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Abstract 
 

A subset of vertices S resolves a graph G if every vertex of G is uniquely 
determined by its vector of distances to the vertices in S. The metric 
dimension of G is the minimum cardinality of a resolving set of G. For the 
graphs G1 = (V1;E1) and G2 = (V2;E2) its composition product is denoted by 
G1[G2] is the graph whose vertex set is V1 £ V2 and two vertices (u; v) and 
(x; y) are adjacent in G1[G2] whenever ux 2 E1, or, u = x and vy 2 E2. In this 
paper, we completely determined the metric dimension of the composition 
product of paths, paths and cycles, complete graphs, complete graphs and 
paths, path and stars. 
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 In the next sections, we prove similar type of results for the composition product 
of graphs similar to that of wheels and hexagonal cellular networks obtained in [10, 
11]. 
 We recall the following results for immediate reference, which we use in the next 
sections. 
 

 



Metric Dimension of Composition Product of Graphs 149 

 

 
 
 
Composition Product of Graphs 

 
 
 In next sections of this chapter we estimate the metric dimension for graphs 
obtained by taking the composition product of several combinations of graphs such 
as; the composition product of paths, paths and cycles, cycles and paths, complete 
graphs, complete graphs and paths, paths and stars. Some of these results are 
extensions of the earlier work of F. Harary and R.A. Melter [4]. 
 
 
Lower bounds for Metric Dimension of G[Pn] 
In this section we determine lower bounds for the composition product of graphs. 
These bounds are not tight for the graphs of very small order. For such graphs the 
actual lower bounds are determined in the next sections while obtaining their upper 
bounds. 
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Metric Dimension and a Basis for Pm[Pn] 
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Metric Dimension and a Basis for Km[Pn] 

 

 



154  B. Sooryanarayana et al 

 

 

 
 

 
 



Metric Dimension of Composition Product of Graphs 155 

 

 
 
 
Metric Dimension and a Basis for Cm[Pn] 
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Metric Dimension of Pn[G] 
In this section we completely determine metric dimensions Pn[G], for every graph G 
of diameter at most two. 
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Metric Dimension and a Basis for Pm[Cn] 
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Figure 3: Metric basis (darkened vertices) of the graph P3[C8]. 
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