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Abstract 
 

In this paper, we obtain the solution of a fractional differential equation 
associated with a RLC electrical circuit. The solution is derived by the 
application of the Sumudu transform. The results are obtained in compact and 
elegant forms in terms of the generalized Mittag-Leffler function and H-
function, which are suitable for numerical computation. 
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Introduction 
Fractional differential equations have attracted in the recent years a considerable 
interest due to their frequent appearance in various field and their more accurate 
models of systems under consideration provided by fractional derivatives. For 
example, fractional derivatives have been used successfully to model frequency 
dependent damping behavior of many viscoelastic materials. They are also used in 
modeling of many chemical processes, mathematical biology and many other 
problems in Physics and Engineering. In this connection, one can refer to the 
monographs by Hilfer [11], Kilbas et al. [12], Kiryakova [13], Podlubny [20] and the 
various works cited therein. Debnath [7-9] considered solutions of fractional order 
homogeneous and non-homogeneous differential equations and integral equations in 
fluid mechanics. Magin and Ovadia [15] proposes modeling the cardiac tissue 
electrode interface using fractional calculus by means of a convenient three element 
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electrical circuit. Camargo et al. [5] discuss the so-called telegraph equation in a 
fractional version whose solution is given in terms of a three-parameter Mittag-Leffler 
function and present also two new theorems involving the two and three parameter 
Mittag-Leffler functions. In a recent paper Soubhia et al. [24] studied a theorem 
involving series in the three-parameter Mittag-Leffler function and obtained the 
solution of a fractional differential equation associated with a RLC electrical circuit 
by the application of Laplace transform. Watugala [25] introduced a new integral 
transform, called the Sumudu transform defined for functions of exponential order. 
Over the set of functions,  
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the Sumudu transform is defined by 
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 The Riemann-Liouville fractional integral of order ν is defined by (Miller and 
Ross [18], p.45; Kilbas et al. [12]) 
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where Re(ν)> 0. 

 The following fractional derivative of order α > 0 is introduced by Caputo [6]; see 
also Kilbas et al. [12] in the form 
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where 
m

m

dt

f(t)d
is the m-th order derivative of f(t) with respect to t. 

 From Caputo [6] and Belgacem et al. [3] it follows that the Sumudu transform of 
the Caputo derivative is given by 
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 In view of the results Kilbas et al. [12] and Belgacem et al. [3], we can easily find 
that 
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 Now, we will establish the following result which is directly applicable in the 
solution of fractional differential equation 
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 To prove this, we have 
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 Finally, using the result (6), it gives the required result. 
 To prove our main result, we also need the following: 
 
Theorem 1.1 [24]. For the three-parameter Mittag-Leffler function with Re(α) > 0 
and Re (β) > 0 and x, y ∈ C, x ≠ y, we have the following explicit representation of 
the series 
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in terms of the two-parameter Mittag-Leffler function (.).ν,μE  

 
 
RLC Electrical Circuit 
In this section, we present a RLC electrical with a capacitor and an inductor are 
connected in parallel and this set is connected in series with a resistor and a voltage. A 
similar circuit was recently studied by Soubhia [24]. The capacitance, C, the 
inductance, L and the resistance, R, are considered positive constant and θ(t) is the 
Heaviside function. 
 The constitute equations associated with the three-elements of the RLC electrical 

circuit are: the voltage drop ,ξ)ξ=( ∫ dI(
C

1
  t)U

t

C
across a capacitor; the voltage 

drop I(t),
dt

d
 L  t)U

L
=(  across an inductor; the voltage drop UR(t) = R I(t), across a 

resistor, and where I(t) is the current. 
 Now using the Kirchhoff’s voltage law and the constitutive equations associated 
with the three elements, we can write the non-homogeneous second order differential 
equation 
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where UC(t) is the voltage on the capacitor which is the same on the inductor, as we 
can see in figure 1, because they are connected in parallel. 

 On the other hand, we obtain another non-homogeneous second order differential 
equation associated with the current on the inductor 
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Figure 1: Three-Element Electrical Circuit. 

 
 
 Again, using the constitutive equation for the inductor, these two non-
homogeneous second order differential equations can be led to the correspondent 
integro-differential equations, 
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respectively. We observe that, both integro-differential equations (12) and (13) have 
the same form. 
 
 
Fractional integro-differential equation 
In this section, we investigate the solution of the fractional generalization of equation 
(12). The result is given in the form of the following theorem 
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Theorem 3.1. Consider the following fractional integro-differential equation 
associated with the current on the capacitor, 
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with the initial condition 

 ,=)( 00i
C

  (15) 

where θ(t) is the Heaviside function. Then for the solution of (14), subject to the 
initial condition (15), there holds the formula 

t)
tEtE

R

t
  t)i

1

C
(θ

ν−μ

)ν(ν−)μ(μ
=(

α
α,α

α
α,α

−α
 

( )
t),tH tH

R(

t 10

110

11

1,2

10

110

1,1

1,2

1

(θ
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ ν−ν−⎥
⎦

⎤
⎢
⎣

⎡ μ−μ
)ν−μ

=
),(

)α,α−),,(

α,),(

)α,α−(),,(

α
−α

  (16) 

where 
11

1,2
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,
is the H-function for a detailed comprehensive account of the H-function, 

see [10], and μ and ν are the roots of the algebraic system 
RC
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Proof. Applying the Sumudu transform with respect to the variable t, we get 
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 Solving for F(u), it gives 

 ,
++

= α−α−

−α−

bu a u

u

R

1
  F(u)

2

1

  (18) 

where we have introduced the positive parameters 1/LC. b and 1/RC a ≡≡  

 On taking the inverse Sumudu transform of (18) and applying the formula (7), it is 
seen that 
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where (.)
ρ

ν,μE  is the three-parameter Mittag-Leffler function [21] and θ(t) is the 
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Heaviside function. 

 Now, using the Theorem 1.1, in (19), we get 
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Finally, applying the identity [23, p.291] 
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the above expression (20) becomes, 
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