On Secondary Unitary Matrices

S. Krishnamoorthy¹ and A. Govindarasu²

¹Professor and Head, Department of Mathematics, Ramanujan Research Centre, Government Arts College (Autonomous), Kumbakonam – 612 001, Tamil Nadu, INDIA.
²Assistant Professor in Mathematics, A.V.C. College (Autonomous), Mannampandal – 609 305, Tamil Nadu, INDIA.
E-mail: agavc@rediffmail.com

Abstract

The concept of secondary unitary (s-unitary) matrices is introduced. Characterization of secondary unitary matrices and equivalent conditions are obtained.

Mathematics Subject Classification: 15A09, 15A57

Keywords: Unitary, Secondary Transpose, Conjugate Secondary Transpose, Secondary Unitary.

1. Introduction

Anna Lee[1] has initiated the study of secondary symmetric matrices. Also she has shown that for a complex matrix A, the usual transpose Aᵀ and secondary transpose Aˢ are related as Aˢ = VAᵀV where ‘V’ is the permutation matrix with units in its secondary diagonal.

Also Aˢ denotes the conjugate secondary transpose of A i.e. Aˢ = (cᵢⱼ) where cᵢⱼ = aₙ−j₁, n−i₁ [2]. In this paper we introduce the concept of secondary unitary matrices (s-unitary).

1.1 Preliminaries and Notations

Let Cⁿˣⁿ be the space of nxn complex matrices of order n. For A∈ Cⁿˣⁿ. Let Aᵀ, A*, Aᵀ*, A* denote transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose of a matrix A respectively.
For a complex matrix A, the Moore–Penrose A^+ of A is the unique matrix X satisfying the following four penrose equations. [3]

(i) $AXA = A$
(ii) $XAX = X$
(iii) $(AX)^* = AX$
(iv) $(XA)^* =XA$

Let ‘k’ be the fixed product of disjoint transpositions in S_n, the set of all permutations on $\{1,2,\ldots,n\}$ and ‘K’ be the associated permutation matrix which satisfies the following properties.

Let ‘V’ be the associated permutation matrix whose elements on the secondary diagonal are 1, other elements are zero. Also ‘V’ satisfies the following properties.

$V^T = V = V^* = V$ and $V^2 = I$.

A matrix $A \in \mathbb{C}^{n \times n}$ is called unitary if $AA^* = A^*A = I$. [4]

2. s-Unitary Matrix

Definition 2.1

A matrix $A \in \mathbb{C}^{n \times n}$ is said to be s-Unitary if $A^sA = A^*A = I$ [5]

i.e. $AVA^*V = VA^*VA = I$

i.e. $VA^*V = A^{-1}$.

Example: 2.2

(i) $A = \begin{bmatrix}
i & 1 \\
\sqrt{2} & \sqrt{2} \\
i & \sqrt{2} \\
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -i
\end{bmatrix}$

(ii) $A = \begin{bmatrix}
i & 1 \\
\sqrt{2} & \sqrt{2} \\
i & \sqrt{2} \\
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -i
\end{bmatrix}$

are s-unitary matrices.

Theorem: 2.3

Let $A \in \mathbb{C}^{n \times n}$. If A is s-unitary matrix then A^s is also s-unitary matrix.

Proof:

A is s-unitary $\Rightarrow VA^*V = A^{-1}$

$V(A^s)^*V = V(A^*V)^T = V(A^T)^TV$
On Secondary Unitary Matrices

= \sqrt{A^*AV}
= \sqrt{VA^*V}
= A^{-1}
= \overline{A}^{-1}
∴ \overline{A} is s-unitary.

Theorem: 2.4
Let \(A \in \mathbb{C}_{n \times n} \). If \(A \) is s-unitary then \(A^T \) is s-unitary.

Proof:
\(A \) is s-unitary \(\Rightarrow A^{-1} = VA^*V \)
\((A^{-1})^T = (VA^*V)^T \)
\(= V(A^*)^TV^T = V(A^*)^TV \)
\((A^{-1})^T = V(A^*)^*V \)
\((A^T)^{-1} = V(A^T)^*V \)
∴ \(A^T \) is s-Unitary.

Theorem: 2.5
Let \(A \in \mathbb{C}_{n \times n} \). If \(A \) is s-unitary then \(A^* \) is s-unitary.

Proof:
\(A \) is s-unitary \(\Rightarrow A^{-1} = VA^*V \)
\((A^{-1})^* = (VA^*V)^* \)
\(= V(A^*)^*V^* \)
\((A^*)^{-1} = V(A^*)^*V \)
∴ \(A^* \) is s-unitary.

Theorem 2.6
Let \(A \in \mathbb{C}_{n \times n} \). If \(A \) is s-unitary then \(A^{-1} \) is s-unitary.

Proof:
\(A \) is s-unitary \(\Rightarrow A^{-1} = \overline{A}^t = VA^*V \)
\(A^{-1} = \overline{A}^t \)
\((A^{-1})^{-1} = (\overline{A}^t)^{-1} \)
\(= (\overline{A}^{-1})^t \)
\((A^{-1})^{-1} = \overline{A}^{-1} \)
∴ \(A^{-1} \) is s-unitary.

Theorem: 2.7
Let \(A \in \mathbb{C}_{n \times n} \). If \(A \) is s-unitary then \(iA \) is s-unitary.
Proof:

A is s-unitary \(\Rightarrow A^{-1} = VA^*V \)
\[
iA^{-1} = \text{i}(VA^*V)
\]
\[-(iA)^{-1} = V(iA^*)V = V(-i\overline{A}^T)V\]
\[(iA)^{-1} = V\left(\overline{iA}^T\right)\]
\[(iA)^{-1} = V(iA)^*V\]
\[\therefore iA \text{ is s-unitary.}\]

Theorem: 2.8
Let \(A, B \in \mathbb{C}_{n \times n} \). If \(A \) and \(B \) are s-unitary matrices then \(AB \) is s-unitary matrix.

Proof:

\[
A \text{ is s-unitary } \Rightarrow VA^*V = A^{-1}
\]
\[
B \text{ is s-unitary } \Rightarrow VB^*V = B^{-1}
\]
\[
V(AB)^*V = V(B^*A^*)V
\]
\[= (VB^*V)(VA^*V) = B^{-1}A^{-1} = (AB)^{-1}\]
\[\therefore V(AB)^*V = (AB)^{-1}\]
\[\therefore AB \text{ is s-unitary matrix.}\]

Theorem: 2.9
Let \(A, B \in \mathbb{C}_{n \times n} \) and \(A, B \) are s-unitary matrices and \(AB^s = B^sA, BA^s = A^sB \)
If \(AB^s + BA^s = -I \) then \(A + B \) is s-unitary
If \(AB^s + BA^s = I \) then \(A - B \) is s-unitary

Proof:

\(A \) and \(B \) are s-unitary matrices
\[\therefore A^{-1} = A^s, B^{-1} = B^s\]
(i) We have to show \((A+B)(\overline{A+B})^s = I\)
\[(A+B)(\overline{A+B})^s = (A+B)(\overline{A^s+B^s})\]
\[= AA^s + (\overline{A^s+B^s}) + BB^s = I - I + I = I\]
Ill’y we can prove \((\overline{A+B})^s(A+B) = I\)
\[\therefore (A+B) \text{ is s-unitary}\]
ii. We have to show \((A-B) (A-B)^s = I\)

\[
(A-B) (A-B)^s = (A-B) (A-B)^s.
\]

\[
= A\bar{A} - AB\bar{A} - B\bar{A} + BB^s
\]

\[
= A\bar{A}^s - (AB\bar{A} + B\bar{A}^s) + B\bar{B}^s
\]

\[
= I - (I) + I = I
\]

Ill’y \((A-B) (A-B)^s = I\)

\[
\therefore (A-B) (A-B)^s = (A-B)^s (A-B) = I
\]

\[
\therefore (A-B) \text{ is s-unitary.}
\]

Theorem 2.10

If A is s-unitary and \(VA=AV\) then VA is unitary.

Proof:

A is s-unitary

\[
\therefore VA^* V = A^{-1}
\]

\[
V(A^* V^*) = A^{-1}
\]

\[
V(VA)^s = A^{-1}
\]

\[
AV(VA)^s = AA^{-1}
\]

\[
(VA) (VA)^s = I (1) \quad (\because AV=VA)
\]

\[
VA^* V = A^{-1}
\]

\[
(V^* A^s) V = A^{-1}
\]

\[
(\bar{V} A)^s VA = A^{-1}A
\]

\[
(\bar{V} A)^s VA = I (2) \quad (\because AV=VA)
\]

From (1) & (2) \((VA) (VA)^s = (VA)^s (VA) = I\)

\[
\therefore VA \text{ is unitary.}
\]

Theorem 2.11

If A is s-unitary and \(VA=AV\) then AV is unitary.

Proof:

A is s-unitary \(\Rightarrow VA^* V = A^{-1}\)

\[
(V^* A^s) V = A^{-1}
\]

\[
(AV)^s V = A^{-1}
\]

\[
(AV)^* VA = A^{-1}A
\]

\[
(AV)^s (AV) = I (1) \quad (\because VA=AV)
\]

\[
VA^* V = A^{-1}
\]

\[
V(A^* V^*) = A^{-1}
\]

\[
V(VA)^s = A^{-1}
\]

\[
V (AV)^s = A^{-1}
\]

\[
(\bar{AV}) (AV)^s = AA^{-1} = I (2)
\]
From (1) and (2) $\text{AV} (\text{AV})^\ast = (\text{AV})^\ast (\text{AV}) = I$
\[\therefore \text{AV is s-unitary.} \]

Theorem 2.12
Let $A \in \mathbb{C}^{n \times n}$ and A^+ be the Moore – Penrose of A. Then A is s-unitary iff A^+ is s-unitary.

Proof:
If A is s-unitary then
\[s \begin{bmatrix} A & A \end{bmatrix}^t = \begin{bmatrix} A & A \end{bmatrix} \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} = I \]
\[\begin{bmatrix} s \begin{bmatrix} A & A \end{bmatrix} \end{bmatrix}^t = I^+ \]
\[\begin{bmatrix} s \begin{bmatrix} A^t & A^t \end{bmatrix} \end{bmatrix}^t A^t = I \]
\[\begin{bmatrix} s \begin{bmatrix} A^t & A^t \end{bmatrix} \end{bmatrix}^t A^t = I \]

Similarly we may prove $A^+ \begin{bmatrix} s \begin{bmatrix} A^t & A^t \end{bmatrix} \end{bmatrix}^t = I$
\[\therefore A^+ \begin{bmatrix} s \begin{bmatrix} A^t & A^t \end{bmatrix} \end{bmatrix}^t = \begin{bmatrix} s \begin{bmatrix} A^t & A^t \end{bmatrix} \end{bmatrix} A = I \]

A^+ is s-unitary.

Conversely
Assume that A^+ is s-unitary.
\[\therefore \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} \begin{bmatrix} A^t & A^t \end{bmatrix}^t A^t = I \]
\[\therefore A^\ast \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} = I \]

Definition 2.13
A matrix $A \in \mathbb{C}^{n \times n}$ is said to be skew secondary unitary matrix if $A^{-1} = -A^\ast$

Example 2.14
\[A = \begin{bmatrix} 1 & i \\ \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \]
is a skew-s-unitary matrix.

Theorem 2.15
If A is skew s-unitary matrix then iA is skew secondary unitary matrix.

Proof:
A is skew s-unitary $\Rightarrow A^{-1} = -A^\ast$
iA⁻¹ = -i\bar{A}'
-(iA)⁻¹ = i\bar{A}'
(iA)⁻¹ = -(i\bar{A}')
∴ iA is skew s-unitary.

References
