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Abstract 
 

Investigation on an unsteady Couette flow through a porous medium of a 
viscous incompressible fluid between parallel plates, rotating with a uniform 
angular velocity about an axis normal to the plate is presented. The fluid 
saturated porous media and plates rotate in unison with the same angular 
velocity. Laplace transform technique has been applied to obtain an exact 
solution of the governing equations for small as well as large times and 
presented graphically. Shear stress for primary as well as secondary velocities 
is computed analytically. 
 
Keywords: Couette flow. Porous medium. Ekman number. Shear stress. 
Rotating system. 

 
 
Introduction 
Rotation has an immense importance in various phenomena such as in cosmical fluid 
dynamics, meteorology, geophysical fluid dynamics, gaseous and nuclear reactors and 
many engineering applications, that is why, the study of Couette flow through porous 
media in a rotating system enhances an interest to the researchers due to its 
applications in the aforesaid area. Such a study has a greater importance in the design 
of turbines and turbo mechanics, in estimating the flight path of rotating wheels and 
spin-stabilized missiles. Furthermore, such flows are useful for petroleum engineers, 
hydrologists and aero-dynamists to serve their purposes. In this regard Greenspan [1] 
has presented world a pioneer work on the theory of rotating fluids and theoretical 
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presentation of Stokes and Rayleigh layers in rotating systems has been given by 
Thornely [2]. Berker [3] has investigated the flow between two disks, rotating about a 
common axis with the same angular velocity. Vidyanidhi and Nigam [4] studied the 
Couette flow between rotating parallel plates under constant pressure gradient. Later, 
Erdogan [5,6] established the initial conditions which make the flow two-dimensional. 
He [6] has obtained an exact solution for the flow due to parallel disks rotating about 
non-coincident axes when one of the disks is executing non-torsional oscillations. He 
[7] has also considered the flow due to non-coaxial rotations of a disk oscillating in its 
own plane and a fluid rotating at infinity. Erdogan [7] studied the unsteady 
hydrodynamic viscous flow between eccentric rotating disks. An exact solution for 
the unsteady flow in which the eccentric disks execute non-torsional oscillations is 
shown by Rao and Kasiviswanathan [8] and an extension to this flow to the unsteady 
heat transfer is presented by Kasiviswanathan and Rao [9]. They [10] also presented 
an exact solution of the unsteady Navier-Stokes equations for the flow due to an 
eccentrically rotating porous disk oscillating in its own plane and the fluid at infinity.  
 A rich variety of important analytical, numerical, and experimental results have 
been published on this topic, for example, Batchelor [11], Greenspan [1], Pop and 
Soundalgekar [12], Puri [13], and Vidyanidhi and Nigam [2], have done excellent 
work analytically. Jana and Dutta [14] studied the steady Couette flow of a viscous 
incompressible fluid between two infinite parallel plates, one stationary and the other 
moving with uniform velocity, in a rotating frame of reference and discussed it for 
small as well as large times. 
 A large number of investigations made on rotating fluid and they are important to 
better understand the flow through a porous medium in a rotating system. In general, 
most of solutions for unsteady flows of viscous fluids are in a series form. These 
series may be rapidly convergent for large values of the time but slowly convergent 
for small values of the time or vice versa. Sometimes, it can be difficult to obtain the 
solution for small values of the time but it can be easy to obtain it for large values of 
the time and the opposite can also be true. Abbott and Walters [15] presented an exact 
solution of the hydrodynamic flow between two disks, rotating with the same angular 
velocity about non-coincident axes. Mohanty [16] discussed the 
magnetohydrodynamics flow between two disks, rotating with the same angular 
velocity about two different axes. Again Rao and Kasiviswanathan [17] extended it to 
the problem for micropolar fluid. Other extensions were made by Ersoy [18], 
Rajagopal [19]. Rao and Kasiviswanathan [20] considered the flow of an 
incompressible viscous fluid between two eccentric rotating disks for unsteady cases. 
 In this paper, we consider the unsteady Couette flow through porous media in a 
rotating frame of reference and obtain an exact solution of velocity field and shear 
stress for large values of the time as well as for small values of the time, Laplace 
transform technique has been used to calculate these results for small and large times. 
The flow through porous media between two parallel plates distant ‘݀’ apart where 
the upper plate is suddenly set into motion with uniform velocity ܷ. Velocity field and 
shear stresses due to primary and secondary flows for small as well as large time τ  
are obtained analytically and depicted graphically.  
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Mathematical Analysis 
A Newtonian fluid saturated porous media is assumed to flow between two infinitely 
long parallel plates distant ‘݀’ apart rotating with uniform angular velocityΩ. The 
upper plate moves with a uniform velocity ܷ in ݔ-direction while the lower plate is 
kept stationary. In the coordinate system the stationary plate is taken along ݔ െaxis 
and ݖ െaxis in the direction normal to it. 
 The flow of the rotating fluid is governed by the Navier-Stokes equation whose 
two components are  

   డ௨
డ௧

ൌ ߥ డమ௨
డ௭మ ൅ 2Ωݒ െ ఔ

௞
 (2.1)  ,ݑ

   డ௩
డ௧

ൌ ߥ డమ௩
డ௭మ െ 2Ωݒ െ ఔ

௞
  (2.2)  ,ݒ

 
where νሺൌ µ

஡ 
ሻ is known as kinematic co-efficient of viscosity and the velocity 

components ݑ and ݒ are taken along ݔ- and ݕ- directions respectively. 
 Here the initial and boundary conditions are 
ݑ    ൌ ݒ ൌ 0 for ݐ ൑ 0, 0 ൑ ݖ ൑ ݀,  (2.3) 
 
and  
ݑ   ൌ ݒ ൌ 0 at ݖ ൌ 0 , for ݐ ൐ 0 , 
ݑ    ൌ ܷ, ݒ ൌ 0 at ݖ ൌ ݀, for ݐ ൐ 0.  (2.4)  
 
 Introducing non-dimensional variables 

ߟ    ൌ ௭ 
ௗ

, ߬ ൌ ఔ௧
ௗమ, ݑଵ ൌ ௨

௎
ଵݒ , ൌ  ௩

௎
 and ܭ ൌ ௞

ௗమ.  (2.5) 
 
 Eqs. (2.1) and (2.2) reduce to 

   డ௨భ
డఛ

ൌ డమ௨భ
డఎమ ൅ ଵݒ2ܲ െ ௨భ

௄
,  (2.6) 

   డ௩భ
డఛ

ൌ డమ௩భ
డఎమ ൅ ଵݑ2ܲ െ ௩భ

௄
,  (2.7) 

 
where ܲ ൌ ଵିܧ ൌ ஐௗమ

ఔ
  .is the Ekman number ܧ ;

 These two equations can be expressed as 

   డ௤
డఛ

ൌ డమ௤
డఎమ െ ݍ2݅ܲ െ ௤

௄
,  (2.8)  

 
where ݍ ൌ ଵݑ ൅  ଵ and i, the imaginary number (2.9)ݒ݅
 Eqs. (2.3) and (2.4) become 
ݍ    ൌ 0 for ߬ ൑ 0, 0 ൑ ߟ ൑ 1,  (2.10) 
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and 
ݍ    ൌ 0 at ߟ ൌ 0 , ߬ ൐ 0, 
ݍ    ൌ 1 at ߟ ൌ 1, ߬ ൐ 0.  (2.11) 
 
 Consider  
,ߟሺݍ    ߬ሻ ൌ ,ߟሺܨ ߬ሻ݁ିଶ௜௉ఛ .  (2.12) 
 
 Eqs. (2.8) with initial and boundary conditions (2.10)and (2.11) be transformed 
into the following equations respectively 

   డி
డఛ

ൌ డమி
డఎమ െ ி

௄
 ,  (2.13) 

,ሺ0ܨ    ߬ሻ ൌ 0, and ܨሺ1, ߬ሻ ൌ ݁ଶ௜௉ఛ .  (2.14) 
 
 Applying Laplace transform technique to Eq. (2.13), we get 

തܨݏ    ൌ ௗమிത

ௗఎమ െ ிത

௄
 ,  (2.15) 

 
where  
തܨ   ൌ ׬ ,ߟሺܨ ߬ሻ݁ି௦ఛஶ

଴ ݀߬ . 
 
 Eq. (2.14) becomes 

തሺ0ሻܨ    ൌ 0 and ܨതሺ1ሻ ൌ ଵ
௦ିଶ௜௉

 ,  (2.16) 
 
 Using the boundary conditions (2.16) , we get the solution of Eq. (2.15) in the 
form 

,ߟതሺܨ    ሻݏ ൌ
௦௜௡௛ට௦ାభ

ేఎ

ሺ௦ିଶ௜௉ሻ ௦௜௡௛ට௦ାభ
ే

..  (2.17) 

 
 
Analytical Solution 
Solutions for small time ૌ 
Eq. (2.17) can be expressed as 

,ߟതሺܨ   ሻݏ ൌ ∑ ∑ ሺଶ௜௉ሻ೙

௦೙శభ ቈ݁ିሺଵାଶ௠ିఎሻට௦ାభ
಼ െ ݁ିሺଵାଶ௠ାఎሻට௦ାభ

಼቉ஶ
௡ୀ଴

ஶ
௠ୀ଴ .  (3.1) 

 
 The inverse Laplace transform of (3.1) is 

,ߟሺܨ   ߬ሻ ൌ ∑ ∑ ሺଶ௜௉ሻ೙

ଶ√గ௡!
ൈ ቈሺ1 ൅ 2݉ െ ሻߟ ׬

ሺఛିకሻ೙

క
య

మൗ ݁ି൬഍
ೖାሺభశమ೘షആሻమ

ర഍ ൰ ఛߦ݀
଴ െஶ

௡ୀ଴
ஶ
௠ୀ଴
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 ሺ1 ൅ 2݉ ൅ ሻߟ ׬
ሺఛିకሻ೙

క
య

మൗ ݁ି൬഍
ೖାሺభశమ೘శആሻమ

ర഍ ൰ ఛߦ݀
଴

൨.   (3.2) 

 
 When ݇ ՜ ∞, Eq (3.2) becomes 

,ߟሺܨ   ߬ሻ ൌ ∑ ∑ ሺଶ௜௉ሻ೙

ଶ√గ௡!
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క
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మൗ ݁ି൬ሺభశమ೘శആሻమ

ర഍ ൰ ఛߦ݀
଴

൨  

 ൌ ∑ ∑ ሺ2݅ܲሻ௡ஶ
௡ୀ଴

ஶ
௠ୀ଴ ሺ4߬ሻ௡ ൈ 

  ቂ݅ଶ௡ ݂ܿݎ݁ ቀଵାଶ௠ିఎ
ଶ√ఛ

ቁ െ ݅ଶ௡ ݂ܿݎ݁ ቀଵାଶ௠ାఎ
ଶ√ఛ

ቁቃ.  (3.3) 
 
 Which agrees with those of Guria[39]. 
 Alternately we can find the Laplace inversion ([20], page 297, [22]) of Eq. (2.8) 
subject to the boundary conditions (2.9) and (2.10) as  
,ߟሺܨ  ߬ሻ ൌ ∑ ∑ ቀ2݅ܲ ൅ ଵ

௞
ቁ

௡
ஶ
௡ୀ଴

ஶ
௠ୀ଴ ሺ4߬ሻ௡ ቂ݅ଶ௡ ݂ܿݎ݁ ቀଵାଶ௠ିఎ

ଶ√ఛ
ቁ െ  ݅ଶ௡ ݂ܿݎ݁ ቀଵାଶ௠ାఎ

ଶ√ఛ
ቁቃ,  

   (3.4) 
 
 When ݇ ՜ ∞, Eq (3.4) reduces to  
,ߟሺܨ    ߬ሻ ൌ ∑ ∑ ሺ2݅ܲሻ௡ஶ

௡ୀ଴
ஶ
௠ୀ଴ ሺ4߬ሻ௡ ൈ 

   ቂ݅ଶ௡ ݂ܿݎ݁ ቀଵାଶ௠ିఎ
ଶ√ఛ

ቁ െ ݅ଶ௡ ݂ܿݎ݁ ቀଵାଶ௠ାఎ
ଶ√ఛ

ቁቃ,   (3.5)  
 
 This is same as the above Eq. (3.3). 
 Where  

  ݅௡݂݁ܿݎሺݔሻ ൌ ׬ ݅௡ିଵ݂݁ܿݎሺߦሻ݀ߦ,ஶ
௫  

ሻݔሺ݂ܿݎ݁݅   ൌ ׬ ஶ,ߦሻ݀ߦሺ݂ܿݎ݁
௫  

  ݅଴݂݁ܿݎሺݔሻ ൌ  ሻݔሺ݂ܿݎ݁
 
 
Solutions for large time ૌ 
For the large time we apply the method used by Batchelor[12] and the solution of 
Eq.(2.8) can be written as 

,ߟሺݍ    ߬ሻ ൌ
௦௜௡௛ටଶ௜௉ାభ

಼ఎ

 ௦௜௡௛ටଶ௜௉ାభ
಼

൅ ,ߟଵሺܨ ߬ሻ,  (3.6) 

 
where ܨଵሺߟ, ߬ሻ is the solution of the differential equation 

   డிభ
డఛ

ൌ డమிభ
డఎమ െ ଵܨ2݅ܲ െ ிభ

௄
,  (3.7) 
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subject to the condition 
,ଵሺ0ܨ    ߬ሻ ൌ ,ଵሺ1ܨ ,0 ߬ሻ ൌ 0,  
 
and 

,ߟଵሺܨ    0ሻ ൌ െ
௦௜௡௛ටଶ௜௉ାభ

಼ఎ

 ௦௜௡௛ටଶ௜௉ାభ
಼

.  (3.8) 

 
 Solving Eq. (3.7), we have   

,ߟଵሺܨ    ߬ሻ ൌ ௡ܣ  ݁ିఒ೙
మఛ݊݅ݏ  (3.9)  ,ߟߨ݊

 
where ܣ௡ can be obtained from 

   ∑ ௡ܣ ݁ିఒ೙
మఛ݊݅ݏ ஶߟߨ݊

௡ୀଵ ൌ െ
௦௜௡௛ටଶ௜௉ାభ

಼ఎ

 ௦௜௡௛ටଶ௜௉ାభ
಼

 ,  (3.10) 

 
 And 
௡ߣ   

ଶ ൌ ሺ݊ߨሻଶ ൅ 2݅ܲ ൅ ଵ
௄

.  (3.11)  
 
Consequently the fluid velocity 

,ߟሺݍ    ߬ሻ ൌ
௦௜௡௛ටଶ௜௉ାభ

಼ఎ

 ௦௜௡௛ටଶ௜௉ାభ
಼

൅ 2 ∑ ௡గሺିଵሻ೙௘షഊ೙
మഓ

ሺ௡గሻమାଶ௜௉ାభ
಼

݊݅ݏ ஶߟߨ݊
௡ୀଵ .  (3.12) 

 
 Its real and imaginary parts are given by  

ଵݑ    ൌ ௌሺఏఎሻௌሺఏሻା஼ሺఏఎሻ஼ሺఏሻ

൫ௌሺఏሻ൯మ
ା൫஼ሺఏሻ൯మ ൅ 2 ∑ ௡గሺିଵሻ೙ ௦௜௡ ௡గఎ

ቀሺ௡గሻమାభ
಼ቁ

మ
ାሺଶ௉ሻమ

ஶ
௡ୀ଴  

   ൈ ቄቀሺ݊ߨሻଶ ൅ ଵ
௄

ቁ 2ܲ߬ݏ݋ܿ െ 2ܲ߬ቅ ݁ିቀሺ௡గሻమାభ݊݅ݏ2ܲ
಼ቁఛ,  (3.13)  

ଵݒ    ൌ ஼ሺఏఎሻௌሺఏሻିௌሺఏఎሻ஼ሺఏሻ

൫ௌሺఏሻ൯మ
ା൫஼ሺఏሻ൯మ െ 2 ∑ ௡గሺିଵሻ೙ ௦௜௡ ௡గఎ

ቀሺ௡గሻమାభ
಼ቁ

మ
ାሺଶ௉ሻమ

ஶ
௡ୀ଴  

   ൈ ቄ2ܲܿ2ܲ߬ݏ݋ െ ቀሺ݊ߨሻଶ ൅ ଵ
௄

ቁ 2ܲ߬ቅ݊݅ݏ ݁ିቀሺ௡గሻమାభ
಼ቁఛ.  (3.14) 

 
 Where  
  ܵሺߟߠሻ ൌ .ߟߙ݄݊݅ݏ ሻߟߠሺܥ ,ߟߚݏ݋ܿ ൌ .ߟߙ݄ݏ݋ܿ   ,ߟߚ݊݅ݏ
   ܵሺߠሻ ൌ .ߙ݄݊݅ݏ ,ߚݏ݋ܿ ሻߠሺܥ ൌ .ߚ݄ݏ݋ܿ   ,ߙ݊݅ݏ

ߙ    ൌ ൌ , 2/ߠݏ݋ܴܿ√ ߠ , 2/ߠ݊݅ݏܴ√ ൌ ଵି݊ܽݐ  ,ܭ2ܲ

   ܴ ൌ ටሺ2ܲሻଶ ൅ ଵ
௄మ  (3.15) 
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Shear Stress 

   ቀడ௤
డఎ

ቁ
ఎୀ଴

ൌ
ටଶ௜௉ାభ

಼

௦௜௡௛ටଶ௜௉ାభ
಼

൅ 2 ∑ ሺ௡గሻమሺିଵሻ೙௘షቀሺ೙ഏሻమశమ೔ುశభ
ೖቁഓ

ሺ௡గሻమାଶ௜௉ାభ
಼

ஶ
௡ୀଵ  .  (4.1) 

 
 On separating into real and imaginary parts we get the shear components as 

   ߬௫଴ ൌ ఈௌሺఏሻାఉ஼ሺఏሻ

൫ௌሺఏሻ൯మ
ା൫஼ሺఏሻ൯మ ൅ 2 ∑ ሺ௡గሻమሺିଵሻ೙௘షቀሺ೙ഏሻమశ భ

಼ቁഓ

ቀሺ௡గሻమାభ
಼ቁ

మ
ାሺଶ௉ሻమ

ஶ
௡ୀଵ  

   ൈ ቄቀሺ݊ߨሻଶ ൅ ଵ
௄

ቁ 2ܲ߬ݏ݋ܿ െ  2ܲ߬ቅ,  (4.2)݊݅ݏ2ܲ

   ߬௬଴ ൌ ିఈ஼ሺఏሻାఉௌሺఏሻ

൫ௌሺఏሻ൯మ
ା൫஼ሺఏሻ൯మ െ 2 ∑ ሺ௡గሻమሺିଵሻ೙௘షቀሺ೙ഏሻమశ భ

಼ቁഓ

ቀሺ௡గሻమାభ
಼ቁ

మ
ାሺଶ௉ሻమ

ஶ
௡ୀଵ  

   ൈ ቄ2ܲܿ2ܲ߬ݏ݋ െ ቀሺ݊ߨሻଶ ൅ ଵ
௄

ቁ  2ܲ߬ቅ.  (4.3)݊݅ݏ
 
 
Conclusive Discussions 
The study of unsteady Couette flow through porous media in a rotating system is 
addressed in this chapter. Solution of the equation of complex velocity (3.12) is 
obtained by the use of Laplace transform technique. The primary and the secondary 
flows of the velocity profile are depicted against ߟ for different values of the porosity 
parameter K and the inverse Ekman number ሺିܧଵ ൌ ܲሻ for large time. Figures 5.1 & 
5.2 are represented for different values of ܲ and fixed ߬ ൌ ܭ & 0.5 ൌ 0.1. The 
primary velocity profile displays that an increasing inverse Ekman number ܲ 
decreases the velocity profile for ܲ ൌ 3, 4 and have opposite behavior for smaller 
ܲሺൌ 1,2ሻ, whereas the secondary velocity profile overlaps one another and reaches its 
peak between the middle of the stationary and the moving plates (at about ߟ ൌ
0.53).For higher rotation parameterሺିܧଵ ൌ 4ሻ, the secondary velocity profile (fig. 
5.2) behaves in an oscillatory manner near the stationary plate and leads to a back 
flow in the region 0 ൑ ߟ ൑ 0.7. The next figures have been erected for varied porosity 
parameter ܭ. It is stated from fig. 5.3 that the primary velocity ݑଵ for small time 
߬ ൌ 0.5 increases with increase in the porosity parameter ܭ and becomes stagnant in 
form of slope for higher ܭ. Consequently this profile approaches its peak near the 
moving plate. In the next figure velocity profile overlaps each other. It is noticed that 
a back flow influence occurs in the region 0 ൑ ߟ ൑ 0.5. The secondary velocity 
profile ݒଵ (fig.5.4) are overlapping in nature and reaches its peak at ߟ ൌ 0.5 for small 
porosity parameter ܭ ൌ 0.1. Figures 5.5 & 5.6 are erected for large time ߬ ൌ 10 and 
increasing porosity parameter ܭ. They show the same behavior as that of previous 
pairs of velocity profiles. The primary profile (fig. 5.5) shows their nature 
increasingly with increase in porosity parameter ܭ and having fixed slope against 
increasing ߟ while a back flow exists in the region 0 ൑ ߟ ൑ 0.7. The secondary 
velocity profile ݒଵ (fig. 5.6) increase in magnitude with increase in ߟ and get its 
maximum peak at ߟ ൌ 0.5 for ܭ ൌ 0.1.  
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Figure 5.1: primary velocity profile for ߬ ൌ ܭ ,0.5 ൌ 0.1 
 

 
 

Figure 5.2: secondary velocity profile for ߬ ൌ 0.5, ܭ ൌ 0.1 
 

 
 

Figure 5.3: primary velocity profile for ߬ ൌ 0.5, ܲ ൌ 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

    1 

1.2

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2



Unsteady Couette Flow through a Porous Medium 389 
 

 

 
 

Figure 5.4: secondary velocity profile for ߬ ൌ 0.5, ܲ ൌ 1 
 

 
 

Figure 5.5: primary velocity profile for ߬ ൌ 10, ܲ ൌ 1 
 

 
 

Figure 5.6: secondary velocity profile for ࣎ ൌ ૚૙, ࡼ ൌ ૚ 
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