4 0E x =  

since   

  
( )6

1,2

8

315
E x

−=  and  ( )6
4

8

175
E x =

 

when substituted in 
( )6

1,2;4E x  
makes it zero.

 

 Also, since the mixed quadrature rule ( )1,2;4R f  integrates all monomials of odd 

degree as it is a symmetric quadrature rule  
and  
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  ( )8
1,2;4E x  

16
0

1575

−= ≠ ; 

it follows that the degree of precision of the rule ( )1,2;4R f is 7. 

 It is not difficult to show that the degree of precision of the rule ( )2,3;4R f  given in 

equation (2.17) is seven. 
 
Error bound of ( )1 2 4, ;R f  and  ( )2 3 4, ;R f   

The error bounds of these rules are given in the following theorems. 
 
Theorem: 2.2 Suppose the derivatives of all order of ( )f x  exist in the interval [ -1 , 

1 ] and ( ) ( ) ( ) ( )
1 1

max ,iv vi

x

M f x f x
− ≤ ≤

⎡ ⎤=
⎣ ⎦

.Then 

  ( )1,2;4

253
3150

E f M≤   (2.20) 

and 

  ( )2,3;4

52078

206325
E f M≤   (2.21) 

 
Proof: 
Since  

  ( )1,2

2
225

E f M≤   (2.22) 

and  

  ( )4

1
15750

E f M≤   (2.23) 

 From the inequalities   (2.22) and (2.23) and from equation (2.18) it follows that: 

  ( )1,2;4

253
3150

E f M≤  

and it can also be shown from ( )2,3E f given in equation (2.15) and ( )4E f given in 

(2.23)  

  ( )2,3;4

52078

206325
E f M≤ . 

  
 
Numerical verifications 
To test the accuracy of the formula, we have taken the following integrals: 

  
2

1 1

1 2

1 0

x xI e dx I e dx−

−

= =∫ ∫  
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2

1 3 2

3 4

0 1

sinx x
I e dx I dx

x
= =∫ ∫  

  
1 1

5 6 2
0 11 1x

dx dx
I I

e x−

= =
+ +∫ ∫  

 
 
 

Table-3.1 
 

Rules Approximate value of  1I  

( )1R f  2.3620538 

( )2R f  2.3426961 

( )3R f  2.3556481 

( )4R f  2.3503369 

( )1 2,R f  2.3504392 

( )2 3,R f  2.3504673 

( )1 2 4, ;R f  2.3504027 

( )2 3 4, ;R f  2.3504025 

Exact Value 2.3504024 
 
 

Table-3.2 
 

Rules Approximate value of  2I  

( )1R f  0.747180 

( )2R f  0.746595 

( )3R f  0.746992 

( )4R f  0.746815 

( )1 2,R f  0.746829 

( )2 3,R f  0.746833 

( )1 2 4, ;R f  0.746824 

( )2 3 4, ;R f  0.746824 

Exact Value 0.746824 
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Table-3.3 
 

Rules Approximate value of  3I  

( )1R f  1.4757 

( )2R f  1.4542 

( )3R f  1.4687 

( )4R f  1.4624 

( )1 2,R f  1.4628 

( )2 3,R f  1.4629 

( )1 2 4, ;R f  1.4627 

( )2 3 4, ;R f  1.4627 

Exact Value 1.4627 
 

Table-3.4 
 

Rules Approximate value of  4I  

( )1R f  0.7894517 

( )2R f  0.7985600 

( )3R f  0.7926145 

( )4R f  0.7946527 

( )1 2,R f  0.7949167 

( )2 3,R f  0.7949927 

( )1 2 4, ;R f  0.7948224 

( )2 3 4, ;R f  0.7948238 

Exact Value 0.7948251 
 

Table-3.5 
 

Rules Approximate value of  4I  

( )1R f  0.3798507 

( )2R f  0.3799089 

( )3R f  0.3798702 

( )4R f  0.3798853 

( )1 2,R f  0.3798856 
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( )2 3,R f  0.3798857 

( )1 2 4, ;R f  0.3798855 

( )2 3 4, ;R f  0.3798855 

Exact Value 0.3798855 
 
 
 The authors are investigating possibility of some other mixed quadrature rules of 
higher precision for numerical integration of real and complex integrals of analytic 
functions on the line segment in the complex plane� . 
 Further, we have taken the definite integral: 

  ( )
1

6 2
1

;
1

dx
I f

x−

=
+∫  

for its peculiar behavior in response to evaluation of this integral by numerical 
quadrature. 
 This has attracted the attention of researchers since long since the approximation 
of this integral by standard quadrature rules does not yield good approximation to its 

exact value ( )22
14 . Although, the integrand: 

  ( ) 2

1

1
f x

x
=

+
; 

does not have any singularity on the path of the integration. Researchers are of 
opinion that the integrand behaves in a manner not conducive to the rules of 
numerical integration. Because of its complex singularities i.e. simple poles at the 
points z  =  i±  near to the path of the integration. 
 Thus, it is motivated us to test the response of this particular integral to numerical 
integration by the mixed quadrature rules constructed in this paper.  
 For the approximate values given in Table- 3.6, we observe that the adverse effect 
on numerical integration gradually diminishes as it is numerically integrated by rules 
of increasing precision and it is to be noted that the approximate values so obtained is 
satisfactory, at least two or three decimal places. 
 Thus, it appears that mixed quadrature rules of increasing precision nullifies to 
some extent to the adverse effect of near by singular points for numerical integration.  
 
 
Programming 
This article is devoted to the computer program in C++ in order to facilitate the 
researchers for evaluation of definite integrals by the mixed quadrature rules that we 
have developed in this paper. It is hoped that the program will immensely help 
students and researchers to appreciate the new rules in the field of numerical 
quadrature of definite integrals.       
//       A complete program in C++ for Approximation of integrals by 
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//                    Mixed_Quadrature rules. 
//       *********************************************************** 
//   Change the limits of integration to [-1,1] if it is other than this. 
#include<iostream.h> 
#include<conio.h> 
#include<math.h>; 
float fun(float); 
void main() 
{ 
clrscr(); 
float r1,r2,r3,r4,r12,r23,r124,r234; 
 
     r1=(1.0/3.0)*(fun(-1)+ 4*fun(0)+ fun(1)); 
     r2=fun(-1.0/sqrt(3.0)) +  fun(1.0/sqrt(3.0)); 
     r3=(fun(-1)+3*(fun(-1.0/3.0)+fun(1.0/3.0))+fun(1))/4.0; 
     r4=(8*fun(0)+5*(fun(-sqrt(0.6))+fun(sqrt(0.6))))/9.0; 
    r12=(2*r1+3*r2)/5.0; 
    r23=(2*r2+3*r3)/5.0; 
   r124=(9*r12+5*r4)/14.0; 
   r234=(81*r23+80*r4)/161.0; 
cout<<"            "<<  "YOUR OUTPUT"   <<endl; 
cout<<"            "<<  "***********"   <<endl; 
cout<<"     approximate values are :"   <<endl; 
cout<<"----------------------------------------"<<endl<<endl; 
cout<<" r1="<<r1<<" : "<<"r2="<< r2 <<" : "<<"r3="<< r3<<" : 
"<<"r4="<<r4<<endl<<endl; 
cout<<"     "  <<"   r12="<<r12<<":" <<" r23="<<r23<<endl<<endl; 
cout<<"     "  <<"  r124="<<r124<<":"<<"r234="<<r234<<endl<<endl; 
cout<<"-----------HAVE A NICE DAY--------------"; 
// Rules of precision 3:  r1,r2,r3. 
// Rules of precision 5:  r12,r23. 
// Rules of precision 7:  r124,r234. 
getch(); 
} 
float fun(float x) 
{ 
  float t, y; 
  t=0.25*(pow(1+x, 2));//Here is your integrand:exp(-x*x);limits:0,1 
  y=0.5*exp(-t);//for limits other than [-1,1], suitably change the integrand. 
   return(y); 
} 
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