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Abstract 
 

Here, in this paper we study  -convex (  –concave) function with respect 
to duality in multi-objective non-linear programming problems. We formulate 
the multi-objective programming problem with its dual and give weak, strong 
and converse duality theorems for this problem. Also we define multi-
objective fractional programming problem and its dual and discuss convexity, 

pseudo-convexity and  –convexity in this context. Also we discuss 
symmetric duality and self duality for multi-objective programming problem. 
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Introduction 
Generalized convexity (concavity) plays an important role in the development of 
multi-objective non-linear programming problems. Generalized convex functions 
which are the many non-convex functions that share at least one of the valuable 
properties of convex functions and which are often more suitable for describing real 
world problems.[1] During the last decades, several necessary and sufficient 
conditions for generalized convexity (concavity) on subsets of with non-linear 
interior have been proposed by several mathematicians. The term harmonic convexity 
was first introduced by Das. [2] The concept has been used by many mathematicians 
in many means. Some applications of harmonic convexity to optimization problems 
have already been discussed by Das, Roy and Jena. [3]  The form of a dual problem of 
Mond-Weir type for multi-objective programming problems of generalized functions 
is defined and theorems of weak duality, direct duality and inverse duality are proven. 
[4] A study of various constraint qualification conditions for the existence of lagrange 
multipliers for convex minimization based on a new formula for the normal cone to 
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the constraint set, on local metric regularity and a metric regularity property on 
bounded subsets has been done[5]. A consideration of an operation on subsets of a 
topological vector space which is closely related to what has been called the inverse 
addition by R.T. Rockafellar has also been done. [6] A new class of higher order 
functions for a multi-objective programming problem has been introduced which 
subsumes several known studied classes and formulated higher order Mond-Weir and 
Schaible type dual programs for a non-differentiable multi-objective fractional 
programming problem where the objective function and the constraints contain 
support functions of compact convex sets in  and studied weak and strong duality 
results[7]. Also a new class of generalized type I vector valued functions have been 
introduced and duality theorems are proved for multi-objective programming problem 
with inequality constraints.[8] 

 Here, in this paper we study  -convex (  –concave) function with respect to 
duality in multi-objective non-linear programming problems. The present study done 
in this paper will show that most of the results derived earlier are found to be a 

particular case of this study. Indeed  –convexity is the generalized version of 

convexity and different kind of convexities can be derived from  –convexity. 
 The paper formulation is as follows: The next section introduces some 
preliminaries used in this paper. After that in section 3. we formulate the multi-
objective programming problem with its dual and give weak, strong and converse 
duality theorems for this problem. In section 4. we define multi-objective fractional 

programming problem and its dual and discuss convexity, pseudoconvexity and  –
convexity in this context. In section 5 and 6, we discuss symmetric and self duality 
respectively. In section 7, conclusions are drawn. 
 
 
Preliminaries 
In this section, we define some terms, explain some properties, and give the notations 
used in this paper. 
 

Definition 1. A positive function  defined on a convex set is said 

to be harmonic convex or  –convex (harmonic concave or  –concave) if its 
reciprocal is concave (convex) and conversely. 
 We use following notations in the paper. The vector norm  always denote the 

Euclidean norm denoted by  for a function  where 

S is an open set denotes the gradient vector with partial derivative , 

. The Hessian matrix  is the  matrix of second order partial 

derivatives,  . 
 Here in this paper, we use several geometric properties of convex functions to 
define convexity by inequalities. If we relate the arithmetic, geometric and harmonic 
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inequalities, we can find an alternate and equivalent definition of -convexity and 

-concavity. 
 

Definition 2. A positive function defined on a convex set  is said to be 

harmonic convex ( -convex) on  if , for  ∈  and , 

   
 

 And harmonic concave ( -concave) if , 

   
 

 And “strictly -convex” if strict inequality holds. 
 If we relate the inequality in definition 2. To geometric, arithmetic and harmonic 
inequalities, we have  

 
Thus if,  is -convex, then it is logarithmic convex and also it is convex. But the 
converse is not true. Similarly by the inequality for harmonic concavity in definition 
2, we have 

 
 It is clear that if is concave, then it is logarithmic concave and also -concave 
but the converse is not true. 
 

Property 1.  Let   be positive differentiable function on some open set 

containing the convex  set . 

A necessary and sufficient condition for  to be -convex on  is that, for each  
  (1) 

And -concave on if for each 

   (2) 
 It is to be noted that, 

 If we define , where , then the inequalities given 
above in property 1. Reduce respectively to strong pseudoconvexity and strong 
pseudo concavity of Weir [9] and several authors. 

 Moreover, the setting , 

and  is defined as in 1. Then both the inequalities in property 1. reduce to the usual 
definition of convexity and concavity respectively. 

 Setting  where  and  is 

defined as in 1. ,then  is invex function defined in [10]. 
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 If , then the inequality showing the necessary and 

sufficient condition in property 1. for -convexity implies that . Thus 

 is pseudoconvex function. Similarly for , the inequality 

showing the necessary and sufficient condition in property 1. for -concavity implies 

that  and  is pseudoconcave function defined in [11]. 

 From the above points it is clear that -convexity includes convexity, 
pseudoconvexity, strongly pseudoconvexity and invexity. Also we claim that the class 

of -convex ( -concave) functions is the weakest version of convexity (concavity). 

Moreover, a comprehensive development of the properties of  -convex ( -
concave) functions is given in [12]. 
 
 
Problem Formulation and Duality  
Let us consider the following multi-objective programming problem: 
The primal problem (P) is defined as: 
Minimize   
Minimize    
. 
. 
. 
Minimize    
 

Subject to   

 , , , 

…  

 All and  are continuously differentiable functions and S is an open 
convex set.  
 
The dual (D) of the above problem is defined as follows: 
Maximize    
Maximize     
. 
. 
. 
Maximize   
 

Subject  to  
   
  . 
  . 
  . 
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 Here  
 Now we prove the following duality theorems for the above defined problem. 
 

Theorem 1. (Weak Duality) Let ,… be -convex functions on S and each 

component of  is -convex on S. If  be the feasible solution for the primal 
problem, and (  ,  ,… ) be the feasible solution for the dual problem , then 

  . 
 

Proof: From -convexity of ,… , we have on substituting   and 
 by inequality (1), 

 

⇒  

⇒   
     (3) 

 This follows from the dual feasibility and positivity of   . Also from 

-convexity of  
   
 Since  and  is feasible for the primal problem (P), we obtain  

    

 Or  

  (4) 
 From (3) and (4) , we obtain  

  
 
Theorem 2. (Strong Duality) If the primal constraint set satisfies Slater’s constraint 
qualification and if  is an optimal solution to the primal problem (P), then   

such that  is optimal solution to the dual problem (D) and corresponding 
extrema are equal. 
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Proof: The -convexity (with respect to ) of and ,  and 

 implies -convexity of (with respect to  for given ) . 
Furthermore, the dual problem (D) has a feasible solution due to the constraint 
qualification and the existence of an optimal solution to the primal problem (P).  

Assume that and  are arbitrary dual feasible solutions. The -convexity 
of implies that 

   
  
 

 Therefore so that for any  ,  the 

solution  does not depend on  as  is dual feasible. Hence  such 

that  is dual feasible and furthermore  

 
  
  
  
 

 Consequently  solves the dual problem (D). Finally as the constraint 
qualification is satisfied , this implies that 

   
 
 From the weak duality theorem, we get  

   
 
 Whereas the above strong duality theorem assures that the differences 

, called the duality gap is actually zero. 
 

Theorem 3. (Converse Duality) Let  solve the dual problem (D) and the  

matrix  be non-singular, then  solves the primal 
problem (D) and the corresponding objective function values are equal. 
 
Proof: The proof of the theorem is obvious.  
 
Fractional Programming and Duality 
A unified approach for duality in fractional programming was presented by Schaible 
in 1976. [13].  
 Now we consider the following multi-objective fractional programming problem: 
(MFP)  Minimize  
Minimize  
                                  . 
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                                  . 
                                  . 
                       Minimize  
 Subject to   

 , , , 

… ,   
 
 Here we assume that  are differentiable functions on S. 
 Some authors consider the above multi-objective fractional programming problem 
assuming that  are convex functions. These assumptions 

imply that , are pseudoconvex. However, weaker conditions than 

convexity, pseudoconvexity and strongly pseudoconvexity can be replaced by -
convexity. 
 

Theorem 4. Let  and   be -convex with respect to proportional 

function defined as , where . Then , 

 are -convex  on . 
 
Proof: Let , 
…  be n functions.  
Then   ,   

 
Now from -convexity of  and  , with respect to , we have  

  (5) 

and   (6) 
 

 Thus here we get  inequalities denoted by (5) and  inequalities denoted by 

(6) . 

 Now on multiplying each inequality of (5) by  and on multiplying 

inequality of (6) by and on adding and dividing both sides by , we 
have  

  
  
 Or  
 
 This implies that  
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 Where  

 If , then  

 Thus  are -convex with respect to proportionality 

function . It follows immediately that ,  are strongly 

pseudoconvex if  and  are -convex.  
 The pseudoconvexity and convexity follows that: 

 The Duality results of the previous section may then be involved by the -

convexity on with respect to the proportionality functions. 
 Thus we state the following dual program: 
(MFD) Maximize   
Maximize   
. 
. 
. 
Maximize   
 
Subject to   

. 
 
Symmetric Duality 
We know that a pair of primal and dual programs are symmetric in the sense that the 
dual of the dual is the original primal problem, i.e when the dual problem is reset in 
the primal format; it’s dual is the primal problem itself. Here, we give a different pair 
of symmetric dual multi-objective non-linear programming problems, assuming the 

-convexity and establish the duality results. 
 
(MPS) Minimize  
Minimize  
. 
. 
. 
Minimize  
 

Subject to   ,   (7) 

  (8) 

   (9) 
 
(MDS) Maximize  
Maximize  
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. 

. 

. 
Maximize  

Subject to .  (10) 

    (11) 

   (12) 
 
 We assume that  are twice differentiable real valued functions 

of  and , where , and  denote the gradient vectors 

with respect to  and  respectively. and  denote respectively the 

 matrices of second partial derivatives.  
 

Theorem 5. Let ,  be -convex (for fixed  and 

 be -concave (for fixed . Let be feasible for (MPS) 

and be feasible for (MDS). Then . 
 
Proof: From (9), (10) and (11), we have 

  
 Since  ,  be -convex, it follows that 

  
 Thus   (13) 

 Likewise, from (7), (8) and (12), we have  

 Since  be -concave, it follows that 

  
 Thus   (14) 
 Thus from (13) and (14), we have 

  
 

Theorem 6. (Strong Duality) Let ,  be -convex (for fixed  

and  be -concave (for fixed . Let be a local or 
global optimal solution of the primal problem (MPS),  be positive or 
negative definite and , then also gives the optimal solution of 
the dual problem. 
 
Proof: Since  is an optimal solution to the primal problem,  

 
 Such that the Fritz John conditions are given as follows: 
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τ   (15) 

  (16) 

 (17) 

  (18) 
  (19)  

   (20) 
  (21) 
 
 On multiplying (16) by , and on applying (17) and (18), we get  

   
 Since  is positive or negative definite, so    (22) 

 Thus from (10), , and since by assumption  Then 

  (23) 

 If  by (23), by (15) and (22) and (15) and (19) give 

 
 Thus  is feasible for (MDS) and the values of the objective function are 
equal and optimality follows from weak duality. 
 
Self Duality 
A mathematical programming problem is self-dual if dual of the dual is the primal 

problem itself. A function is said to be skew-symmetric if 

 
 
Theorem 7. Let  be skew-symmetric functions. Then (MPS) is itself 
dual. If also (MPS) and (MDS) are dual programs, and  is a joint optimal 
solution , then so is  and  
 
Proof: (MDS) can be written as  
Minimize  
Minimize  
. 
. 
. 
Minimize  

Subject to  . 

   
       
 Since   are skew-symmetric  

  
 and thus the (MDS) becomes  
Minimize  
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Minimize  
. 
. 
. 
Minimize  

Subject to  . 

 
 

 
 Which is just the (MPS) problem 
 Thus if  is the optimal solution for the dual problem ⇒  is the 
optimal solution for the primal problem and by symmetric duality also for (MDS) 
problem. Therefore,  
 
 
Conclusion 
This paper has introduced the application of -convexity in multi-objective non-
linear programming problems. In the last few years, quite large number of researchers 

have used -convexity in different names for single objective non-linear 
programming problems and have obtained duality results. This paper have pointed out 

that  -convexity is the generalized version of convexity and different convexities 

can be derived from -convexity. 
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