On Secondary Unitary Matrices

S. Krishnamoorthy ${ }^{1}$ and A. Govindarasu ${ }^{2}$
${ }^{1}$ Professor and Head, Department of Mathematics, Ramanujan Research Centre, Government Arts College (Autonomous), Kumbakonam - 612 001, Tamil Nadu, INDIA.
${ }^{2}$ Assistant Professor in Mathematics, A. V.C. College (Autonomous), Mannampandal - 609 305, Tamil Nadu, INDIA.
E-mail: agavc@rediffmail.com

Abstract

The concept of secondary unitary (s-unitary) matrices is introduced. Characterization of secondary unitary matrices and equivalent conditions are obtained.

Mathematics Subject Classification: 15A09, 15A57
Keywords: Unitary, Secondary Transpose, Conjugate Secondary Transpose, Secondary Unitary.

1. Introduction

Anna Lee[1] has initiated the study of secondary symmetric matrices. Also she has shown that for a complex matrix A, the usual transpose A^{T} and secondary transpose A^{s} are related as $A^{s}=V A^{T} V$ where ' V ' is the permutation matrix with units in its secondary diagonal.

Also $\overline{\mathrm{A}}^{s}$ denotes the conjugate secondary transpose of A i.e $\overline{\mathrm{A}}^{s}=\left(\mathrm{c}_{\mathrm{ij}}\right)$ where $\mathrm{c}_{\mathrm{ij}}=$ $\overline{a_{n-j+1, n-i+1}}$ [2]. In this paper we introduce the concept of secondary unitary matrices (s-unitary).

1.1 Preliminaries and Notations

Let $C_{n x n}$ be the space of nxn complex matrices of order n. For $A \in C_{n x n}$. Let A^{T}, \bar{A}, $A^{*}, A^{s}, \bar{A}^{s}$ denote transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose of a matrix A respectively.

For a complex matrix A , the Moore - penrose A^{+}of A is the unique matrix X satisfying the following four penrose equations. [3]
(i) $\mathrm{AXA}=\mathrm{A}$
(ii) $\mathrm{XAX}=\mathrm{X}$
(iii) $(\mathrm{AX})^{*}=\mathrm{AX}$
(iv) $(\mathrm{XA})^{*}=\mathrm{XA}$

Let ' k ' be the fixed product of disjoint transpositions in S_{n}, the set of all permutations on $\{1,2 \ldots . . n\}$ and ' K ' be the associated permutation matrix which satisfies the following properties.

$$
\overline{\mathrm{K}}=\mathrm{K}^{\mathrm{T}}=\mathrm{K}^{*}=\mathrm{K}, \mathrm{~K}^{2}=\mathrm{I}, \mathrm{~K}^{\mathrm{T}} \mathrm{~K}=\mathrm{KK}^{\mathrm{T}}=\mathrm{I} .
$$

Let 'V' be the associated permutation matrix whose elements on the secondary diagonal are 1 , other elements are zero. Also ' V ' satisfies the following properties.

$$
\mathrm{V}^{\mathrm{T}}=\overline{\mathrm{V}}=\mathrm{V}^{*}=\mathrm{V} \text { and } \mathrm{V}^{2}=\mathrm{I}
$$

A matrix $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$ is called unitary if $\mathrm{AA}^{*}=\mathrm{A}^{*} \mathrm{~A}=\mathrm{I}$. [4]

2. s-Unitary Matrix

Definition 2.1

A matrix $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$ is said to be s-Unitary if $\mathrm{A} \overline{\mathrm{A}}^{s}=\overline{\mathrm{A}}^{s} \mathrm{~A}=\mathrm{I}$ [5]
i.e. $A V A * V=V A * V A=I$
i.e. $\mathrm{VA} * \mathrm{~V}=\mathrm{A}^{-1}$.

Example: 2.2

(ii)

$$
\begin{align*}
& \mathrm{A}=\left[\begin{array}{cc}
\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right] \tag{i}\\
& \mathrm{A}=\left[\begin{array}{ccc}
-i & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -i
\end{array}\right]
\end{align*}
$$

are s-unitary matrices.

Theorem: 2.3

Let $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$. If A is s-unitary matrix then $\overline{\mathrm{A}}$ is also s-unitary matrix.

Proof:

A is s-unitary $\Rightarrow \mathrm{VA} * V=\mathrm{A}^{-1}$
$\mathrm{V}(\overline{\mathrm{A}})^{*} \mathrm{~V}=\mathrm{V} \overline{(\overline{\mathrm{A}})^{\top}}=\mathrm{V} \overline{\left(\overline{\mathrm{A}^{\top}}\right)} \mathrm{V}$
$=V \overline{A^{*}} V$
$=\overline{V A^{*} V}$
$=\overline{\mathrm{A}^{-1}}$
$=\bar{A}^{-1}$
$\therefore \overline{\mathrm{A}}$ is s-unitary.

Theorem: 2.4

Let $A \in C_{n x n}$. If A is s-unitary then A^{T} is s-unitary.

Proof:

A is s-unitary $\Rightarrow \mathrm{A}^{-1}=\mathrm{VA}^{*} \mathrm{~V}$
$\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}=\left(\mathrm{VA}^{*} \mathrm{~V}\right)^{\mathrm{T}}$
$=\quad V^{T}\left(A^{*}\right)^{\mathrm{T}} \mathrm{V}^{\mathrm{T}}=\mathrm{V}\left(\mathrm{A}^{*}\right)^{\mathrm{T}} \mathrm{V}$
$\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}=\mathrm{V}\left(\mathrm{A}^{\mathrm{T}}\right)^{*} \mathrm{~V}$
$\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}=\quad \mathrm{V}\left(\mathrm{A}^{\mathrm{T}}\right)^{*} \mathrm{~V}$
$\therefore \mathrm{A}^{\mathrm{T}}$ is s-Unitary.

Theorem: 2.5

Let $A \in C_{n x n}$. If A is s-unitary then A^{*} is s-unitary.

Proof:

A is s-unitary $\Rightarrow \mathrm{A}^{-1}=\mathrm{VA}^{*} \mathrm{~V}$
$\left(\mathrm{A}^{-1}\right)^{*}=\left(\mathrm{VA}^{*} \mathrm{~V}\right)^{*}$
$=\mathrm{V}^{*}\left(\mathrm{~A}^{*}\right)^{*} \mathrm{~V}^{*}$
$\left(\mathrm{A}^{*}\right)^{-1}=\mathrm{V}\left(\mathrm{A}^{*}\right)^{*} \mathrm{~V}$
$\therefore \mathrm{A}^{*}$ is s-unitary.

Theorem 2.6

Let $A \in C_{n x n}$. If A is s-unitary then A^{-1} is s-unitary.

Proof:

A is s-unitary $\Rightarrow \mathrm{A}^{-1}=\overline{\mathrm{A}}^{s}=\mathrm{VA}^{*} \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{A}^{-1}=\overline{\mathrm{A}}^{s} \\
& \left(\mathrm{~A}^{-1}\right)^{-1}= \\
& \\
& =\left(\overline{\mathrm{A}}^{s}\right)^{-1} \\
& \\
& \left(\mathrm{~A}^{-1}\right)^{-1}=\left(\overline{\mathrm{A}}^{-1}\right)^{s} \overline{\mathrm{~A}}^{-1} \\
& \therefore \mathrm{~A}^{-1} \text { is s-unitary. }
\end{aligned}
$$

Theorem: 2.7

Let $A \in C_{n x n}$. If A is s-unitary then $i A$ is s-unitary.

Proof:

$$
\begin{array}{rlrl}
\mathrm{A} \text { is s-unitary } & \Rightarrow \mathrm{A}^{-1}=\mathrm{VA}^{*} \mathrm{~V} \\
& \mathrm{iA}^{-1} & = & \mathrm{i}\left(\mathrm{VA}^{*} \mathrm{~V}\right) \\
-(\mathrm{iA})^{-1} & = & \mathrm{V}\left(\mathrm{iA}^{*}\right) \mathrm{V}=\mathrm{V}\left(-\overline{\mathrm{i}} \overline{\mathrm{~A}}^{T}\right) \mathrm{V} \\
(\mathrm{iA})^{-1} & = & \mathrm{V}\left(\overline{\mathrm{iA}}^{T}\right) \\
(\mathrm{iA})^{-1} & = & \mathrm{V}(\mathrm{iA})^{*} \mathrm{~V}
\end{array}
$$

$\therefore \mathrm{iA}$ is s-unitary.

Theorem: 2.8

Let $A, B \in C_{n x n}$. If A and B are s-unitary matrices then $A B$ is s-unitary matrix.

Proof:

$$
\begin{array}{rll}
\text { A is s-unitary } & \Rightarrow & \mathrm{VA}^{*} \mathrm{~V}=\mathrm{A}^{-1} \\
\text { B is s-unitary } & \Rightarrow & \mathrm{VB}^{*} \mathrm{~V}=\mathrm{B}^{-1} \\
\mathrm{~V}(\mathrm{AB})^{*} \mathrm{~V} & = & \mathrm{V}\left(\mathrm{~B}^{*} \mathrm{~A}^{*}\right) \mathrm{V} \\
& =\left(\mathrm{VB}^{*} \mathrm{~V}\right)\left(\mathrm{VA}^{*} \mathrm{~V}\right) \\
& =\mathrm{B}^{-1} \mathrm{~A}^{-1} \\
& =(\mathrm{AB})^{-1} \\
\therefore \mathrm{~V}(\mathrm{AB})^{*} \mathrm{~V} & = & (\mathrm{AB})^{-1}
\end{array}
$$

$\therefore \mathrm{AB}$ is s-unitary matrix.

Theorem: 2.9

Let $\mathrm{A}, \mathrm{B} \in \mathrm{C}_{\mathrm{nxn}}$ and A, B are s-unitary matrices and $\mathrm{A} \overline{\mathrm{B}}^{s}=\overline{\mathrm{B}}^{s} \mathrm{~A}, \mathrm{~B} \overline{\mathrm{~A}}^{s}=\overline{\mathrm{A}}^{s} \mathrm{~B}$ If $A \bar{B}^{s}+B \bar{A}^{s}=-I$ then $A+B$ is s-unitary
If $A \bar{B}^{s}+B \bar{A}^{s}=I$ then $A-B$ is s-unitary

Proof:

A and B are s-unitary matrices
$\therefore \mathrm{A}^{-1}=\overline{\mathrm{A}}^{s}, \mathrm{~B}^{-1}=\overline{\mathrm{B}}^{s}$
(i) We have to show $(\mathrm{A}+\mathrm{B}) \overline{(\mathrm{A}+\mathrm{B})}^{\mathrm{s}}=\mathrm{I}$
$(\mathrm{A}+\mathrm{B}) \overline{(\mathrm{A}+\mathrm{B})}^{s}=(\mathrm{A}+\mathrm{B})\left(\overline{\mathrm{A}}^{s}+\overline{\mathrm{B}}^{s}\right)$
$=A \bar{A}^{s}+\left(A \bar{B}^{s}+B \bar{A}^{s}\right)+B \bar{B}^{s}$
$=\mathrm{I}-\mathrm{I}+\mathrm{I}=\mathrm{I}$
Ill'y we can prove $\overline{(A+B)}^{s}(A+B)=I$
$\therefore(A+B) \overline{(A+B)}^{5}=\overline{(A+B)}^{5}(A+B)=I$
$\therefore(A+B)$ is s-unitary
ii. We have to show (A-B) $\overline{(A-B)}^{\text {s }}=I$
$(\mathrm{A}-\mathrm{B}) \overline{(\mathrm{A}-\mathrm{B})}^{s}=(\mathrm{A}-\mathrm{B})\left(\overline{\mathrm{A}}^{s}-\overline{\mathrm{B}}^{s}\right)$.
$=A \bar{A}^{s}-A \bar{B}^{s}-B \bar{A}^{s}+B \bar{B}^{s}$
$=A \bar{A}^{s}-\left(A \bar{B}^{s}+B \bar{A}^{s}\right)+B \bar{B}$
$=\mathrm{I}-(\mathrm{I})+\mathrm{I}=\mathrm{I}$
Ill'y $\overline{(A-B)}^{s}(A-B)=I$
$\therefore(A-B) \overline{(A-B)}^{\mathrm{s}}=\overline{(A-B)}^{\mathrm{s}}(\mathrm{A}-\mathrm{B})=\mathrm{I}$
\therefore (A-B) is s-unitary.

Theorem 2.10

If A is s-unitary and $V A=A V$ then $V A$ is unitary.

Proof:

A is s-unitary

$$
\begin{aligned}
& \therefore V A^{*} V=A^{-1} \\
& V\left(A^{*} V^{*}\right)=A^{-1} \\
& V(V A)^{*}=A^{-1} \\
& A V(V A)^{*}=A A A^{-1} \\
& (V A)(V A)^{*}=I(1) \quad(\because A V=V A) \\
& V^{*} V=A^{-1} \\
& \left(V^{*} A^{*}\right) V=A^{-1} \\
& (A V)^{*} V A=A^{-1} A \\
& (V A)^{*} V A=I(2) \\
& (\because A V=V A)
\end{aligned}
$$

From (1) \& (2) (VA) $(\mathrm{VA})^{*}=(\mathrm{VA})^{*}(\mathrm{VA})=\mathrm{I}$
\therefore VA is unitary.

Theorem 2.11

If A is s-unitary and $V A=A V$ then $A V$ is unitary.

Proof:

A is s-unitary $\Rightarrow \mathrm{VA} * \mathrm{~V}=\mathrm{A}^{-1}$
$\left(V^{*} A^{*}\right) V=A^{-1}$
$(A V)^{*} V=A^{-1}$
$(\mathrm{AV})^{*} V=A^{-1}$
$(\mathrm{AV})^{*} \mathrm{VA}=\mathrm{A}^{-1} \mathrm{~A}$
$(\mathrm{AV})^{*}(\mathrm{AV})=\mathrm{I}(1) \quad(\because \mathrm{VA}=\mathrm{AV})$
$V A^{*} V=A^{-1}$
$V\left(A^{*} V^{*}\right)=A^{-1}$
$\mathrm{V}(\mathrm{VA})^{*}=\mathrm{A}^{-1}$
$\mathrm{V}(\mathrm{AV})^{*}=\mathrm{A}^{-1}$

$$
(\mathrm{AV})(\mathrm{AV})^{*}=\mathrm{AA}^{-1}=\mathrm{I}
$$

From (1) and (2) (AV) (AV) $=(\mathrm{AV})^{*}(\mathrm{AV})=\mathrm{I}$
$\therefore \mathrm{AV}$ is s-unitary.

Thorem 2.12

Let $A \in C_{n \times n}$ and A^{+}be the Moore - Penrose of A. Then A is s-unitary iff A^{+}is sunitary.

Proof:

If A is s-unitary then $A \bar{A}^{s}=\overline{\mathrm{A}}^{s} \mathrm{~A}=\mathrm{I}$
$\left(A \bar{A}^{s}\right)^{+}=I^{+}$
$\left(\overline{\mathrm{A}}^{s}\right)^{+} \mathrm{A}^{+}=\mathrm{I}$
$\left({\overline{\mathrm{A}^{+}}}^{s}\right) \mathrm{A}^{+}=\mathrm{I}$
Similarly we may prove $A^{+}\left({\overline{\mathrm{A}^{+}}}^{s}\right)=I$
$\therefore \mathrm{A}^{+}\left({\overline{\mathrm{A}^{+}}}^{s}\right)=\left({\overline{\mathrm{A}^{+}}}^{s}\right) \mathrm{A}=\mathrm{I}$
A^{+}is s-unitary.
Conversely
Assume that A+ is s-unitary.
$\therefore\left(\mathrm{A}^{+}\right)^{+}$is s-unitary.
\therefore A is s-unitary. (by using result in page 49 of [3])

Definition 2.13

A matrix $\mathrm{A} \in \mathrm{C}_{\mathrm{nxn}}$ is said to be skew secondary unitary matrix if $\mathrm{A}^{-1}=-\overline{\mathrm{A}}^{s}$

Example 2.14

$\mathrm{A}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$ is a skew-s-unitary matrix.

Theorem 2.15

If A is skew s-unitary matrix then iA is skew secondary unitary matrix.

Proof:

A is skew s-unitary $\Rightarrow A^{-1}=-\bar{A}^{s}$

$$
\begin{aligned}
& \mathrm{iA}^{-1}=-\mathrm{i} \overline{\mathrm{~A}}^{s} \\
& -(\mathrm{iA})^{-1}=\mathrm{i} \overline{\mathrm{~A}}^{s} \\
& (\mathrm{iA})^{-1}=-\left(\overline{\mathrm{iA}}^{s}\right)
\end{aligned}
$$

$\therefore \mathrm{iA}$ is skew s-unitary.

References

[1] Anna Lee., 1976, "Secondary symmetric, secondary skew symmetric secondary orthogonal matrices," Period. Math. Hungary 7, pp.63-70.
[2] Anna Lee., 1976, "On s-symmetric, s-skew symmetric and s-orthogonal matrices," Period. Math. Hungary 7, pp. 71-76.
[3] Israel - Adi Ben., and Greville Thomas N.E., 1974, Generalized inverses: Theory and applications," A Wiley Interscience publications, Newyork.
[4] Sharma, A.K., 2004, "Text book of matrix theory," DPH Mathematics series.
[5] Krishnamoorthy, S., and Vijayakumar, R., 2009, "Some equivalent conditions on s-normal matrices," Int.J.contemp. Math. Sciences, 4.

