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Abstract 
 

In this paper we study the effect of varying catastrophic intensity with 
restoration to destroy a finite number of units in a queuing system. The model 
considered is a simple finite capacity Markovian queue with capacity N. The 
catastrophic intensity is uniformly distributed. Times dependent as well as 
steady state solution are obtained.  Further, some particular cases of the 
queuing model are also derived and discussed. 
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Introduction 
From the very beginning, the M/M/1 queue has been the object of systematic and 
through investigation. In recent years the attention has been focused on certain 
extension that includes the effect of catastrophes, in particulars, birth and death 
models. A large number of research papers have been published on population 
processes under the influence of catastrophes; for instance, Swift[12], Kyriakidis [11], 
Brockwell [1,2], Brockwell et al.[3], among other have discussed berth and death 
models with catastrophes. In this connection, a reference may be made to the paper by 
A. Di. Crescenzo et al [6]. In this paper , the author have recognized the role played 
by the notion of catastrophes in various area of science and technology.In computer 
system, if a job is infected, this job may transmit virus which may be transferred to 
the other processor. The infected job may be modeled by catastrophes. Hence 
computer network with virus may be modeled by queuing networks with catastrophes 
[7]. Queuing model continue to be one of the most important area of computer 
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networksand have played a vital role in performance evaluation of computer 
systems.Queuing model with environmental and catastrophic effects has been studied 
by Jain and Kanethia [9]. Jain and Kanethia proved that the change in  the 
environment  affects the state of the queuing system. A system will require some sort 
of time to function in a normal way if it suffered from catastrophes, which is taken as 
restoration time, this concept is given by Jain and Kumar [8]. Jain and Kumar 
obtained the transient solution of the correlated queues with special effect of 
catastrophes and restoration.The concept of varying catastrophic intensity is given by 
Jain and Bura [10]. The number of customers in a queuing system is instantly reset to 
zero or not depends upon the intensity of catastrophe.Queuing model with varying 
catastrophic intensity are applied in various field of biological sciences and 
agriculture. In agriculture, if a crop is infected with some disease then for the 
treatment of such type of disease we use some chemicals. The destruction of the 
number of bacteria present in the crops depends upon the intensity of the chemicals 
used, that is, the application of the chemical may destroy all or a part there of. The use 
of the chemicals is like the occurrence of catastrophe. Therefore the infected crops 
with use of chemical are modeled by the birth and death queue with varying 
catastrophic intensity. If the catastrophe destroys all the customers in a queuing 
system then the system will require some time to function in a normal way, which is 
taken as restoration time. The queuing model with varying catastrophic intensity is 
practically very important therefore we consider here an M/M/1/N queue with varying 
catastrophic intensity with restoration.The catastrophic intensity may follow any 
distribution but most proper of them is considered to be Uniform distribution. 
Therefore we undertake an M/M/1/N   queuing model with uniformly distributed 
catastrophic intensity with restoration.    
 
 
Transient Solution 
We consider an M/M/1/N queuing system with FIFO discipline subject to varying 
catastrophic intensity at the service station with restoration time. By λ  and μ  we 
denote the ‘arrival rate and service rate, respectively. When the system is not empty, 
the catastrophes occur according to a Poisson Process with rate ξ .It depends upon the 
intensity of the catastrophe that it destroys all the customers or not. If it destroys all 
the customers, then the system will require some sort of time to function in a normal 
way, which is taken as restoration time. The restoration time is independently, 
identically and exponentially distributed with parameter η . 
 
Define       
P0 (t) = the probability that there are zero customer in the system at time t without the 
occurrence of catastrophes. 
Q0 (t) = the probability that there are zero customer in the system at time t with the 
occurrence of catastrophes with varying intensity. 

( )tPn = the probability that there are n customers in the system at time t. 
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 The differential difference equations governing the system are: 
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 Taking, Lap lace Transform of equation (1), (2),(3) and (4) w.r.t.‘t’, we have 
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 Multiplying equation (5), (6),(7) and (8) by the suitable power of z, summing over 
all n and using (9), we have on simplification: 
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 The denominator in (10) has N zero, these zero  must  vanish  the numerator  
giving rise to a set  of  N equations solving these N equation  we can determine all the  
N unknown occurring in the numerator .Hence P*(z,s) is completely determined. 
 
Particular Case 
If  ξ  =0 then  
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 The result tallies with that of simple M/M/1/N Queuing model. 
 
 
Steady State Solution 
Steady state equations governing the system are:  
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Solving this set of equations recursively, we have 
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Using (16) in (15), than we get 
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And also from (12), we get 
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Measure of Effectiveness 
The steady state probability distribution for the system size allows us to calculate 
what are commonly called measures of effectiveness. Two of immediate interest are 
the expected number of customers in the system and the expected number of 
customers in the queue. 
 To derive the forgoing measures, let Ls represent the expected number in the 
system and Lq represent the expected number in the queue. Thus  
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