On Secondary Unitary Matrices

S. Krishnamoorthy¹ and A. Govindarasu²

¹Professor and Head, Department of Mathematics, Ramanujan Research Centre, Government Arts College (Autonomous), Kumbakonam – 612 001, Tamil Nadu, INDIA.
²Assistant Professor in Mathematics, A.V.C. College (Autonomous), Mannampandal – 609 305, Tamil Nadu, INDIA. E-mail: agavc@rediffmail.com

Abstract

The concept of secondary unitary (s-unitary) matrices is introduced. Characterization of secondary unitary matrices and equivalent conditions are obtained.

Mathematics Subject Classification: 15A09, 15A57

Keywords: Unitary, Secondary Transpose, Conjugate Secondary Transpose, Secondary Unitary.

1. Introduction

Anna Lee[1] has initiated the study of secondary symmetric matrices. Also she has shown that for a complex matrix A, the usual transpose A^{T} and secondary transpose A^{s} are related as $A^{s} = VA^{T}V$ where 'V' is the permutation matrix with units in its secondary diagonal.

Also \overline{A}^{s} denotes the conjugate secondary transpose of A i.e $\overline{A}^{s} = (c_{ij})$ where $c_{ij} = \overline{a_{n-j+1, n-i+1}}$ [2]. In this paper we introduce the concept of secondary unitary matrices (s-unitary).

1.1 Preliminaries and Notations

Let C_{nxn} be the space of nxn complex matrices of order n. For $A \in C_{nxn}$. Let A^T , \overline{A} , A^* , \overline{A}^s , \overline{A}^s denote transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose of a matrix A respectively.

For a complex matrix A, the Moore – penrose A^+ of A is the unique matrix X satisfying the following four penrose equations. [3]

- (i) AXA = A(ii) XAX = X(iii) $(AX)^* = AX$
- (iv) $(XA)^* = XA$

Let 'k' be the fixed product of disjoint transpositions in S_n , the set of all permutations on $\{1, 2, ..., n\}$ and 'K' be the associated permutation matrix which satisfies the following properties.

$$\overline{\mathbf{K}} = \mathbf{K}^{\mathrm{T}} = \mathbf{K}^{*} = \mathbf{K}, \ \mathbf{K}^{2} = \mathbf{I}, \ \mathbf{K}^{\mathrm{T}}\mathbf{K} = \mathbf{K}\mathbf{K}^{\mathrm{T}} = \mathbf{I}.$$

Let 'V' be the associated permutation matrix whose elements on the secondary diagonal are 1, other elements are zero. Also 'V' satisfies the following properties.

$$\mathbf{V}^{\mathrm{T}} = \overline{\mathbf{V}} = \mathbf{V}^{*} = \mathbf{V}$$
 and $\mathbf{V}^{2} = \mathbf{I}$

A matrix $A \in C_{nxn}$ is called unitary if $AA^* = A^*A = I$. [4]

2. s-Unitary Matrix Definition 2.1

A matrix $A \in C_{nxn}$ is said to be s-Unitary if $A\overline{A}^s = \overline{A}^s A = I$ [5] i.e. $AVA^*V = VA^*VA = I$ i.e. $VA^*V = A^{-1}$.

Example: 2.2

(i)
$$A = \begin{bmatrix} \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{bmatrix}$$

(ii)
$$A = \begin{bmatrix} -i & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -i \end{bmatrix}$$

are s-unitary matrices.

Theorem: 2.3

Let $A \in C_{nxn}$. If A is s-unitary matrix then \overline{A} is also s-unitary matrix.

Proof:

A is s-unitary $\Rightarrow VA^*V=A^{-1}$ V(\overline{A})* V = V($\overline{\overline{A}}$)^T = V($\overline{\overline{A}}$)^T V

$$= \frac{V \overline{A^*} V}{V A^* V}$$
$$= \overline{A^{-1}}$$
$$= \overline{A}^{-1}$$
$$\therefore \overline{A} \text{ is s-unitary.}$$

Theorem: 2.4

Let $A \in C_{nxn}$. If A is s-unitary then A^{T} is s-unitary.

Proof:

A is s-unitary $\Rightarrow A^{-1} = VA^*V$ $(A^{-1})^T = (VA^*V)^T$ $= V^T(A^*)^T V^T = V(A^*)^T V$ $(A^{-1})^T = V(A^T)^*V$ $(A^T)^{-1} = V(A^T)^*V$ $\therefore A^T$ is s-Unitary.

Theorem: 2.5

Let $A \in C_{nxn}$. If A is s-unitary then A^* is s-unitary.

Proof:

A is s-unitary $\Rightarrow A^{-1} = VA^*V$ $(A^{-1})^* = (VA^*V)^*$ $= V^*(A^*)^*V^*$ $(A^*)^{-1} = V(A^*)^*V$ $\therefore A^*$ is s-unitary.

Theorem 2.6

Let $A \in C_{nxn}$. If A is s-unitary then A^{-1} is s-unitary.

Proof:

A is s-unitary
$$\Rightarrow A^{-1} = \overline{A}^s = VA^*V$$

 $A^{-1} = \overline{A}^s$
 $(A^{-1})^{-1} = (\overline{A}^s)^{-1}$
 $= (\overline{A}^{-1})^s$
 $(A^{-1})^{-1} = \overline{A}^{-1}^s$
 $\therefore A^{-1}$ is s-unitary.

Theorem: 2.7

Let $A \in C_{nxn}$. If A is s-unitary then iA is s-unitary.

Proof:

A is s-unitary ⇒
$$A^{-1} = VA^*V$$

 $iA^{-1} = i(VA^*V)$
 $-(iA)^{-1} = V(iA^*) V = V(-\bar{i} \overline{A}^T) V$
 $(iA)^{-1} = V(\bar{i}\overline{A}^T)$
 $(iA)^{-1} = V(iA)^* V$
∴ iA is s-unitary.

Theorem: 2.8

Let $A, B \in C_{nxn}$. If A and B are s-unitary matrices then AB is s-unitary matrix.

Proof:

A is s-unitary
$$\Rightarrow$$
 $VA^*V = A^{-1}$
B is s-unitary \Rightarrow $VB^*V = B^{-1}$
 $V(AB)^*V = V(B^*A^*) V$
 $= (VB^*V) (VA^*V)$
 $= B^{-1} A^{-1}$
 $= (AB)^{-1}$
 $\therefore V(AB)^*V = (AB)^{-1}$
 $\therefore AB$ is s-unitary matrix.

Theorem: 2.9

Let A, $B \in C_{nxn}$ and A, B are s-unitary matrices and $A\overline{B}^{s} = \overline{B}^{s}A$, $B\overline{A}^{s} = \overline{A}^{s}B$ If $A\overline{B}^{s} + B\overline{A}^{s} = -I$ then A+B is s-unitary If $A\overline{B}^{s} + B\overline{A}^{s} = I$ then A-B is s-unitary

Proof:

A and B are s-unitary matrices $\therefore A^{-1} = \overline{A}^{s}, B^{-1} = \overline{B}^{s}$ (i) We have to show (A+B) $\overline{(A+B)}^{s} = I$ (A+B) $\overline{(A+B)}^{s} = (A+B) \left(\overline{A}^{s} + \overline{B}^{s}\right)$ $= A\overline{A}^{s} + (A\overline{B}^{s} + B\overline{A}^{s}) + B\overline{B}^{s}$ = I - I + I = IIll'y we can prove $\overline{(A+B)}^{s} (A+B) = I$ $\therefore (A+B) \overline{(A+B)}^{s} = \overline{(A+B)}^{s} (A+B) = I$ $\therefore (A+B) \text{ is s-unitary}$

250

ii. We have to show (A-B)
$$\overline{(A-B)}^{s} = I$$

(A-B) $\overline{(A-B)}^{s} = (A-B) (\overline{A}^{s} - \overline{B}^{s}).$
 $= A\overline{A}^{s} - A\overline{B}^{s} - B\overline{A}^{s} + B\overline{B}^{s}$
 $= A\overline{A}^{s} - (A\overline{B}^{s} + B\overline{A}^{s}) + B\overline{B}^{s}$
 $= I - (I) + I = I$
Ill'y $\overline{(A-B)}^{s} (A-B) = I$
 $\therefore (A-B) \overline{(A-B)}^{s} = \overline{(A-B)}^{s} (A-B) = I$
 $\therefore (A-B)$ is s-unitary.

Theorem 2.10

If A is s-unitary and VA=AV then VA is unitary.

Proof:

A is s-unitary

:.
$$VA^* V=A^{-1}$$

 $V(A^*V^*) = A^{-1}$
 $V(VA)^* = A^{-1}$
 $AV(VA)^* = AA^{-1}$
(VA) $(VA)^* = I(1)$ (:. $AV=VA$)
 $VA^* V = A^{-1}$
(V^*A^*) $V = A^{-1}$
(AV)* $VA = A^{-1}A$
(VA)* $VA = I(2)$ (:. $AV=VA$)
From (1) & (2) (VA) (VA)* = (VA)* (VA) = I
:. VA is unitary.

Theorem 2.11

If A is s-unitary and VA=AV then AV is unitary.

Proof:

A is s-unitary
$$\Rightarrow$$
 VA*V = A⁻¹
(V*A*) V = A⁻¹
(AV)* V = A⁻¹
(AV)* VA = A⁻¹A
(AV)*(AV) = I(1) (∵VA=AV)
VA*V = A⁻¹
V(A*V*) = A⁻¹
V(A*V*) = A⁻¹
V(AV)* = A⁻¹
(AV) (AV)* = A⁻¹ = I (2)

From (1) and (2) (AV) $(AV)^* = (AV)^* (AV) = I$ $\therefore AV$ is s-unitary.

Thorem 2.12

Let $A \in C_{nxn}$ and A^+ be the Moore – Penrose of A. Then A is s-unitary iff A^+ is s-unitary.

Proof:

If A is s-unitary then $A\overline{A}^{s} = \overline{A}^{s}A = I$ $\left(A\overline{A}^{s}\right)^{+} = I^{+}$ $\left(\overline{A}^{s}\right)^{+}A^{+} = I$ $\left(\overline{A^{+}}^{s}\right)A^{+} = I$

Similarly we may prove $A^+\left(\overline{A^+}^s\right) = I$

$$\therefore A^{+}\left(\overline{A^{+}}^{s}\right) = \left(\overline{A^{+}}^{s}\right) A = I$$

A⁺ is s-unitary.

Conversely Assume that A+ is s-unitary. $\therefore (A^+)^+$ is s-unitary.

: A is s-unitary. (by using result in page 49 of [3])

Definition 2.13

A matrix $A \in C_{nxn}$ is said to be skew secondary unitary matrix if $A^{-1} = -\overline{A}^{s}$

Example 2.14

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
 is a skew-s-unitary matrix.

Theorem 2.15

If A is skew s-unitary matrix then iA is skew secondary unitary matrix.

Proof:

A is skew s-unitary $\Rightarrow A^{-1} = -\overline{A}^s$

$$iA^{-1} = -i\overline{A}^{s}$$

- $(iA)^{-1} = i\overline{A}^{s}$
 $(iA)^{-1} = -(i\overline{A}^{s})$

 \therefore iA is skew s-unitary.

References

- [1] Anna Lee., 1976, "Secondary symmetric, secondary skew symmetric secondary orthogonal matrices," Period. Math. Hungary 7, pp.63-70.
- [2] Anna Lee., 1976, "On s-symmetric, s-skew symmetric and s-orthogonal matrices," Period. Math. Hungary 7, pp. 71–76.
- [3] Israel Adi Ben., and Greville Thomas N.E., 1974, Generalized inverses: Theory and applications," A Wiley Interscience publications, Newyork.
- [4] Sharma, A.K., 2004, "Text book of matrix theory," DPH Mathematics series.
- [5] Krishnamoorthy, S., and Vijayakumar, R., 2009, "Some equivalent conditions on s-normal matrices," Int.J.contemp. Math. Sciences, 4.