Metric Dimension of Composition Product of Graphs

B. Sooryanarayana ${ }^{1}$, Shanmukha B. ${ }^{2}$, Chandru Hegde ${ }^{\mathbf{3}}$
and Vishukumar \mathbf{M}^{4}
Department of Mathematics
${ }^{1}$ Dr. Ambedkar Institute of Technology, Bangalore, India
E-mail: dr bsnrao@hotmail.com
${ }^{2}$ P.E.S. Engineering College, Mandya, 571 401, India
E-mail: drbsk shan@yahoo.co.in
${ }^{3}$ Srinivas Institute of Technology, Valachil, Mangalore, 574 143, India
E-mail: chandrugh@gmail.com
${ }^{4}$ Reva Institute of Technology, Yelahanka, Bangalore, 560 064, India
E-mail: m vishu78@redi®mail.com

Abstract

A subset of vertices S resolves a graph G if every vertex of G is uniquely determined by its vector of distances to the vertices in S. The metric dimension of G is the minimum cardinality of a resolving set of G . For the graphs $\mathrm{G} 1=(\mathrm{V} 1 ; \mathrm{E} 1)$ and $\mathrm{G} 2=(\mathrm{V} 2 ; \mathrm{E} 2)$ its composition product is denoted by G1[G2] is the graph whose vertex set is V1 $£$ V2 and two vertices (u; v) and (x ; y) are adjacent in G1[G2] whenever ux 2 E 1 , or, $\mathrm{u}=\mathrm{x}$ and vy 2 E 2 . In this paper, we completely determined the metric dimension of the composition product of paths, paths and cycles, complete graphs, complete graphs and paths, path and stars.

Keywords: Metric Dimension, Metric basis, Resolving sets, Composition Product

AMS Subject Classification number: 05C20

Introduction

All the graphs considered in this paper are undirected, simple, finite and connected. We use standard terminology, the terms not defined here may found in $[1,5]$. For each ordered subset $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ of V, each vertex $v \in V$ can be associated by a vector of distances denoted by $\Gamma(v / S)=\left(d_{G}\left(s_{1}, v\right), d_{G}\left(s_{2}, v\right), \ldots, d_{G}\left(s_{k}, v\right)\right)$. The set S is said to be a resolving set of G, if $\Gamma(v) \neq \Gamma(u)$, for every $u, v \in V-S$. A resolving set of minimum cardinality is the metric basis
and cardinality of a metric basis is the metric dimension of G. The notion of metric dimension is introduced independently by F. Harary [4] and P.J.Slater [8, 9]. The cartesian product of graphs G and H, denoted by $G \square H$, is the graph with vertex set $V(G \square H)=\{(a, v): a \in V(G), v \in V(H)\}$, where (a, v) is adjacent to (b, w) whenever $a=b$ and $\{v, w\} \in E(H)$, or $v=w$ and $\{a, b\} \in E(G)$. In [3] José Cáceres et al, obtained bounds on the metric dimension of cartesian products through doubly resolving sets. In particular, they discussed on a family of (highly connected) graphs with bounded metric dimension for which the metric dimension of the cartesian product is unbounded. One of the results in [3] is the following;

Theorem 1.1 (José Cáceres, Marýa L. Puertas, Carmen Hernando, Mercè Mora, Ignacio M. Pelayo, Carlos Seara, David R. Wood [3]). For all $n \geq 1$ and $m \geq 3$ we have,

$$
\beta\left(K_{n} \square C_{m}\right)= \begin{cases}2, & \text { if } n=1 \\ 2, & \text { if } n=2 \text { and } m \text { is odd } \\ 3, & \text { if } n=2 \text { and } m \text { is even } \\ 3, & \text { if } n=3 \\ 3, & \text { if } n=4 \text { and } m \text { is even } \\ 4, & \text { if } n=4 \text { and } m \text { is odd } \\ n-2, & \text { if } n \geq 5 .\end{cases}
$$

In the next sections, we prove similar type of results for the composition product of graphs similar to that of wheels and hexagonal cellular networks obtained in [10, 11].

We recall the following results for immediate reference, which we use in the next sections.
Theorem 1.2 (B.Sooryanarayana [12]). A graph G with $\beta(G)=k$, cannot have a subgraph isomorphic to $K_{2^{k}+1}-\left(2^{k-1}-1\right) e$.

Remark 1.3. In particular if the metric dimension of a graph is 2, then the above theorem tells that G should not contain a subgraph isomorphic to $K_{5}-e$.

Theorem 1.4 (S.Khuller, B.Raghavachari. A.Rosenfeld [6]). The metric dimension of a graph G is 1 if and only if G is a path.

Theorem 1.5 (F. Harary and R.A. Melter [4]). The metric dimension of a cycle C_{n} is 2 for all $n \geq 3$.

In the next sections, we prove similar type of results for the composition product of graphs similar to that of wheels and hexagonal cellular networks obtained in [10, 11].

We recall the following results for immediate reference, which we use in the next sections.

Theorem 1.2 (B.Sooryanarayana [12]). A graph G with $\beta(G)=k$, cannot have a subgraph isomorphic to $K_{2^{k}+1}-\left(2^{k-1}-1\right) e$.

Remark 1.3. In particular if the metric dimension of a graph is 2, then the above theorem tells that G should not contain a subgraph isomorphic to $K_{5}-e$.

Theorem 1.4 (S.Khuller, B.Raghavachari. A.Rosenfeld [6]). The metric dimension of a graph G is 1 if and only if G is a path.

Theorem 1.5 (F. Harary and R.A. Melter [4]). The metric dimension of a cycle C_{n} is 2 for all $n \geq 3$.

Theorem 1.6 (F. Harary and R.A. Melter [4]). The metric dimension of a non-trivial complete graph on n vertices is $n-1$.

Lemma 1.7. No metric basis of a wheel on $n(\geq 4)$ vertices contains its central vertex

Theorem 1.8 (B. Shanmukha, B. Sooryanarayana, K.S. Harinath [10]). For given positive integer,

$$
\beta\left(W_{1, n}\right)=\left\{\begin{array}{lc}
3, & \text { if } n \in\{3,6\} \\
\left\lfloor\frac{2 n+2}{5}\right\rfloor, & \text { otherwise }
\end{array}\right.
$$

Composition Product of Graphs

Definition 2.1. The composition product of two graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ is the graph G, denoted by $G=G_{1}\left[G_{2}\right]$, whose vertex set is $V_{1} \times V_{2}$ and two vertices $\left(u_{i}, v_{l}\right)$ and $\left(u_{j}, v_{m}\right)$ are adjacent in G whenever $\left\{u_{i} u_{j} \in E_{1}\right\}$ or $\left\{u_{i}=u_{j}\right.$ and $\left.v_{l} v_{m} \in E_{2}\right\}$.

Remark 2.2. Since the composition product of a complete graph K_{m} with a complete graph K_{n} is a complete graph $K_{m n}$, it easily follows from the Theorem 1.6 that,

$$
\beta\left(K_{m}\left[K_{n}\right]\right)=m n-1, \text { for all } m, n \geq 2 .
$$

Definition 2.3. Let $G=G_{1}\left[G_{2}\right]$. Then for each $i, 1 \leq i \leq m$, we define the horizontal projection H_{i} of G as

$$
H_{i}=\left\{\left(u_{i}, v_{j}\right): u_{i} \in V\left(G_{1}\right), v_{j} \in V\left(G_{2}\right), 1 \leq j \leq\left|V\left(G_{2}\right)\right|\right\},
$$

for each $i, 1 \leq i \leq\left|V\left(G_{1}\right)\right|$

In next sections of this chapter we estimate the metric dimension for graphs obtained by taking the composition product of several combinations of graphs such as; the composition product of paths, paths and cycles, cycles and paths, complete graphs, complete graphs and paths, paths and stars. Some of these results are extensions of the earlier work of F. Harary and R.A. Melter [4].

Lower bounds for Metric Dimension of G[Pn]

In this section we determine lower bounds for the composition product of graphs. These bounds are not tight for the graphs of very small order. For such graphs the actual lower bounds are determined in the next sections while obtaining their upper bounds.

Observation 3.1. The composition product $P_{2}\left[P_{2}\right] \cong K_{4}$ and hence it follows from the Theorem 1.6 that the metric dimension of $P_{2}\left[P_{2}\right]$ is 3 .

Observation 3.2. Let $G=P_{m}\left[P_{n}\right]$ and for $m, n \geq 2$ then for any two vertices $u, v \in H_{i}$ and a vertex $x \notin H_{i}, d(x, u)=d(x, v)$. (This follows by noting the fact that each vertex in H_{i-1} and H_{i+1} is adjacent to every vertex in H_{i})

Lemma 3.3. Let S be a metric basis for a graph G. Then the set $V-S$ can have at most one vertex equidistant from every element in S.

Proof. Follows immediately by the definition of metric dimension.
Lemma 3.4. Let G be a non-trivial graph and S be a metric basis for the graph $G\left[P_{n}\right]$. Let $S_{i}=$ $S \cap H_{i}$ for $1 \leq i \leq m$. Then $H_{i}-S$ has at most one vertex non-adjacent to any vertex in S_{i}, for every $i, 1 \leq i \leq m$ and at most one vertex adjacent to every vertex in S_{i}.

Proof. Suppose to contrary that $x=\left(u_{i}, v_{a}\right)$ and $y=\left(u_{i}, v_{b}\right)$ be two distinct vertices in $H_{i}-S$ are at equal distance from every vertex in S_{i}. Then, $d(x, w)=d(y, w)$, for all $w \in S_{i}$ and $d(x, w)=$ $d(y, w)=d_{P_{n}}\left(u_{i}, u_{j}\right)$ for any $w=S_{k}, k \neq i$. Hence S will not resolve $G\left[P_{n}\right]$, a contradiction.

Definition 3.5. Let S be any subset of the vertex set V of a graph $G(V, E)$. Then for any vertex $x \in V$ we define $k^{\text {th }}$ neighborhood of x in S, denoted by $k N_{S}(x)$, as $k N_{S}(x)=\left\{y \in S: d_{G}(x, y)=k\right\}$.

Note: $1 N_{S}(x)$ is simply written as $N_{S}(x)$ and call an S-neighborhood of x.
Lemma 3.6. Let S be a subset of vertex set V of a non-trivial graph G and $u, v \in V-S$. Then S resolves G if and only if $k N_{S}(u) \neq k N_{S}(v)$, for some k.

Proof. If $k N_{S}(u)=k N_{S}(v)$ for every k, then we observe under the hypothesis of the lemma, that the vector associated to u and v are identical and hence S cannot be a metric basis. Conversely, if $k N_{S}(u) \neq k N_{S}(v)$, for some k, then either $k N_{S}(u) \not \subset k N_{S}(v)$ or $k N_{S}(v) \not \subset k N_{S}(u)$. Without loss of generality, we take $k N_{S}(u) \not \subset k N_{S}(v)$ (since u and v are interchangeable). But then for the vertex $w \in k N_{S}(u)-\left(k N_{S}(u) \cap k N_{S}(v)\right)$, we have $d(u, w)=k$ and $d(v, w) \neq k$. Hence, S resolves G.

Remark 3.7. The statement of the above lemma coincides to the definition of P. J. Slater [8]
Lemma 3.8. Let S be a resolving set of a graph G. Then for a positive integer p and a vertex $w \in S$, the vertices $u, v \in p N_{(V-S)}(w)$ implies that $k N_{(S-\{w\})}(u) \neq k N_{(S-\{w\})}(v)$, for some k.
Proof. If $k N_{(S-\{w\})}(u)=k N_{(S-\{w\})}(v)$, for every k and $u, v \in p N_{(V-S)}(w)$ then it is straightforward to see that the vectors associated to u and v are identical, so S will not resolve G, a contradiction.

Remark 3.9. For the case $p=1$, the above Lemma 3.8, yields a well known result of F. Harray that $\beta\left(K_{m}\right)=m-1$.
Remark 3.10. If $G=P_{2}\left[P_{3}\right]$. Then $G-\left\{\left(u_{1}, v_{1}\right)\right\}$ is isomorphic to the graph $K_{5}-e$. Hence by the Remark 1.3, it follows that $\beta(G) \geq 3$.

Remark 3.11. Consider the graph $G=G_{1}\left[P_{3}\right]$, where G_{1} is a connected graph of order 3 (i.e. either P_{3} or $\left.C_{3}\right)$. Let $x=\left(u_{1}, v_{1}\right), y=\left(u_{3}, v_{1}\right)$. Then, as $k N_{S}(x)=k N_{S}(y)$ for every $S \subseteq$ $V(G)-\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{2}\right)\right\}$ and $k=1,2$, at least one of the element of the set $\left\{\left(u_{1} v_{2}\right),\left(u_{3}, v_{2}\right)\right\}$ is in any metric basis M of G. Due to the symmetry of the graph, without loss of generality, we take $\left(u_{1}, v_{2}\right) \in M$. Further for the vertex $u=\left(u_{1}, v_{3}\right)$, we have $k N_{S}(x)=k N_{S}(y)$ for every $S \subseteq V-\{u, x\}$, so either x or u should be in M, say $x \in M$. By Lemma 3.3, M should have at least one element from each H_{i}. Hence $|M| \geq 4$.

Lemma 3.12. For any integer $n \geq 1$, and a graph G.

$$
\beta\left(G\left[P_{n}\right]\right) \geq \begin{cases}|V(G)|, & \text { if } n=2 \tag{1}\\ |V(G)|+1, & \text { if } n=3 \text { and } m=2,3 \\ 2|V(G)| & \text { if } n=4 \\ \left.|V(G)| \left\lvert\, \frac{n}{2}-1\right.\right\rceil, & \text { Otherwise }\end{cases}
$$

Proof. By the above Lemma 3.4, it follows that every metric dimension of $G\left[P_{n}\right]$ should contain at least one vertex if $n=2$, and at least $\left\lceil\frac{n}{2}-1\right\rceil$ vertices of H_{i} if $n \geq 5$ for each $i, 1 \leq i \leq m$. For $n=3$ and $m=3$, as the graph G is a path or a complete graph, the result follows by the Remark 3.11. Further, when $n=3$ and $m=2$, the result follows by Remark 3.10 (since $G \cong P_{2}$). When $n=4$ if a metric basis S has at most one vertices from any H_{i}, then $H_{i}-S$ contains two vertices such that both of them are either adjacent to or non-adjacent to the vertex in $S \cap H_{i}$, Hence by Lemma 3.4 we get a contradiction, so $|S| \geq 2|V(G)|$.

Metric Dimension and a Basis for Pm[Pn]

Theorem 4.1. For the given positive integers $m, n \geq 2$,

$$
\beta\left(P_{m}\left[P_{n}\right]\right)= \begin{cases}3, & \text { if } m=2 \text { and } n=2 \\ m, & \text { if } m \geq 3 \text { and } n=2 \\ m+1, & \text { if } m \leq 3 \text { and } n=3 \\ 2 m, & \text { if } m \geq 2 \text { and } n=4 \\ 5, & \text { if } m=2 \text { and } n=6 \\ m\left\lceil\frac{n}{2}-1\right\rceil, & \text { otherwise }\end{cases}
$$

Proof. Let $G=P_{m}\left[P_{n}\right]$. Let $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of the path P_{m} such that u_{i} is adjacent to u_{j} if and only if $j=i+1,1 \leq i<j \leq n$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n} such that v_{i} is adjacent to v_{j} if and only if $j=i+1,1 \leq i<j \leq n$.

Case 1: $n=2$ and $m=2$
Result follows by the Observation 3.1

Case 2: $n=2$ and $m \geq 3$
In this case, by Lemma 3.12 we have $\beta(G) \geq m$. Now we see that the set $S=\left\{\left(u_{i}, v_{1}\right): 1 \leq i \leq\right.$ $m\}$ resolves G. In fact, let $u=\left(u_{i}, v_{2}\right)$ and $v=\left(u_{j}, v_{2}\right)$ be any two vertices of G. Without loss of generality we take $j>i$ (due to symmetry in the graph). Consider the vertex $w=\left(u_{k}, v_{1}\right)$ where

$$
k= \begin{cases}i, & \text { if } j \neq i+1 \\ i-1, & \text { if } j=i+1 \text { and } i>2 \\ 3, & \text { if } j=2 \text { and } i=1\end{cases}
$$

Figure 1: The graph $P_{2}\left[P_{3}\right]$.

Figure 2: The graph $P_{3}\left[P_{3}\right]$.

The vertex w is adjacent to either u or v, but not both, Hence u and v lie at different distances from w. So, S resolves G. Thus, $\beta(G) \leq|S|=m$. Therefore, $\beta(G)=m$.

Case 3: $n=3$ and $m=2$
It follows by the Remark 1.3 that $\beta(G) \geq 3$. Let $\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{2}, v_{3}\right)\right\}$. Then from the Figure 4 it follows that S resolves G. Hence $\beta(G) \leq 3$. Therefore, $\beta(G)=3$.

Case 4: $n=3$ and $m=3$
In this case, by Lemma 3.12, we have $\beta(G) \geq 4$. Consider the set

$$
S=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{2}, v_{1}\right),\left(u_{3}, v_{1}\right)\right\} .
$$

From the Figure 2, it is clear that S resolves G. Hence $\beta(G) \leq|S|=4$. Therefore $\beta(G)=4$.

Case 5: $n=3$ and $m \geq 4$
In this case, by Lemma 3.12 we have $\beta(G) \geq m$. Consider the set $S=\left\{\left(u_{i}, v_{1}\right): 1 \leq i \leq m\right\}$. For the pair $u=\left(u_{i}, v_{2}\right), v=\left(u_{j}, v_{3}\right)$, taking

$$
w= \begin{cases}\left(u_{i}, v_{1}\right), & \text { if } j \neq i+1 \\ \left(u_{m-2}, v_{1}\right), & \text { if } j=m, i=m-1 \\ \left(u_{j+1}, v_{1}\right), & \text { otherwise }\end{cases}
$$

and for the pair $u=\left(u_{i}, v_{k}\right), v=\left(u_{j}, v_{k}\right), k=1,2$, taking

$$
w= \begin{cases}\left(u_{j+1}, v_{1}\right), & \text { if } j<m \\ \left(u_{i-1}, v_{1}\right), & \text { if } j=m\end{cases}
$$

In either of the cases, we see that either $d(u, w)=1$ or $d(v, w)=1$ but not both. So, $d(u, w) \neq$ $d(v, w)$. Other cases follows by symmetry. Hence S resolves G, so $\beta(G) \leq|S|=m$. Therefore $\beta(G)=m\left\lceil\frac{n}{2}-1\right\rceil=m$.

Case 6: $n=4$ and $m \geq 2$
In this case if a metric basis S contains at most one vertex from any H_{i}, then we get two vertices u, v such that either both of them are adjacent to the vertex $x \in S \cap H_{i}$ or none of them are adjacent to the vertex $x \in S \cap H_{i}$. In the first case $d(u, x)=d(v, x)=1$ and in the second case $d(u, x)=d(v, x)=2$. Further, as every vertex in H_{j} are equidistant from each vertex in H_{i}, for $i \neq j$, it follows that $k N_{S}(u)=k N_{S}(v)$, a contradiction by Lemma 3.8 to the fact that S is a metric basis. Thus, every metric basis should contain at least two element from each H_{i}. So, $\beta(G) \geq 2 m$. Further, in the subset $S=\left\{\left(u_{i}, v_{2}\right),\left(u_{i}, v_{3}\right): 1 \leq i \leq m\right\}$ of vertices of G, (i) for the pair of vertices
$x=\left(u_{i}, v_{1}\right), y=\left(u_{j}, v_{4}\right)$ with $j>i$ in $V-S$, the vertex $w=\left(u_{j}, v_{3}\right) \in S$ such that $d(y, w)=1$ and $d(x, w) \neq 1$ if $j \neq i+1$ or the vertex $w=\left(u_{j}, v_{2}\right) \in S$ such that $d(y, w)=2$ and $d(x, w)=1$ if $j=i+1$ and (ii)for the pair of distinct vertices $x=\left(u_{i}, v_{1}\right), y=\left(u_{j}, v_{1}\right)$ in $V-S$ the vertex $w=\left(u_{j}, v_{2}\right) \in S$ if $j \neq i+1$ (or $w=\left(u_{j}, v_{3}\right)$ if $j=i+1$) such that $d(x, w)=1$ and $d(y, w) \geq 2$ (or $d(x, w)=2$ and $d(y, w)=1$ in the later case). We note here that for the pair $x=\left(u_{i}, v_{4}\right), y=\left(u_{j}, v_{4}\right)$ in $V-S$ follows form (ii) by symmetry and the case $j<i$ also follows by symmetry by interchanging v_{1} and v_{4}, v_{2} and v_{3}. Thus, S resolves G. Hence $\beta(G) \leq 2 m$. Therefore, by Lemma 3.12, we get $\beta(G)=2 m$.

Case 7: $n \geq 5$.
Let $S_{1}=\left\{\left(u_{1}, v_{2 k}\right): 1 \leq k \leq\left\lceil\frac{n}{2}-1\right\rceil\right\}, S_{i}=\left\{\left(u_{i}, v_{2 k+1}\right): 1 \leq k \leq\left\lceil\frac{n}{2}-1\right\rceil\right\}$, for $2 \leq i \leq m$. Define a set S as follows;

$$
S= \begin{cases}\left\{\left(u_{i}, v_{j}\right): i=1,2 \text { and } j=2,3\right\}, & \text { if } n=5 \text { and } m=2 \tag{2}\\ \left\{\left(u_{1}, v_{1}\right)\right\} \cup \bigcup_{i=1}^{m} S_{i}, & \text { if } n=6 \text { and } m=2 \\ \bigcup_{i=1}^{m} S_{i}, & \text { otherwise }\end{cases}
$$

Claim: S resolves G
Since $d(x, y)=1$ or 2 , for all $x, y \in H_{i}$ and $d_{G}(x, z)=d_{P_{n}}(x, z)>2$ for all $z \in H_{j}$ whenever $|i-j|>2$, it suffices to observe the following:

1. $S \cap H_{i}$ resolves H_{i}, for every $i, 1 \leq i \leq m$.
2. If $m=2$, then there is no vertex in $H_{1}-\left(S \cap H_{1}\right)$ that is adjacent to every vertex in $S \cap H_{1}$.
3. If $m=3$, then there is no vertex in $H_{1}-\left(S \cap H_{1}\right)$ at a distance 2 from every vertex in $S \cap H_{1}$.

The condition 1 is necessary because every vertex in $S-\left(S \cap H_{i}\right)$ are equidistance from the vertices of equal associated parities by the set $S \cap H_{i}$ (so S will not resolve these two vertices). Condition 2 and 3 are necessary because the vertex adjacent to every vertex in $S \cap H_{1}$ is also adjacent (or at a distance 2) to every vertex in $S \cap H_{2}$ (or $S \cap H_{3}$ in the second case) hence they are at equal distance from every vertex in S only when $n=2$ (or $n=3$ in the later case). However, if $m \geq 4$, then the S will resolve such vertices by a vertex in $S \cap H_{4}$. Hence the above conditions are also sufficient.

Now for each $x, y \in H_{i}-\left(S \cap H_{i}\right)$, there exists a vertex $w \in S \cap H_{i}$ such that w is adjacent to either x or y but not both (existence is certain because $n \geq 5$ and S chooses alternative vertices except the first vertex in each $\left.H_{i}\right)$. So $d(x, y) \neq d(y, w)$. Hence $S \cap H_{i}$ resolves H_{i}, hence the condition 1 holds, for all $m \geq 2$ and $n \geq 5$.

When $n \geq 6$, by Equation 2 we see that $S \cap H_{1}$ contains at least 3 vertices. Hence two vertices of H_{1} are neither adjacent nor non-adjacent to every vertex in $S \cap H_{1}$ (since every vertex is adjacent to at least one vertex in H_{1}). Therefore conditions 2 and 3 hold.

When $n=5$ and $m=2$, we have by the choice of S in Equation 2 that no vertex in $H_{1}-\left(S \cap H_{1}\right)=$ $\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{4}\right),\left(u_{1}, v_{5}\right)\right\}$ is adjacent to both vertex in $S \cap H_{1}=\left\{\left(u_{1}, v_{2}\right),\left(u_{1}, v_{3}\right)\right\}$. Hence the condition 2 holds.

When $n=5$ and $m=3$, we have by the choice of S in Equation 2 that each vertex in $H_{1}-(S \cap$ $\left.H_{1}\right)=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{1}, v_{5}\right)\right\}$ is adjacent to at least one vertex in $S \cap H_{1}=\left\{\left(u_{1}, v_{2}\right),\left(u_{1}, v_{4}\right)\right\}$. Hence the condition 3 holds.

When $n=5$ and $m \geq 4$, the conditions 2 and 3 are clear.
By the above claim and the Lemma 3.12, it follows that

$$
\beta(G)=|S|=\left\{\begin{array}{lr}
5, & \text { if } m=2 \text { and } n=6 \\
m\left\lceil\frac{n}{2}-1\right\rceil, & \text { otherwise }
\end{array}\right.
$$

Hence the theorem.

Metric Dimension and a Basis for $\mathbf{K m}[\mathbf{P n}]$

Lemma 5.1. A set S is a resolving set for the graph $G=K_{m}\left[P_{n}\right]$ if and only if the following hold;

1. $S_{i}=S \cap H_{i}$ resolves H_{i} in G, for every $i, 1 \leq i \leq m$
2. For at most one $i, 1 \leq i \leq m$, there may be at most one vertex in H_{i} that is adjacent to every vertex in S_{i}.

Proof. If S resolves G, then, as the distance from every vertex in H_{i} is equidistance from each vertex in S_{j} for every $j \neq i$, it follows for each pair of vertices $u, v \in H_{i}$, there is a w in S_{i} such that $d(u, w) \neq d(v, w)$, so S_{i} resolves H_{i}. Hence the condition 1 holds. Further, if there are two distinct vertices $u \in H_{i}$ and $v \in H_{j}$ (i may be equal to j) such that u is adjacent to every vertex in $S \cap H_{i}$ and v is adjacent to every vertex in $S \cap H_{j}$, then, as these two vertices are adjacent to every vertices in $S \cap\left(H_{i} \cup H_{j}\right)$, it follows that the vectors associated to u and v by S are identical, a contradiction to the fact that S resolves G. Hence the condition 2 holds.

On the other hand, suppose that, for a subset S of G, both the conditions in the lemma are satisfied. Since the diameter of the graph G is 2 , it follows that the vector associated to each vertex v of the graph by a set S is an element of Z_{2}^{k}, where $k=|S|$. If S will not resolves G, then there are two vertices $u \in H_{i}-S_{i}$ and $v \in H_{j}-S_{j}$ for some $1 \leq i, j \leq m$ such that $d(u, w)=d(v, w)=1$ or 2 for every $w \in S$. Now, by condition 1 , as S_{i} resolves H_{i} in G, we see that $v \notin H_{i}-S_{i}$, so $i \neq j$. But then $d(u, w)=d(v, w)=1$ (since $d(x, y)=2$ possible only if x and y are in H_{i}, for some i.) implies that u is adjacent to every vertex in S_{i} and v is adjacent to every vertex in S_{j}, which is a contradiction to condition 2 (since both H_{i} and H_{j} satisfies the condition and $i \neq j$).

Theorem 5.2. For the given positive integers $m, n \geq 2$,

$$
\beta\left(K_{m}\left[P_{n}\right]\right)= \begin{cases}m n-1, & \text { if } n=2 \\ 2 m-1, & \text { if } n=3 \\ 2 m, & \text { if } n=4,5 \\ 3 m-1, & \text { if } n=6 \\ m\left\lceil\frac{n}{2}-1\right\rceil, & \text { if } n \geq 7\end{cases}
$$

Proof. Let $G=K_{m}\left[P_{n}\right]$ and $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of the complete graph K_{m}. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n} such that v_{i} is adjacent to v_{j} if and only if $j=i+1,1 \leq i<j \leq n$.

Case 1: $n=2$ (also for $n=1$ and $m>1$)
In this case the graph is isomorphic to the complete graph and hence the result follows by the Theorem 1.6.

Case 2: $n=3$
If a subset S has at most one vertex from each H_{i}, then $(V-S) \cap H_{i}$ contains a vertex adjacent to the vertex in $S \cap H_{i}$ for every $i, 1 \leq i \leq m$. Hence, as $m \geq 2$, by Lemma 5.1, we see that S will not resolve G. Therefore S should have at least two elements from H_{i}, for each i except one, $1 \leq i \leq m$. Hence $\beta(G) \geq m+(m-1)=2 m-1$. To prove the reverse inequality, let $S_{1}=\left\{\left(u_{1}, v_{1}\right)\right\}$ and $S_{i}=\left\{\left(u_{i}, v_{1}\right),\left(u_{i}, v_{2}\right)\right\}$ for $2 \leq i \leq m$. Then there is no vertex in H_{i} which is adjacent to every vertex in S_{i} for each $i, 2 \leq i \leq m$. Hence by Lemma 5.1, we see that $S=\bigcup_{i=1}^{m} S_{i}$ resolves G, so $\beta(G) \leq|S|=2 m-1$. Thus, $\beta(G)=2 m-1$.

Case 3: $n=4$ or $n=5$
We first observe that if $\left|S_{i}\right|=1$, for any i, then either two vertices of H_{i} are adjacent to the vertex in S_{i} or two vertices are non-adjacent to the vertex in S_{i}. In the first case by condition 2 , of Lemma 5.1, S will not resolve G and in the second case S_{i} will not resolve H_{i} in G, so by condition 1 of the Lemma 5.1, S will not resolve G. Hence every metric basis should contain at least 2 vertices in H_{i}, so $\beta(G) \geq 2 m$. To prove the reverse inequality, let $S_{i}=\left\{\left(u_{i}, v_{2}\right),\left(u_{i}, v_{3}\right)\right\}$, for $i=1,2, \ldots, m$. Then for each $i, 1 \leq i \leq m$, the vertices in $H_{i}-S_{i}$ is adjacent to at most one vertex in S_{i} (so condition 2 holds) and at most one vertex is non-adjacent any vertex in S_{i}, so S_{i} resolves H_{i} in G (i.e the condition 1 holds). Hence, by Lemma 5.1, $S=\bigcup_{i=1}^{m} S_{i}$ resolves G, Thus, $\beta(G) \leq 2 m$. Therefore $\beta(G)=2 m$.

Case 4: $n=6$
If there is a resolving set S having exactly two vertices of H_{i}, for any $i, 1 \leq i \leq m$, then by condition 1 of Lemma 5.1, S_{i} should resolve H_{i} in G. But, the distance between any two nonadjacent vertices in G is 2 , it follows that each assignment to the vertex in $H_{i}-S_{i}$ by the set S_{i} is a member of $A=\{(1,1),(1,2),(2,1),(22)\}$. So, as $\left|H_{i}-S_{i}\right|=4$ and $|A|=4$, we get a vertex v in H_{i} which receive a vector $(1,1)$. This implies that v is adjacent to every elements in S_{i}. Now, by the condition 2 of Lemma 5.1 this is possible only for one set i. Thus, every resolvable set of G should contain at least 3 vertices in H_{i}, for every i except one. Therefore, $\beta(G) \geq 3 m-1$. To prove the reverse inequality, let $S_{1}=\left\{\left(u_{1}, v_{2}\right),\left(u_{i}, v_{4}\right)\right\}$ and $S_{i}=\left\{\left(u_{i}, v_{2}\right),\left(u_{i}, v_{3}\right),\left(u_{i}, v_{4}\right)\right\}$. Then, as no vertex in H_{i} is adjacent to every vertex in S_{i} except of $i=1$, and S_{i} resolves H_{i} in G (as at most one vertex is equidistant from every vertex in S_{i}), by Lemma 5.1 the set $S=\bigcup_{i=1}^{m} S_{i}$ resolves G. Hence $\beta(G) \leq|S|=3 m-1$. Therefore, $\beta(G)=3 m-1$.

Case 5: $n \geq 7$.
Let $S_{i}=\left\{\left(u_{i}, v_{2 k+1}\right): 1 \leq k \leq\left\lceil\frac{n}{2}-1\right\rceil\right\}$. Since $\left|S_{i}\right| \geq 3$, and $<H_{i}>$ is a path, it follows that no vertex in $H_{i}-S_{i}$ is adjacent to every vertex in S_{i}, so condition 1 of Lemma 5.1 is certain. Now by the choice of S_{i} it follows that for any two vertices u and v in $H_{i}-S_{i}$, either u or v is adjacent to a vertex $x \in S_{i}$, say $x=\left(u_{1}, v_{j}\right)$. Without loss of generality we take u is adjacent to x. Now choose the vertex $w=\left(u_{1}, v_{j+2}\right)$ if $w \in S_{i}$ and is not adjacent to v, or else choose $w=\left(u_{1}, v_{j-2}\right)$. Then $d(u, w)=1$ and $d(v, w)=2$, so S_{i} resolves G. Hence, by Lemma 5.1 we have $S=\bigcup_{i=1}^{m}$ resolves G. Thus, $\beta(G) \leq m\left\lceil\frac{n}{2}-1\right\rceil$. Therefore, by equation 3.12, it follows that $\beta(G)=m\left\lceil\frac{n}{2}-1\right\rceil$ for all $n \geq 7$. Hence the theorem.

Metric Dimension and a Basis for $\mathrm{Cm}[\mathbf{P n}]$

Theorem 6.1. For the given integers m, n with $m \geq 3$ and $n \geq 2$,

$$
\beta\left(C_{m}\left[P_{n}\right]\right)= \begin{cases}5, & \text { if } m=3 \text { and } n=2 \text { or } 3 \\ 6, & \text { if } m=3 \text { and } n=4 \text { or } 5 \\ 8, & \text { if } m=3 \text { and } n=6 \\ 4, & \text { if } m=4 \text { and } n=3 \\ 8, & \text { if } m=4 \text { and } n=4 \\ m, & \text { if } m \geq 5 \text { and } n=2,3 \\ 2 m, & \text { if } m \geq 5 \text { and } n=4 \\ m\left\lceil\frac{n}{2}-1\right\rceil, & \text { otherwise }\end{cases}
$$

Proof. Let $G=C_{m}\left[P_{n}\right]$ and $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of the cycle C_{m} such that u_{i} adjacent to u_{j} if and only if either $|j-i|=1$ or $n-1$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n} such that v_{i} is adjacent to v_{j} if and only if $|j-i|=1$.

Case 1: $m=3$
The result follows by Theorem 5.2
Case 2: $m=4$ and $n=2 k$ Let S be a resolving set for G and $S_{i}=S \cap H_{i}$, for $1 \leq i \leq m$. Now for any $x \in H_{i}$ the following hold;

1. $2 N_{S}(x)=H_{i+2} \cup\left\{z \in H_{i}: x z \notin E(G)\right\}$ and
2. $1 N_{S}(x)=H_{i-1} \cup H_{i+1} \cup\left\{z \in H_{i}: x z \in E(G)\right\}$

We first see that if there exist $x \in H_{2}-S_{2}$ and $y \in H_{4}-S_{4}$, then x is adjacent to a vertex in S_{2} or y is adjacent to a vertex in S_{4}. Otherwise, $1 N_{S}(x)=1 N_{S}(y)=S_{3} \cup S_{1}$ and $2 N_{S}(x)=2 N_{S}(y)=S_{1} \cup S_{3}$ hence by Lemma 3.6, we have S will not resolve G, a contradiction. Therefore, by Lemma 3.12 $\left|S_{2}\right|>\left\lceil\frac{2 k}{2}-1\right\rceil \Rightarrow\left|S_{2}\right|=k=\frac{n}{2}$ for all $n \geq 5$. Due to Horizontal symmetry of the graph, similar argument holds for each $H_{i}, 1 \leq i \leq 4$. Thus, $|S| \geq 4 \frac{n}{2}=2 n$. Further, for $n=2$ or 4 , we can avoid such vertices by taking respectively 1 or 2 elements from H_{2} in S_{2}. . Therefore, in view of Lemma 3.12 , we get

$$
\beta(G) \geq \begin{cases}4, & \text { if } k=1 \\ 8, & \text { if } k=2 \\ 2 n, & \text { if } k \geq 3\end{cases}
$$

To prove the reverse inequality, we now consider the set

$$
S=\left\{\left(u_{i}, v_{2 p}\right): 1 \leq i \leq m, 1 \leq p \leq \frac{n}{2}\right\} .
$$

Let $u, v \in V-S$. If $u, v \in H_{2}$ and distinct (possible only if $k \geq 2$), then by the choice of S, there is a vertex in S_{2} adjacent to u and not adjacent to v, so $1 N_{S}(u) \neq 1 N_{S}(v)$. Or if $u \in H_{2}$ and $v \in H_{3}$ (similarly in H_{1}), then $2 N_{S}(u)=H_{4} \cup\left\{z \in H_{2}: x z \notin E(G)\right\} \neq H_{1} \cup\left\{z \in H_{3}: x z \notin E(G)\right\}=$ $2 N_{S}(v)$. Lastly, if $u \in H_{2}$ and $v \in H_{3}$, then as the vertex adjacent to u is lies in $2 N_{S}(v)$ but not in $2 N_{S}(u)$, it follows that $2 N_{S}(u) \neq 2 N_{S}(v)$. The similar argument holds for all H_{i} by replacing H_{2} as H_{i} due to symmetry. Hence, we conclude by Lemma 3.6, that S resolves G. Therefore, $\beta(G) \leq|S|=2 n$. Thus, $\beta(G)=2 n=4 k$.

Similar argument holds for the case $m=4$ and $n=2 k+1$. The set S taken in the above Case (ii) also serves as a resolving set for G in this case. Hence $\beta(G)=4 k=4(n-1) / 2=2 n-2$.

Case 3: $m \geq 5$ and $n=2,3$
Let $S=\left\{\left(u_{i}, v_{1}\right): 1 \leq i \leq m\right\}$. Since, $m \geq 5$ we see that $1 N_{S}(x) \neq 1 N_{S}(y)$ whenever $x \in H_{i}-S$, $y \in H_{j}-S$ and $i \neq j$. Further, when $i=j$ (possible only if $n=3$), the vertex (u_{i}, v_{1}) is adjacent to exactly one of x, y, so $1 N_{S}(x) \neq 1 N_{S}(y)$. Hence by Lemma $3.6, S$ resolves G. Therefore, $\beta(G) \leq|S|=m$. So, in view of Lemma 3.12, we conclude $\beta(G)=m$.

Case 4: $m \geq 5$ and $n=4$
Let $S=\left\{\left(u_{i}, v_{2}\right),\left(u_{i}, v_{3}\right): 1 \leq i \leq m\right\}$. Then, similar to above case wee see that $1 N_{S}(x) \neq$ $1 N_{S}(y)$ for any $x \in H_{i}-S, y \in \bar{H}_{j}-\bar{S}$, for every $1 \leq i, j \leq m$. By Lemma 3.6, $\beta(G) \leq|S|=2 m$. So, in view of Lemma 3.12, we conclude $\beta(G)=2 \mathrm{~m}$.

Case 5: $m \geq 4$ and $n \geq 5$
By Lemma 3.6, $\beta(G) \geq m\left\lceil\frac{n}{2}-1\right\rceil$.
Let $S=\left\{\left(u_{i}, v_{3}\right),\left(u_{i}, v_{5}\right), \ldots\left(u_{i}, v_{2\left\lceil\frac{n}{2}-1\right\rceil+1}\right): 1 \leq i \leq m\right\}$.

Claim: S resolves G.
Since $m \geq 5$, for each $x \in H_{i}$ and $y \in H_{j}$, by the definition of composition product, there exists an index k such that $x z \in V(G)$ and $y z \notin V(G)$, for all $z \in H_{k}$. Therefore, it suffices to prove that, $S_{i}=S \cap H_{i}$ resolves H_{i}. Let u and v be any two vertices in $H_{i}-S$. Then, by the choice of S and $n \geq 5$, we can find a vertex w in $S \cap H_{i}$ such that w adjacent to u or v, but not both, and hence $d(u, w) \neq d(v, w)$. Hence the claim.

Therefore $\beta(G)=|S|=m\left\lceil\frac{n}{2}-1\right\rceil$. This completes the proof in all cases.

Metric Dimension of Pn[G]

In this section we completely determine metric dimensions Pn[G], for every graph G of diameter at most two.

Theorem 7.1. Let G be a non-trivial graph of diameter 2 and for every metric basis S of G there be a vertex in $V-S$ which is at a distance k from every vertex in S. Then $\beta\left(P_{m}[G]\right)=m \beta(G)+1$ if and only if $1 \leq k<m \leq 3$. Otherwise (if such an vertex exists or not), $\beta\left(P_{m}[G]\right)=m \beta(G)$
Proof. Since $d\left(\left(u_{i}, v_{j}\right),\left(u_{k}, v_{l}\right)\right)=|j-i-1|$ for every $i, k, 1 \leq i, j \leq m$ and $1 \leq j, l \leq|V(G)|$, it follows for any metric basis M of $G\left[P_{n}\right]$ that the codes of two vertices in $(v-M) \cap H_{i}$ should differ by the metric basis S of G. Hence $M \supseteq \bigcup_{i=1}^{m} S_{i}$, where $S_{i}=\left\{\left(u_{i}, v_{j}\right): v_{j} \in S\right\}$. Further, if there is a vertex, say x, in G at a distance k from every vertex in S for any metric basis S, then the co-ordinates of the codes generated by the set $S_{1} \cup S_{k+1}$ for the vertices $y=\left(u_{i}, x\right)$ and $z=\left(u_{k+1}, x\right)$ are equal. Thus, for a valid code at least one vertex u should be in M such that $d(x, u) \neq d(y, u)$. Such a vertex u exists if and only if $k \geq 3$ (so $m \geq 4$). Now it is easy to observe that the set
$M=\bigcup_{i=1}^{m} S_{i} \cup\left\{\left(u_{1}, x\right)\right\}$ for $k \leq 2$ and $\bar{M}=\bigcup_{i=1}^{m} \overline{S_{i}}$ for $k \geq 3$ generates a valid code for $P_{m}[G]$. Hence the theorem.

Corollary 7.2. For the given positive integers $m, n \geq 1$,

$$
\beta\left(P_{m}\left[K_{1, n}\right]\right)= \begin{cases}1, & \text { if } m=1 \text { and } n=1,2 \\ n-1, & \text { if } m=1 \text { and } n \geq 3 \\ 3, & \text { if } m=2 \text { and } n=1 \\ m, & \text { if } m \geq 3 \text { and } n=1 \\ m(n-1)+1, & \text { if } m=2,3 \text { and } n \geq 2 \\ m(n-1), & \text { if } m \geq 4 \text { and } n \geq 2\end{cases}
$$

Proof. For $n=1,2$ result follows by Theorem 4.1 and Theorem 1.4. For $n \geq 3$, by the result of S. Kuller et al [6] on trees, the metric dimension of $K_{1, n}$ is $n-1$ and every metric basis should contain all the pendent vertices except the one, hence it follows that for every metric basis S of $G=K_{1, n}$, the central vertex is at a distance $k=1$ from every vertex in S and the pendent vertex not in S is at a distance $k=2$ from every vertex in S. Therefore, the result follows by the above Theorem 7.1

Corollary 7.3. For given positive integers $m, n \geq 2$,

$$
\beta\left(P_{m}\left[K_{n}\right]\right)=\left\{\begin{array}{lr}
2 n-1, & \text { if } m=2 \\
m(n-1), & \text { if } m \geq 3
\end{array}\right.
$$

Proof. Since every metric basis of K_{n} contains $n-1$ vertices of K_{n} and the remaining vertex is adjacent to each vertex in the metric basis, the result follows immediately form the above Theorem 7.1.

Corollary 7.4. For given positive integers $m, n \geq 2$,

$$
\beta\left(P_{m}\left[W_{1, n}\right]\right)= \begin{cases}1, & \text { if } m=n=1 \\ 3, & \text { if } m=2 \text { and } n=1 \\ m, & \text { if } m \geq 3 \text { and } n=1 \\ 2, & \text { if } m=1 \text { and } n=2 \\ 2 n-1, & \text { if } m \geq 3 \text { and } n=2,3 \\ m(n-1), & \text { and } n=2,3 \\ m\left\lfloor\left\lfloor\frac{2 n+2}{5}\right\rfloor+1,\right. & \text { if } m=2,3 \text { and } n=4,5 \text { or } n \geq 7 \\ m\left\lfloor\left\lfloor\frac{2 n+2}{5}\right\rfloor,\right. & \text { if } m \geq 4 \text { and } n=4,5 \text { or } n \geq 7 \\ 3 m+1, & \text { if } m=2,3 \text { and } n=6 \\ 3 m, & \text { if } m \geq 4 \text { and } n=6\end{cases}
$$

Proof. By Lemma 1.7, it follows for all $n \geq 4$ that the central vertex is always at a distance 1 from each of the basis elements, by Theorem 1.8, we see that, there exists a rim vertex that is at a distance 2 from each of the basis elements (since every basis element not contains at least one rim vertex). Now, when $n=1$ and $m=1$, the result follows by Theorem 1.4. When $n=1$ and $m \geq 2$ result follows by Theorem 4.1. For $n=2,3$ and $m=1$, result follows by Theorem 1.5 whereas the case $m \geq 2$ follows by the Corollary 7.3. Finally, the case $n \geq 4$ follows by Theorem 1.8 and Theorem 7.1.

Metric Dimension and a Basis for Pm[Cn]

Let $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of the path P_{m} such that u_{i} is adjacent to u_{j} if and only if $j=i+1$, $1 \leq i<n$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path C_{n} such that v_{i} is adjacent to v_{j} if and only if $j=i+1$ for $1 \leq i<n$ and v_{1} is adjacent to v_{n}.

Lemma 8.1. Let S be any subset of the vertices of the graph $G\left[P_{n}\right]$ and $S_{i}=S \cap H_{i}$, where G is a graph of order m. Then S resolves G if and only if

1. S_{i} resolves H_{i} in G, for each i
2. If $m=2$, then for at least one i, no vertex in $H_{i}-S_{i}$ is adjacent to every vertex in S_{i}
3. If $m=3$, then either in H_{1} or in H_{3} every vertex is adjacent to at least one vertex in S_{1} or S_{3}.

Proof. Since $d(x, z)=d(y, z)$ for all $x, y \in H_{i}$ and $z \notin H_{i}$, condition 1 is certain. When $m=2$, the graph is isomorphic to a complete graph, so no comments. Lastly $x \in H_{1}$ and $y \in H_{3}$ are not adjacent to any vertex respectively in S_{1} and S_{3}, then they are at equal distance from each vertex in S only when $m=3$, so S will not resolve G if $m=3$.

Theorem 8.2. For the given integers $m \geq 1, n \geq 3$,

$$
\beta\left(P_{m}\left[C_{n}\right]\right)= \begin{cases}2, & \text { if } m=1 \\ 5, & \text { if } m=2 \text { and } n=3,6 \\ 2 m, & \text { if } m \geq 2 \text { and } n=4,5 \\ 2 m, & \text { if } m \geq 3 \text { and } n=3 \\ m\left\lceil\frac{n}{2}-1\right\rceil, & \text { otherwise }\end{cases}
$$

Proof. Let $G=P_{m}\left[C_{n}\right]$ and for each subset S of $V(G), S_{i}=S \cap H_{i}$.
Case 1: $m=1$
In this case $G \cong C_{n}$ and hence by the Theorem 1.5, we get $\beta(G)=2$.
Case 2: $m=2$ and $n=3$
The graph $G=P_{2}\left[C_{3}\right] \cong K_{6}$ and hence by the Theorem 1.6, we get $\beta(G)=5$.

Case 3: $m=2,3$ and $n=6$
If a set S contains at most 4 vertices, then it has exactly two elements from each of the sets S_{1} and S_{2} (otherwise S_{i} will not resolve H_{i}, because it is not a path). But then in each of the sets $H_{i}-S_{i}$ we see the codes of the 4 vertices in $H_{i}-S_{i}$ to be from the set $\{(1,1),(1,2),(2,1),(2,2)\}$. Hence the condition 2 for the case $m=2$ (condition 3 for the case $m=3$)of Lemma 8.1 fails, so S will not resolve G. Thus, $\beta(G) \geq 5$. To prove the reverse inequality, consider the set

$$
S=\left\{\left(u_{i}, v_{j}\right): 1 \leq i \leq 2, j=3,5\right\} \bigcup\left\{\left(u_{1}, v_{1}\right)\right\}
$$

. It is easy to verify that S resolves G, so $\beta(G) \leq 5$. Hence $\beta(G)=5$.
Case 4: $m \geq 2$ and $n=4$
Let $S=\left\{\left(u_{i}, v_{j}\right) \mid 1 \leq i \leq m, j=1,2\right\}$. Then each vertex in $H_{i}-S_{i}$ is adjacent to a exactly one vertex in S_{i}, for each $i, 1 \leq i \leq m$, and S_{i} resolves H_{i}. Hence by Lemma 8.1, S resolves G. Therefore, in view of Lemma 3.12, we conclude $\beta(G)=|S|=2 \mathrm{~m}$.

Case 5: $m \geq 2$ and $n=5$
Let $S=\left\{\left(u_{1}, v_{2}\right),\left(u_{1}, v_{4}\right)\right\} \cup\left\{\left(u_{i}, v_{j}\right): 2 \leq i \leq m, j=1,2\right\}$. Then each vertex in $H_{i}-S_{i}$ is adjacent to a exactly one vertex in S_{i}, for each $i, 2 \leq i \leq m$, and S_{i} resolves H_{i} for each $i, 1 \leq i \leq m$. Hence by Lemma 8.1, S resolves G. Therefore, in view of Lemma 3.12, we conclude $\beta(G)=|\bar{S}|=2 m$.

Case 6: $m \geq 2$ and $n=2 k+5, k \in Z^{+}$

Let $S_{i}=\left\{\left(u_{i}, v_{2 j+1}\right): 1 \leq j \leq k+2\right\}$. Then, for each $i, 1 \leq i \leq m$, every vertex in $H_{i}-S_{i}$ is adjacent to at least one vertex in S_{i}, no vertex is adjacent to every vertex in S_{i} (since $|S| \geq 3$ as $k \geq 1$) and for each pair of vertices in $H_{i}-S_{i}$ there is a vertex adjacent to one of them and not adjacent to the other, hence S_{i} resolves H_{i}. So, by Lemma 8.1, $S=\bigcup_{i=1}^{m} S_{i}$ resolves G. Therefore, in view of Lemma 3.12, we conclude $\beta(G)=|S|=m\left\lceil\frac{n}{2}-1\right\rceil$.

Case 7: $m=2$ and $n=2 k+6$
Let $S_{i}=\left\{\left(u_{i}, v_{2 j+1}\right): 1 \leq j \leq k+2\right\}$. Then, for each $i, 1 \leq i \leq m$, no vertex is adjacent to every vertex in S_{i} (since $|S| \geq 3$ as $k \geq 1$), at most one vertex in $H_{i}-S_{i}$ that is non-adjacent any vertex in S_{i} and for each pair of vertices in $H_{i}-S_{i}$ there is a vertex adjacent to one of them and not adjacent to the other, hence S_{i} resolves H_{i}. So, by Lemma 8.1, $S=\bigcup_{i=1}^{m} S_{i}$ resolves G. Therefore, in view of Lemma 3.12, we conclude $\beta(G)=|S|=m\left\lceil\frac{n}{2}-1\right\rceil$.

Case 8: $m=3$ and $n=8$

If each S_{i} contains at most $\left\lceil\frac{n}{2}-1\right\rceil=3$ vertices and satisfies the condition 2 and 3 of Lemma 8.1, then we see that S_{i} contains a pair of vertices x and y such that both x and y are adjacent to exactly one vertex in S_{i} and non-adjacent to remaining vertices in S_{i}. Thus, $k N_{S}(x)=k N_{S}(y)$ for every k. Hence by Lemma $3.6, S$ will not resolve G. Thus, $\beta(G) \geq 10$. On the other hand from the Figure 3 we have $\beta(G) \leq 10$. Thus, we conclude that $\beta(G)=10$.

Figure 3: Metric basis (darkened vertices) of the graph P3[C8].

Case 9: $m \geq 3$ and $n \geq 10$ (or $m \geq 4$ and $n=4$)
Let $S_{i}=\left\{\left(u_{i}, v_{1}\right),\left(u_{i}, v_{4}\right),\left(u_{i}, v_{6}\right),\left(u_{i}, v_{9}\right)\right\} \bigcup\left\{\left(u_{i}, v_{2 k+9}\right): 1 \leq k \leq\left(\left\lceil\frac{n}{2}-1\right\rceil-4\right)\right\}$. Since every vertex is adjacent to at least one vertex in S_{i} and no two vertices are adjacent to every vertex in S_{i}, S will resolve H_{i}. Thus, by Lemma 8.1, $S=\bigcup_{i=1}^{m} S_{i}$ resolves G for every $m \geq 3$, so $\beta(G)=|S|=m\left\lceil\frac{n}{2}-1\right\rceil$. Therefore, in view of Lemma 3.12, we conclude $\beta(G)=m\left\lceil\frac{n}{2}-1\right\rceil$.

Acknowledgment: Authors are very much thankful to the Principals, Prof. Martin Jebaraj, Dr. Ambedkar Institute of Technology, Prof. H. S. Nanda, Nagrajuna College of Engineering and Technology, Prof. Srinivas Mayya D., Srinivas Insinuate of Technology, and Prof. Rana Prathapa Reddy, Reva Institute of Technology, for their constant support and encouragement during the preparation of this paper.

Acknowledgment

Authors are very much thankful to the Principals, Prof. Martin Jebaraj, Dr. Ambedkar Institute of Technology, Prof. H. S. Nanda, Nagrajuna College of Engineering and Technology, Prof. Srinivas Mayya D., Srinivas Insinuate of Technology, and Prof. Rana Prathapa Reddy, Reva Institute of Technology, for their constant support and encouragement during the preparation of this paper.

References

[1] Buckley F and Harary F, Distance in Graphs, Addison-Wesley, 1990.
[2] Gary Chartrand, Linda Eroh, Mark A. Johnson, and Ortrud R. Oellermann. Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math., 105(1-3):99-113, 2000.
[3] Jos $\|$ C C laceres, Mar\|ya L. Puertas, Carmen Hernando, Mercue Mora, Ignacio M. Pelayo, Carlos Seara, David R. Wood, On the metric dimension of cartesian product of graphs http://www.arxiv.org/math/0507527, March 2005, 1-23.
[4] Harary F, Melter R.A., On the Metric dimension of a graph, Ars Combinatoria 2 (1976),191-195.
[5] Harts- eld Gerhard and Ringel, Pearls in Graph Theory, Academic Press, USA, 1994.
[6] S. Kuller, B. Raghavachari and A. Rosen ${ }^{-}$ed, Land marks in graphs, Disc. Appl. Math. 70 (1996), 217-229
[7] J. Liu and K. Williams, On bandwidth and edge sum for the composition of two graphs, Disc, Math. 143(1995),159-166.
[8] Peter J. Slater. Leaves of trees. In Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, vol. 14 of Congressus Numerantium, pp. 549-559. 1975.
[9] Peter J. Slater. Dominating and reference sets in a graph. J. Math. Phys. Sci., 22(4):445-455, 1988.
[10] B. Shanmukha, B. Sooryanarayana, K.S. Harinath, Metric dimension of wheels, Fareast J. Appl. Math. 8(3) (2002),217-229.
[11] Shreedhar K, B. Sooryanarayana, Chandru Hedge, Vishukumar M, Metric dimension of a Hexogonal Celluar Networks, International Journal of Mathematics and Engineering Applications Vol 1(2010) .
[12] Sooryanarayana B, On the metric dimension of graph, Indian.J.Pure Appl.Math 29(4)(1998), 413-415.
[13] Sooryanarayana B and Shanmukha B, A note on metric dimension, FEJ. Appl. Math., 5(3)(2001), 331-339.
[14] Varaporn Saenpholphat and Ping Zhang. Connected resolvability of graphs. Czechoslovak Math. J., 53(128)(4):827-840, 2003.

