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Abstract

Here, in this paper we study & -convex (F —concave) function with respect
to duality in multi-objective non-linear programming problems. We formulate
the multi-objective programming problem with its dual and give weak, strong
and converse duality theorems for this problem. Also we define multi-
objective fractional programming problem and its dual and discuss convexity,

pseudo-convexity and H —convexity in this context. Also we discuss
symmetric duality and self duality for multi-objective programming problem.
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Introduction

Generalized convexity (concavity) plays an important role in the development of
multi-objective non-linear programming problems. Generalized convex functions
which are the many non-convex functions that share at least one of the valuable
properties of convex functions and which are often more suitable for describing real
world problems[1] During the last decades, several necessary and sufficient
conditions for generalized convexity (concavity) on subsets of £ with non-linear
interior have been proposed by several mathematicians. The term harmonic convexity
was first introduced by Das. [2] The concept has been used by many mathematicians
in many means. Some applications of harmonic convexity to optimization problems
have already been discussed by Das, Roy and Jena. [3] The form of adual problem of
Mond-Weir type for multi-objective programming problems of generalized functions
is defined and theorems of weak duality, direct duality and inverse duality are proven.
[4] A study of various constraint qualification conditions for the existence of lagrange
multipliers for convex minimization based on a new formula for the normal cone to
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the constraint set, on local metric regularity and a metric regularity property on
bounded subsets has been done[5]. A consideration of an operation on subsets of a
topological vector space which is closely related to what has been called the inverse
addition by R.T. Rockafellar has also been done. [6] A new class of higher order
functions for a multi-objective programming problem has been introduced which
subsumes several known studied classes and formulated higher order Mond-Weir and
Schaible type dual programs for a non-differentiable multi-objective fractional
programming problem where the objective function and the constraints contain
support functions of compact convex setsin &* and studied weak and strong duality
resultg[7]. Also a new class of generalized type | vector valued functions have been
introduced and duality theorems are proved for multi-objective programming problem
with inequality constraints.[8]

Here, in this paper we study & -convex (5 —concave) function with respect to
duality in multi-objective non-linear programming problems. The present study done
in this paper will show that most of the results derived earlier are found to be a

particular case of this study. Indeed ¥ —convexity is the generalized version of

convexity and different kind of convexities can be derived from # —convexity.

The paper formulation is as follows: The next section introduces some
preliminaries used in this paper. After that in section 3. we formulate the muilti-
objective programming problem with its dual and give weak, strong and converse
duality theorems for this problem. In section 4. we define multi-objective fractiona

programming problem and its dual and discuss convexity, pseudoconvexity and H —
convexity in this context. In section 5 and 6, we discuss symmetric and self duality
respectively. In section 7, conclusions are drawn.

Preliminaries
In this section, we define some terms, explain some properties, and give the notations
used in this paper.

Definition 1. A positive function £ defined on a convex set $(K 817(n) s said

to be harmonic convex or ' —convex (harmonic concave or & —concave) if its
reciprocal is concave (convex) and conversely.
We use following notations in the paper. The vector norm Il always denote the

LE - _
Euclidean norm denoted by lkell= §x7x} % tor afunction F+5(ERY ') (X where
af
S is an open set ¥fix}denotes the gradient vector with partial derivative 97,
}=1LZ .wn  The Hessian matrix ¥if&x} isthe # X% matrix of second order partial
a3f

derivatives, 9%:d%; Lj = L3, mn

Here in this paper, we use several geometric properties of convex functions to
define convexity by inequalities. If we relate the arithmetic, geometric and harmonic
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inequalities, we can find an aternate and equivalent definition of £ -convexity and
H _concavity.

Definition 2. A positive function defined on a convex set (K i1 ‘(1) issaidtobe
harmonic convex (1 -convex) on S if ,forx*x%* ¢ 5 and @5 (=1

I :L - (]-
=k
And harmonic concave (7 -concave) if,

(re 2=

And “strictly 7 -convex” if strict inequality holds.

If we relate the inequality in definition 2. To geometric, arithmetic and harmonic
inequalities, we have
fed s (1- () s [Ufn) + (L= OV ED s ()T Fe))'e-"e) s fe D) +1- '0)fe)
Thusif, f is H# -convex, then it is logarithmic convex and also it is convex. But the
converse is not true. Similarly by the inequality for harmonic concavity in definition
2, we have
Fen - CfE2) 2 FEEE" ) -2 I(FM) + (L= CUFE)IED S FOCH L (- 7))

It is clear that if / is concave, then it is logarithmic concave and also £ -concave
but the converseis not true.

Property 1. Let f&2 be positive differentiable function on some open set
A containing the convex set (K &Y (1)
A necessary and sufficient condition for £ to be # -convex on ¥ isthat, for each
[ ¢X 22 (5 (02 - 2" )T VA1) S FN () (Ft2) - f(xt)) (1)
And & -concave on 3 if for each
2,212 ¢S "2 - T vy = FeeM )/ Fex"2 ) (Flx"23 - Fee )) )

It isto be noted that,

. fixt)
o oplal V= —— . L

If we define Fix®} where P:¥ X 5(B | then the inequalities given
above in property 1. Reduce respectively to strong pseudoconvexity and strong
pseudo concavity of Weir [9] and seve[al authors.

Moreover, the setting P€x'l ,x'2)=fx"L)/f(x'2) =1, Ewxd 1,572 (5 |
and P isdefined asin 1. Then both the inequalities in property 1. reduce to the usua
definition of convexity and concavity respectively.

plx? 9.'“)'—"“9;1}
Setting hfxl, x¥)=pixl, x¥Mx® - 21 where ' fix%) and P s
defined asin 1. then /' isinvex function defined in [10].
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If €% -x*¥Vf{x*} =0 | then the inequaity showing the necessary and
sufficient condition in property 1. for H -convexity implies that £ *} & féx*} Thus
f is pseudoconvex function. Similarly for &% =x)T¥fEx}= 0 | the inequality
showing the necessary and sufficient condition in property 1. for # -concavity implies
that Fex*}= f&*} and £ is pseudoconcave function defined in [11].

From the above points it is clear that f -convexity includes convexity,
pseudoconvexity, strongly pseudoconvexity and invexity. Also we claim that the class

of H -convex (¥ -concave) functions is the weakest version of convexity (concavity).

Moreover, a comprehensive development of the properties of # -convex (¥ -
concave) functionsisgivenin[12].

Problem For mulation and Duality

Let us consider the following multi-objective programming problem:
The primal problem (P) is defined as:

Minimize Fafx)

Minimize fafxd

Minimize Frfxd

Subject to gl = dx =0
g:5( Rl ( R™ Fae B3¢ R (R | Fize 08" R (R |
Lfue SCR'm (R

All fofa o frand & are continuously differentiable functions and S is an open
convex set.

The dual (D) of the above problem is defined as follows:
Maximize  Lafr.usd = fafed+ ulgi)
Maximize — Lafx uzd = falxd+ uigix)d

Maximize Lo und= fold4 ul g

Subject to VACH+ulglcd= 0
?JFE'E?-'}-i-’LiErq{p;}: 0
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Vit +ubgfr= 0

Here Mo thgr wnlin = 0
Now we prove the following duality theorems for the above defined problem.

Theorem 1. (Weak Duality) Let fi.fz,... fn be f -convex functions on S and each

component of ¢ is H -convex on S. If £ be the feasible solution for the primal
problem, and (&7 @1 |, Wz ,... @Wr) be the feasible solution for the dual problem , then

fixlelft@lv j=12 mn

Proof: From H -convexity of fi-fs,... fn , we have on substituting *1 =% and
xz =% pyinequality (1),
@ - 2Fvr® s L@ - fo)
+ f_,i{f} + +
£}
—, ffd

TES BT )

=
BgT) V=12 w ©)

0 - D vf ) s (F,60) - £D)

f,i}

@ -, = -2 - ) Z
£

F1E)
This follows from the dual feasibility and positivity of i ,f}},@ }. Also from
H _convexity of &%
Ge68r - @R 2 (2 - DT Vg (R
Since Wirz9 and® |sfea5|blefor the primal problem (P), we obtain

e

zu, (g8 - gTD = 6 - a)-?z?"'r
i=a i= G:tT)
—( -2 Z? T
Or i=
g = - Eﬂ?,: @D - g: TN = Y T g1
= = (4)
From (3) and (4) we obtain

f,(f}zmawzlfjg @ = LT 0)

Theorem 2. (Strong Duadlity) If the primal constraint set satisfies Slater’s constraint
qualification and if * is an optimal solution to the prima problem (P), then 3 ;
such that £ } is optimal solution to the dual problem (D) and corresponding
extrema are equal.
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Proof: The H -convexity (with respect to *) of fiand s, / =LZwmn and
t=12.m jmplies & -convexity of L (with respect to * for given i) ¥i; = 0
Furthermore, the dua problem (D) has a feasible solution due to the constraint
qualification and the existence of an optimal solution to the prima problem (P).
Assume that £% @7 Yand £%- @7} are arbitrary dual feasible solutions. The H -convexity
of Lj impliesthat

LR @) - LAR. @) 2 ¥ - E}F?J;'E-}'Eﬁrﬂ:i J=0

£ (2. @)= Ly(T. W7) 2 02 = RY W Ly(T. 07} = 0

Therefore &% @} = L% Tk oo that for any ¥ = 0. ¥ =12 .0 the
solution £i§%:Tx } does not depend on * as §#:7; } is dual feasible. Hence 37 such
that §% 77 } isdual feasible and furthermore
Lifx vy )= maxl; (%)

T 1y b is f:fimffeas'ihts‘i'} =12, .1}
fx,ug b ie dual feasiblev | = 1,2, ..n}
®LARTS )

& maxfl; (T, 1k
= mazfl; %, u; b

Consequently %7 } solves the dual problem (D). Finaly as the constraint
qualification is satisfied , thisimplies that
LT }=H0+ YTV aiTi= fiiT)
=1
From the weak duality theorem, we get
FLES B SR R

Whereas the above strong duality theorem assures that the differences
F1 8= Ly{%. 77} called the duality gap is actually zero.

Theorem 3. (Converse Duality) Let £% 77} solve the dual problem (D) and the 7 X 72

matrix HET.T7}= ¥EfARY+ ¥IIVeOT) e non-singular, then ¥ solves the primal
problem (D) and the corresponding objective function values are equal.

Proof: The proof of the theorem is obvious.

Fractional Programming and Duality
A unified approach for duality in fractional programming was presented by Schaible
in 1976. [13].

Now we consider the following multi-objective fractiona programming problem:
(MFP) Minimize Gl (x) = (FiL (x1)/ g(x)
Minimize G2 (x) = (F12 (x))/ g(x)
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MinimizeGt @) = (Fi @)/ 960
Subjectto hfx} = Q=0
grS( B ( R™ File 08¢ RA™ (R Fize 05" BRI (R

Lfwe S(R™ (R mS(RW( R®

Here we assume that £+ &: 1. ¥} = L2, .t gre differentiable functionson S.
Some authors consider the above multi-objective fractional programming problem

assuming that fir=@-h¥ji=12..n ge convex functions. These assumptions

£
imply that )ﬁfg, v/ =12 ..7n are pseudoconvex. However, weaker conditions than

convexity, pseudoconvexity and strongly pseudoconvexity can be replaced by & -
convexity.

Theorem 4. Let /7 and1g ¥ = 1LZ,..7n be H -convex with respect to proportional

gy J2Ext)
pifxt iy =00 £
function ? defined as & F186%)  \where ®uf:f X 5(R | Then ’}f-ﬁ,

¥/!=11 .n gel -convex on~ .

Pr oof: Let GLEY= (ALl e/ @), (2 () = (F2 @) £ glx)
L =menNfgx) pe n functions. .
Then ("= xPT VW (x]) = (v —x)'T [(@QIVFg (x) = fof (Vg flgixide] |

¥i=12.n

Now from # -convexity of /i and1g ¥/ =12 .  with respect to?;, we have
Fi - Fried & gy YKy — 2F Vf1 () (5)
and £ — glxdl® —p;ix, iy — x M Vgix) (6)

Thus here we get @ inequalities denoted by (5) and 7 inequalities denoted by
(6) ¥/ =L wmn

Now on multiplying each inequaity of (5) by #%} and on multiplying
i™inequality of (6) by fi€Yand on adding and dividing both sides by {23} | we
have

[¢ 63,003 - £r60062)

| (o) )

K =pdf (2. 3) (¥ = 2T ¥ (x)

Or 80Mg) [ (- W @) 12 pd (63 O —x)'T ¥/ (%)

= g, 3 Wy — 2N Ig(:ﬁ.‘}_{; fd = f.;('f‘-'}ﬂfﬁ-'}
| 1:1a9)

Thisimpliesthat [/ () = G (3 1 2 (oo (6, 300G 3) Q= )T V(i (x)
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L gl

Where Qberr= gfx)

M = 0, vk
If @y T then [Gf O — W/ () 1 2 My (e y) @ — 2T w( ()

Thus (f )%} =1L12Z..n ae H -convex with respect to proportionality

L . f"

function M €43} 1t follows immediately that Jffﬂ, ¥/=1Z .1 are strongly
pseudoconvex if /i and g are H -convex.

The pseudoconvexity and convexity follows that:

The Duality results of the previous section may then be involved by the & -
convexity on 5 with respect to the proportionality functions.

Thus we state the following dual program:
(MFD) Maximize G )+ Z(E=1)"mi il Al (x)
Maximize G2 (v} + Z,(f=1)Tmiui2 hyt (x)

Maximize @t (x)+ Zy(L = 1)hmiliugin byt (x)

Subject to V(o () + (b =1)"mBwff VRl ) =0,  Vf=1Z.n
U = 0, Fi=12 wmim¥}] =12 .1

Symmetric Duality

We know that a pair of primal and dual programs are symmetric in the sense that the
dual of the dua is the origina primal problem, i.e when the dual problem is reset in
the primal format; it’s dual is the primal problem itself. Here, we give a different pair
of symmetric dual multi-objective non-linear programming problems, assuming the

H _convexity and establish the duality results.

(MPS) Minimize fafx: 3
Minimize fabx. 7))

Minimize Fu e, )

Subjectto Y13} £0 wi=12 mn 0
vV fife 2 0 ®
=0 (9

(MDS) Maximize fafita. v}
Maximize  fzfliz. v}
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Maximize  frfiin. v}

Subjectto  Vafpfupvp=0, V=12 .m0 (10)
uiv=o 1)
v =0 (12)

We assume that /5. ¥/ = LI .1 gre twice differentiable real valued functions
of * and ¥, where x(&™n | ¥(B"m. Vyx fuf and ¥»f denote the gradient vectors
with respect to * and ¥ respectively. ¥rxfiand ¥¥xf7 denote respectively the
m X1 matrices of second partial derivatives.

Theorem 5. Let [}, vi=1Z..n be H -convex (for fixed ¥ and
frleed¥j=12,.n pe H _concave (for fixed %) . Let & ¥2be feasible for (MPS)
and {¥:¥}pe feasible for (MDS). Then fi6e 32 & fifup v},

Proof: From (9), (10) and (11), we have
fx —"I.L_;}F?);fji'li_jr"&’)a 0
Since 103} ¥i=12 .n beH -convex, it follows that

. / % .IF’E‘:“”.- "l-'f-'}.- ) _— ; .
.-{':.i{:)- L-"-‘r":]'-_.{':;l_l('lil;,."..‘f‘_lE ml_lﬁ.—'ltl;‘l Vo I;I_I'ltl;_.“..‘r“_lEﬂ
Thus 1 (¥ & fil (up.v], vi=12.n (13)

Likewise, from (7), (8) and (12), we have & — ¥¥ ¥y f3 €6, 73 £ 0

Since [ 2 ¥ [ =12...n pheH _concave, it follows that

Fie (o) = iz v) = {?1—(1 v = T, fyn 1) % 0

Thus f1 &% (¥} & fiix, ) (14)
Thus from (13) and (14), we have

Fiflug v} s Fée. )

Theorem 6. (Strong Duality) Let /%0 ¥} vj =12 ..n beH -convex (for fixed 7
and Fi¥e- k¥ =12, .. pe H _concave (for fixed ¥) . Let - ¥e?be a loca or
globa optimal solution of the primal problem (MPS), Voxf1%50: ¥o) pe positive or
negative definite and ¥ £ #%e- 30} = 0 | then €xo, ¥} als0 gives the optimal solution of
the dual problem.

Proof: Since #*a ¥} is an optimal solution to the primal problem, 3
((R. v (RYm, w(R, s(R™
Such that the Fritz John conditions are given as follows:
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Fufi — Wy =¥V —5=0 (15)
(- WiV f; — g =¥V f; =0 (16)
rT¥ef =0 (17)

wyg ¥y fy =0 (18)

sTag =10 (19)

w20 (20)
f-rw, k=0 (21)

On multiplying (16) by o =¥ | and on applying (17) and (18), we get
g — TR Vo fr bl — r¥h = 0

Since ¥/ ispositive or negative definite, so W¥a =T (22

Thus from (10), # = ¥ V=7 = 0 and since by assumption ¥x/7 = € Then
w=r (23)

If (=0w=0 py(23), =0 py(15) and (22) ¥~/ £ € and (15) and (19) give

T -

XgVefy = 0.

Thus £xe. Yo} is feasible for (MDS) and the values of the objective function are
equal and optimality follows from weak duality.

Self Duality

A mathematical programming problem is self-dual if dual of the dua is the primal
problem itself. A function f¥% s sid to be skew-symmetric if
foe vy =-fonx) ¥x v dom.f

Theorem 7. Let f1: ¥/ = LZ...7 pe skew-symmetric functions. Then (MPS) is itself
dual. If dso (MPS) and (MDS) are dua programs, and *es- Yo} is a joint optimal
solution , then so is € Yo %o} and f1 e Jod = Fiiye. mgd =0, ¥ j =12, .m

Proof: (MDS) can be written as
Minimize  fifia.v)
Minimize  fafliz. ¥}

Minimize  frfiin. v}
Sijectto Vafs{unv}E0,  vi=12.n
ul O fi vz 0
vz
Since f1:¥J =12, wn gre skew-symmetric (
Vo F (s v) = =V fi{ug. v)
and thus the (MDS) becomes
Minimize  fifus. v}
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Minimize fafuig. v}

Minimize Frofiin. v}

Subjectto  Vxfifupvi=Q, Yi=12Z mh
uf'i-‘_—,-_,i‘_;{u_;,":}a 0
Upz 0

Which isjust the (MPS) problem

Thus if e ¥etis the optimal solution for the dual problem = € ¥o-*a* is the
optimal solution for the primal problem and by symmetric duality also for (MDS)
problem. Therefore, /%o, Yok = fr{¥a %0} = = {0 1o} =0

Conclusion

This paper has introduced the application of & -convexity in multi-objective non-
linear programming problems. In the last few years, quite large number of researchers

have used H -convexity in different names for single objective non-linear
programming problems and have obtained duality results. This paper have pointed out

that  -convexity is the generalized version of convexity and different convexities
can be derived from & -convexity.
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