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Abstract 
 

The unsteady hydromagnetic flow of an electrically conducting visco-elastic 
fluid past an infinite vertical porous plate in a porous medium of time 
dependent permeability under oscillatory suction velocity normal to the plate 
has been investigated. The flow with heat and mass transfer is characterized 
by the second-order fluid model. It is considered that the uniform magnetic 
field acts normal to the flow and the permeability of the porous medium 
fluctuates with time. The perturbation technique has been used to solve the 
problem. The profiles of velocity and skin friction have been presented 
graphically for different values of parameters involved in the solution to 
observe the effects of the visco-elastic parameter. 
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Introduction 
The flow past an infinite porous plate and the phenomenon of heat and mass transfer 
have been of great interest due to its applications in industries. Flows which arise in 
fluids due to the unsteady motion of a boundary, boundary temperature, density 
differences caused by the diffusion of thermal energy etc. have many applications in 
geophysics, chemical engineering, turbo-machinery and aerospace technology. Some 
important contributions where the transfer of heat and mass take place simultaneously 
as a result of buoyancy reduced motions have been given by several authors. 
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 The investigations of the problems of free convective flow of a viscous fluid 
through a porous medium with heat and mass transfer have been studied by authors 1-
11. The effects of permeability which varies with time, of free convective flow past a 
vertical porous wall have been investigated by Shreekanth et al12. Singh et al 13 have 
discussed hydromagnetic free convective and mass transfer flow of such fluid 
considering permeability variation with direction. Acharya et al14 have extended the 
study in steady flow with constant suction in the presence of magnetic field. Singh et 
al15 have studied the effects of permeability variation and oscillatory suction velocity 
in presence of time dependent viscosity along with the uniform magnetic field.  
 The objective of the present paper is to study the unsteady hydromagnetic flow of 
a visco-elastic fluid past an infinite vertical plate in a porous medium of time 
dependent permeability under oscillatory suction velocity normal to the plate with 
heat and mass transfer. 
 The constitutive equation for second-order fluid [Coleman & Noll (1960)] is    
 
  kjikijijijij AAAAp )1()1(3)2(2)1(1 μμμδσ +++−=   (1.1) 

 
where ijσ are the stress tensors, p the hydrostatic pressure, )(iA are kinematic Rivlin-

Erickson tensors; 321 ,, μμμ are material constants describing viscosity, elasticity and 

cross-viscosity where 02 <μ from thermodynamic consideration [Coleman and 
Markovitz (1964)]. Equation (1.1) is valid for low rates of shear. 
 
 
Mathematical Analysis 
We introduce a co-ordinate system where x -axis is taken along the infinite vertical 
plate in the direction of flow and y -axis normal to it. The permeability of the porous 

medium is considered to be of the form )1()( tni
0 eKtK ε+= and the suction velocity is 

assumed to be )1()( tni
0 evtv ε+−= , where 1<<ε being the amplitude of the 

permeability variation, is a positive constant, 00 >v is a constant and negative sign 

indicates that the suction is towards the plate, and 0K the mean permeability of the 

medium. All the fluid properties are assumed to be constant except that the influence 
of the density variation with temperature. Let u be the component of velocity in the 
x -direction.  
 The boundary conditions relevant to the problem are  
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where ∞TTw , and ∞CCw , are respectively the temperature and the molar concentration 

of the fluid at the plate and far away from the plate. 
 Let us introduce the following non-dimensional quantities 
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 Introducing the above non-dimensional variables in the governing equations for 
velocity, temperature and molar concentration; neglecting the induced magnetic field 
of strength 0B and taking the usual Boussinesq’s approximations, we obtain the 

following non-dimensional equations of the fluid motion: 
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subject to boundary conditions  
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where  

 
D

Sc
1υ

= , Schmidt number 

 

p

r

C

P

ρ
κ

υ
0

1= , Prandtl number  

 
3

0

1 )(

v

TTg
G w

r
∞−

=
βυ

, Grashof number for heat transfer 

 
3

0

1 )(

v

CCg
G w

m
∞−

=
βυ

, Grashof number for mass transfer 

 0

01

v

B
M

ρ
συ

= , Magnetic parameter 

 1

02

υ
υα v

= , visco-elastic parameter 

 
and ββ , are the co-efficient of volume expansion for heat and mass transfer 
respectively, T the fluid temperature, C the molar concentration, D the chemical molar 
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diffusivity, pC the specific heat at constant pressure, n the frequency of oscillation, t 

the time, ρ the density of the fluid, 21,υυ the kinematic co-efficient of viscosity and 
elasticity, σ the electric conductivity and g the acceleration due to gravity. 
 
 
Method of Solution 
To solve the equations (2.3) to (2.5) subject to boundary conditions (2.6), we assume 
the solutions for 1<<ε as follows: 
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 Substituting (3.1) into equations (2.3) to (2.5) and equating the harmonic and non-
harmonic terms, we get         
 0001000 CGTGuauuu mr +=+′−′′−′′′α   (3.2) 
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where the primes denote differentiation with respect to y.  
 The corresponding boundary conditions are  

 
0,,,,,:

1C,T1T,u0u:0y

101010

101010

→∞→
=======

CCTTuuy

C
 (3.8) 

 
 Substituting the solutions of equations (3.2) to (3.7) under the boundary 
conditions (3.8), we obtain  

 

int]
4

)
4

1[(),( 1 ee
n

P
ie

n

P
ietyT yPrymryP rr −−− +−+= ε   (3.9) 

 

int]
4

)
4

1[(),( 2 ee
n

S
ie

n

S
ietyC yScymcyS cc −−− +−+= ε   (3.10) 

where  

 ][
2

1
],[

2

1 2
2

2
1 cccrrr inSSSminPPPm ++=++=  

and 



Heat and Mass Transfer in a Visco-Elastic MHD Flow Past 141 

 

 

3 3

4 1

32

34 1 2

3 4 3 4 1 2 3 4

1 2 3

4 5 6 7 8

1 2 3 4 5 6

[( ) {( ) }]

(cos sin )[{ ( )

( ) }

{( )

m y c cr r

r

m yc cr

S y m y S yP y P y

m y m y P y
r

S y S ym y P y
m r c

m ym y m y m y

u a a e a e a e A A e A e A e

nt i nt B e G B e B e

G B e B e B e B Pe B S e

C C e C e C e C e C

α
ε

α

−

−

− − −− −

− − −

− −− −

−− − −

= + − − + − + +

+ + − +

− + + − −

+ + + + + +

7 }]

r

c

P y

S y

e

C e

−

+

 (3.11) 

where 
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....,........., 21 AA ,........, 21 BB ,........, 21 CC are constants which are determined, but not 
presented here for the sake of brevity.  
 Separating real and imaginary parts and taking only the real part, we obtain the 
velocity, temperature and concentration fields in terms of fluctuating parts in the form  

 

)sincos()(),(

)sincos()(),(

)sincos()(),(

0

0

0

ntCntCyCtyC

ntTntTyTtyT

ntMntMyutyu

ir

ir

ir

−+=
−+=
−+=

ε
ε
ε

.

 

 
 Hence expressions for transient velocity, temperature and concentration field for 

π=nt are 
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Skin Friction, Rate of Heat and Mass Transfer 
The non-dimensional skin friction wτ  at the plate (y=0) is given by 
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 The dimensionless heat transfer co-efficient at the plate is given by 
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where R and β are the amplitude and the rate of heat transfer.  

 Similarly, the mass transfer co-efficient hS at the plate is given by  
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where Q and γ are the amplitude and the rate of mass transfer.  
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Results and Discussion 
The aim of the problem is to bring out the effects of the visco-elastic parameter on the 
flow characteristics. The visco-elastic effect is exhibited through the non-dimensional 
parameterα . The corresponding results for Newtonian fluid can be deduced from the 
above results by setting 0=α and it is worth mentioning here that the results coincide 
with that of Singh et al. 
 Figure 1-10 reveal the transient velocity u and the skin friction wτ against y for 

different values of magnetic parameter M, Grashof number for heat transfer rG , 

Grashof number of mass transfer mG and visco-elastic parameterα with consideration 

of Prandtl number 5=rP , permeability parameter 100 =K , frequency parameter n=5, 

Schmidt number 5=cS , perturbation parameter 005.0=ε  and π=nt . Two cases in 

general interest for Grashof number 0>rG corresponding to cooling of the plate and 

Grashof number 0<rG corresponding to heating of the plate are considered.  

 The figures reveal that due to cooling of the plate )0( >rG , the transient velocity u 
first increase and then decrease (Fig.1, Fig.2, Fig.3) in both Newtonian and non-
Newtonian cases but the opposite pattern is observed (Fig.6, Fig.7, Fig.8) due to 
heating of the plate )0( <rG . Again, Fig.1 depicts that u increase with increasing 

values of the visco-elastic parameter α as compared to their corresponding values for 

Newtonian fluid, but decrease when the value of the magnetic parameter M increase 
with α (Fig.2, fig.3) due to cooling of the plate but the reverse behavior is observed 

due to heating of the plate (Fig.6, Fig.7, Fig.8).  
 Figures 4, 5 and Figures 9, 10 demonstrate the variations of the skin friction 

wτ against y. From the figures, it is seen that the values of wτ decrease for 0>rG and 

increase for 0<rG in both Newtonian and non-Newtonian cases. Again, the profiles 

reveal that wτ increase with the increasing values of α in comparison with their 

corresponding values for Newtonian fluid and the magnetic parameter M due to 
cooling of the plate (Fig.4, Fig.5) but decrease due to heating of the plate (Fig.9, 
Fig.10) with the combination of other flow parameters.  
 It is noted that the dimensionless heat transfer co-efficient uN and the mass 

transfer co-efficient hS are not affected by the visco-elastic parameter. 
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Figure 1: Transient velocity u against y for M=0.5, K0=10, n=5.0, Gr=10, Gm=10, 
ε=0.005, Pr=5, Sc=5, nt=π. 
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Figure 2: Transient velocity u against y for M=1.0, K0=10, n=5.0, Gr=10, Gm=10, 
ε=0.005, Pr=5, Sc=5, nt=π. 
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Figure 3: Transient velocity u against y for M=1.5, K0=10, n=5.0, Gr=10, Gm=10, 
ε=0.005, Pr=5, Sc=5, nt=π. 
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Figure 4: Skin Friction Tw against y for M=0.5, K0=10, n=5.0, Gr=10, Gm=10, 
ε=0.005, Pr=5, Sc=5, nt=π. 
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Figure 5: Skin Friction Tw against y for M=0.5, K0=10, n=5.0, Gr=10, Gm=10, 
ε=0.005, Pr=5, Sc=5, nt=π. 
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Figure 6: Transient velocity u against y for M=0.5, K0=10, n=5.0, Gr=10, Gm=10, 
ε=0.005, Pr=5, Sc=5, nt=π. 
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Figure 7: Transient velocity u against y for M=1.0, K0=10, n=5.0, Gr=10, Gm=10, 
ε=0.005, Pr=5, Sc=5, nt=π. 
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Figure 8: Transient velocity u against y for M=1.5, K0=10, n=5.0, Gr=10, Gm=10, 
ε=0.005, Pr=5, Sc=5, nt=π. 
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Figure 10: Skin Friction Tw against y for M=0.5, K0=10, n=5.0, Gr=10, Gm=10, 
ε=0.005, Pr=5, Sc=5, nt=π. 
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Figure 10: Skin Friction Tw against y for M=1.5, K0=10, n=5.0, Gr=10, Gm=10, 
ε=0.005, Pr=5, Sc=5, nt=π. 
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