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Abstract 
 

Non-Darcy effects on two-dimensional laminar simultaneous Heat and Mass 
Transfer flow of a viscous, incompressible, electrically conducting and 
chemically reacting fluid through a porous medium confined in a vertical 
channel. A similarity transformation is used to reduce the governing Partial 
Differential Equations into Ordinary ones. The behaviour of the velocity, 
temperature and concentration, Profiles as well as for skin friction, Nusselt 
number and Sherwood number are obtained and has been discussed for 
various parametric conditions.      
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Introduction 
Coupled Heat and Mass Transfer phenomenon in porous media is gaining attention 
due to its interesting applications. The flow phenomenon is relatively complex rather 
than that of the pure thermal convection process. Underground spreading of chemical 
wastes and other pollutants, grain storage, evaporation cooling and solidification are 
the few other application areas where the combined thermo-solutal natural convection 
in porous media are observed. Combined heat and mass transfer by free convection 
under boundary layer approximations has been studied by Bejan and Khair[1], Lai 
and Kulacki[2]. The free convection Heat and Mass Transfer in a porous enclosure 
has been studied recently by Angirasa et al[3].    
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 For some industrial applications such as glass production and furnace  design in 
space technology applications ,cosmic  flight aerodynamics, rocket propulsion 
systems, plasma physics which operate at higher temperatures, radiation effects can 
be significant. In many chemical engineering processes ,there does occur the chemical 
reaction between a foreign mass and the fluid in which the plate is moving. These 
processes take place in numerous industrial applications viz, polymer production, 
manufacturing of ceramics or glassware and food processing. Das et  al[4] have 
studied the effects of Mass Transfer on flow past an impulsively started infinite 
vertical plate with constant heat flux and chemical reaction.         Chamkha et al[5] 
analysed the effects of radiation on free convection flow past a semi-infinite vertical 
plate with mass transfer.  
 
 
Formulation of the problem  
We consider a coupled Heat and Mass Transfer flow of a viscous electrically 
conducting fluid through a porous medium confined in a vertical channel bounded by 
porous flat walls in the presence of heat generating sources, transverse magnetic field 
effects and a first order chemical reaction. The flow is assumed to be steady, laminar 
and two-dimensional and the surface is maintained at constant temperature and 
concentration. All thermophysical properties are constant except the density in the 
buoyancy terms of the linear momentum equation which is approximated according to 
the Boussinesq approximation, Under these assumptions, the equations describing the 
physical situation are given by 
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where y is the horizontal or transverse coordinate, u is the axial velocity,v is the 
transverse velocity,T is the fluid temperature, C is the species concentration ,Te the 
ambient temperature, Ce is the ambient concentration and DQBg ,,,,,,,, 0σμββρ •  

and γ are the density, gravitational acceleration, coefficient of thermal expansion, 
coefficient of concentration expansion, dynamic viscosity, fluid electrical 
conductivity, magnetic induction, heat generation/absorption coefficient, mass 
diffusion coefficient and chemical reaction parameter respectively. The physical 
boundary conditions for the problem are 
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where vw>0,T1,T2 and C1,C2 are the suction velocity, surface temperatures and 
concentrations on Ly ±=  respectively. 
 Invoking Rosseland approximation for radiative heat flux 
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 Expanding 4T ′ in Taylor series about Te and neglecting higher order terms, we get  

  434 34 ee TTTT −≅′  

 rq  represents the radiation heat flux in the y direction, •σ  the Stefan –Boltzman 

constant and Rβ the mean absorption coefficient. 

 In order to write the governing equations and boundary conditions in the 
dimensionless form, the following non-dimensional quantities are introduced 
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the equations after dropping the dashes are 
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 The Non-dimensional boundary conditions are  
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Stress, Nusselt number and Sherwood Number 
The shear stress on the boundaries 1±=y are given by 
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 The rate of Heat Transfer (Nusselt Number) on the boundaries 1±=y  are given 

by 
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 The rate of Mass Transfer (Sherwood Number) on the boundaries 1±=y  are 
given by 

 
1

2210
1)(

±=
±= ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=

y

y dy

dC

dy

dC

dy

dC
Sh δδ  

 
 
Discussion of the Numerical Results 
The aim of this analysis is to investigate the convective Heat and Mass Transfer 
through a porous medium in a vertical channel in the presence of a chemical reaction 
with uniform suction. We consider three different cases k>0, k=0 and k<0,where k is 
the chemical reaction parameter .k>0 represents destructive chemical reaction, k=0 
represents no chemical reaction and k<0 is for generative chemical reaction. The 
velocity u is represented in Figs.1 and 2. For different values of the governing 
parameters N1, and k. u>0 is the actual flow and u<0 is the reversal flow. An increase 
in the radiation parameter N1 leads to an enhancement in u in the flow region except 
in the vicinity of y=1(Fig.1).The behaviour of u with reference to and the chemical 
reaction parameter k. We notice that It is found that the velocity decreases during the 
generative reaction and enhances in the destructive reaction(Fig.2). 
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 The Non-dimensional temperature θ  is shown in Figs.4 and 5. The behaviour of θ 
with the radiation parameter N1 is depicted in Fig.4.The temperature experiences a 
remarkable depreciation when the radiation parameter enhances and for higher values 
of N1there is a marginal decrease in θ in the entire flow region. Fig.5 shows that θ 
decreases in the generative reaction and enhances in the destructive reaction.  
 The shear stress τ at the walls 1±=y  are evaluated for various different 
parametric conditions are presented in Tables.1-4.It is found that the shear stress at 
y=1 is positive for G>0 and negative for G<0 while at y=-1 it is negative for G>0 and 
positive for G<0.The magnitude of stress enhances with increase in  ⎢G ⎢. 
 The variation of τ with the chemical reaction parameter k  shows that the 
magnitude of stress at y =1 enhances with increase in both destructive reaction and 
generative reaction. The behaviour of τ with k at y = -1 shows that ⎢τ ⎢  depreciates 
during the destructive chemical reaction and enhances with k ≥ 2 at ⎢G ⎢=103 while 
for G≥3x103, ⎢τ ⎢  enhances with  k>0  and  depreciates  with  k for ⎢G ⎢≥3x103. ⎢τ ⎢ 
experiences a depreciation in generative chemical reaction for all values of ⎢G⎢, and 
also the radiation parameter N1 enhances ⎢τ ⎢  at y= +1and -1.  Tables.1and2.An 
increase in the chemical reaction parameter k shows that  ⎢Nu ⎢ at y=1 experiences an 
enhancement  with all values of k while at y= -1, ⎢Nu ⎢ depreciates during the 
destructive chemical reaction and enhances during the generative chemical reaction . 
The radiation parameter N1 enhances  ⎢Nu ⎢ at y=1 and depreciates it at y= -1 for all 
G. Tables.3 and 4. 
 
 
 

Table 1: Shear Stress ( τ ) at y =1 P=0.71,k=2.0,M=2. 
 

G/ τ I II III IV V VI 
103 4.2404 3.3031 6.2755 9.1284 4.3432 4.4147 
3x103 12.7219 9.9093 18.8265 27.3852 13.0296 13.2374 
-103 -4.2404 -3.3031 -6.2754 -9.1284 -4.3432 -4.4126 
-3x103 -12.7219 -9.9093 -18.8265 -27.3852 -13.0296 -13.2374 

 
 

Table 2: Shear Stress ( τ ) at y = -1 P=0.71,k=2.0,N1=0.5,M=2. 
 

G/ τ I II III IV V VI 
103 -0.6072 -0.4357 2.6974 3.7612 -0.4827 -0.4019 
3x103 -2.7054 -2.2941 2.6301 2.6306 -2.2798 -1.9969 
-103 0.3125 0.1067 -4.5180 -6.6455 0.2054 0.1381 
-3x103 0.0536 -0.6669 -19.0161 -28.5892 -0.2156 -0.3772 
 I II III IV V VI 
K 2 1.2 0 -0.2 2 2 
N1 0.5 0.5 0.5 0.5 10 100 
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Table 3: Nusselt Number(Nu) at y =1 P=0.71,k=2.0,N1=0.5,M=2. 
 

G/ Nu I II III IV V VI 
103 0.49841 0.48861 0.35192 0.28483 0.52262 0.54794 
3x103 0.52252 0.51922 0.35521 0.34391 0.54142 0.56354 
-103 0.47782 0.47962 0.69831 0.82885 0.51540 0.54266 
-3x103 0.48081 0.49242 1.39432 1.97606 0.51982 0.54770 

 
 

Table 4: Nusselt Number(Nu) at y = -1 P=0.71,k=2.0,N1=0.5,M=2. 
 

G/ Nu I II III IV V VI 
103 0.01251 0.01683 -0.22998 -0.40596 0.02047 0.01917 
3x103 -0.0749 -0.0921 -0.83253 -1.36042 -0.06271 -0.0601 
-103 0.12001 0.1257 0.372512 0.54852 0.11164 0.10547 
-3x103 0.21751 0.2345 0.974982 1.50294 0.20282 0.19177 
 I II III IV V VI 
K 2.0 1.2 0 -0.2 -0.2 -1.2 
N1 0.5 0.5 0.5 0.5 10 100 
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Figure 1: u with N1   G=103, D-1=5x102,M=2,N=1 
         I      II     III      IV 
N1     0     5     10      100 
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Figure 2: u with k    G=103, D-1=5x102,M=2,N=1 
        I       II       III    IV      V       VI    VII 
K    0      0.2    1.2    2.0  -0.2    -1.2    -2.0 
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Figure 3:  θ with N1  G=103, D-1=5x102,M=2,N=1 
        I     II     III       IV 
N1    0     5     10      100 
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Figure 4:  θ with k  G=103, D-1=5x102,M=2,N=1. 
       I        II       III      IV       V     VI     VII 
K    0      0.2    1.2     2.0     -0.2   -1.2    -2.0 
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