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Abstract 
 

In the first part of the paper we survey some far reaching applications of the 
basis facts of linear programming to the combinatorial theory of simple 
polytopes. In the second part we discuss some recent developments concurring 
the simplex algorithm. We describe sub exponential randomized pivot roles 
and upper bounds on the diameter of graphs of polytopes. 
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Introduction 
A convex polyhedron is the intersection S of a finite number of closed half spaces in 
Rd. S is a d – dimensional polyhedron (briefly a d – polyhedron) If the points in S 
affinely span Rd a convex d-dimensional polytopes. (briefly, a d – polytope) is a 
bounded convex d – polyhedron. Alternatively a convex d – polytopes is the convex 
hull of a finite set of points which affinely spans Rd. 
 A (non – trivial) face F of a d-polyhedron S is the intersection of S with a 
supporting hyper plane. F it self is polyhedron of some lower dimension.  If the 
dimension of F is K we call F a K face of S. The empty set and S itself are regarded as 
trivial faces. o-faces of S are called vertices, I–faces are called edges and (d-1)-faces 
are called facets. For material on convex polytopes and for many references see 
Ziegler’s recent book [32]. The set of vertices and (bounded) edges of S can be 
regarded as an abstract graph called the graph of  S and denoted by G(S). 
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 We will denote by fK (S) the number of K-faces of S. The vector (f0(S), f1(S)….. 
fd(S)) is called the f-vector of S. Euler’s fame formula V-E+F=2  given a connection 
between the number  V,E, F of vertices, edges and 2-faces of every 3-polytope. 
 A convex d-polytopes (or polyhedron) is called simple if every vertex of S 
belongs to precisely d edges. Simple polyhedron correspond to non generate linear 
programming problems. When you cut a simple polytopes S near a vertex V with a 
hyper plane H which intersect the interior of S, the intersection S∩H is a (d-1) 
dimensional simplex S. The vertices of S are the intersections of edges of S which 
contain V with H and the (K-1) dimensional faces of S are the intersection of K faces 
of S with H. The following basic property of simple polytopes follows. 
 Let S be a simple d-polytopes and let V be a vertex of S Every set of K edges 
adjacent to v determines a K-dimensional faces of S which contains the vertex V. In 

Particular there’re precisely ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

k

d
K – faces in S containing V and altogether 2nd faces 

(of all dimensions) which contain V. 
 Linear programming and the simplex algorithm linear programming is the 
problems of maximizing a linear objective function  φ subject to a finite set of linear 
inequalities. The relevance of convex polyhedral to linear programming problem is 
clear. The set S of feasible solution for a linear programming problem is a 
polyhedron. There are two fundamental facts concurring linear programming the 
reader should keep in mind.  
 If φ is bounded from above on S then the maximum of φ on S   is attained at a face 
of S, in particular there is a vertex V for which the maximum is attained. If φ is not 
bounded from above on S then there is an edge of S on which φ is not bounded from 
above.  
 A sufficient condition for V to be a vertex of S on which  φ is maximal is that V is 
a local maximum namely φ (V) is bigger or equal than φ(W) for every vertex W 
which is a neighbour of V. 
 The simplex algorithm is a method to solve a linear programming problem by 
repeatedly from one vertex V to an adjacent vertex W of the feasible polyhedron so 
that in each step the value of the objective function is increased. The specific way to 
choose W given V is called the pivot rule. 
 The d-dimensional simplex and the d-dimensional cube. The d-dimensional 
simplex Sd is the convex hull of d+1 affinely independent points in Rd. The  faces of 
Sd are themselves simplices. In  fact, the convex hull of every subset of vertices of a 

simplex face and therefore fk(Sd) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

1

1

k

d
. The graph of Sd is the complete graph on 

d+1 vertices. The d-dimensional cube Cd is the set of all points (x1, x2, x3…….. xd) in 
Rd such that for every i, 0≤xi≤ 1; The vertices of (cd) are all the (0,1) vectors of length 
d and two vertices are adjacent (in the graph of (cd) if they agree in all but one 

coordinates , fK ((Cd) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

k

dkd2   

 Applications of the fundamental properties of linear programming to the 
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combinatorial theory of simple polytopes.  
 Let S be a simple d-polytopes, and φ be linear objective function which attains 
different values on different vertices of S. Call such a linear objective function 
generic.  (Actually it will be enough to assume only that φ is not constant on any 
edges of S. The fundamental fact concerning linear programming is that the maximum 
of φ on S is attained at a vertex V and that a sufficient condition for V to be the vertex 
of S on which φ  is maximal is that v is a local maximum, namely φ(V) is strictly 
bigger than φ(w) for every vertex W which is a neighborhood of V). 
 Every face F of S is itself a polytope and φ attains different values on distinct 
vertices of F. Among the vertices of F there is a vertex on which φ is maximal and 
again this vertex  is the only vertex in F which is a local maximum of  φ in the face F. 
These considerations have far reaching applications on the understanding of the 
combinatorial structures of simple polytopes. We refer the reader to Ziegler’s Books 
[32] for historical notes and for reference to the original papers. Our presentation is 
also quite close to that in [26]. We hope that the theory of h-numbers described below 
will reflect back on linear programming but this is left to be seen. 
 
 
Degrees and h-numbers 
Let S be a simple d-polytopes and let φ be a generic linear objective function. For a 
vertex V of S define the degree V denoted by deg (v) to be the number of its 
neighboring vertices with smaller value of objective function. Clearly 0≤deg(v) ≤ d.   
Define now hK (S) to be the number of vertices of S of degree K. This number as we 
define it depends on the objective function φ but we will soon see that it  is actually 
independent form φ. We can see one sign for this already nomatter what φ is there will 
always be precisely one vertex of degree d (on which φ attains the maximum) and one 
vertex of degree 0 ( on which φ attains the minimum). This follows at once from the 
fact that local maximum = global maximum. 
 To continue will count pairs of the form (F, V) where F is a K face of S and V is 
vertex of F which is local maximum ( hence a global  maximum) of φ in F. on the 
other hand, let us compute how many pairs  contain a given vertex V of S. This 
depends only on the degree of V. Assume that deg(v) = r and consider the set of edges 
of S. 
  T ={[V, W] : φ (v)> φ(w)} 
 
 Thus |T| =r. As we mentioned above every set B of K edges containing V 
determines a K-face F(B) containing V. In this face the set of edges containing V is 
precisely B. In order for V to be a local maximum in this face it is necessary and 
sufficient that for every edge [v,w] in B, φ(v) > φ(w). This occurs if and only if B ⊂ T. 
Therefore, the number of K faces containing  V for which V is a local maximum is 

precisely the number of subsets of T of size K,  namely ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

k

r
summing over all vertices  

V of S and recalling that hK(S) denote the number of vertices of degree K we obtain. 
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 Note that this formula describe the f-vector of S (f0(S), f1,(S), 
………………..fd(S)) as an upper triangular matrix (with ones on the diagonal) times 
the vector of S(h0(S), h1(S)….hd(S)). Therefore the h numbers are in fact linear 
combinations of the face numbers and in particular they do not depend on the linear 
objective function φ. 
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 In particular 
  h0(S) = f0(S) – f1(S) +f2(S) …………..+(-1)dfd(S) 
  h 1(S) = f1(S) –2f2(S) +3f3(S) …………..+(-1)d-1dfd(S) 

  h 2(S) = f2(S) –3f3(S) +6f4(S) …………..+(-1)d-2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

d
fd(S) 

  h d(S) = fd(S) -1, hd-1(S) = fd-1(S) -d 

  h d-2(S) = fd-2(S) –(d-1)fd-1(S) + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

d
 

 
 For the simplex Bd, hK =1 for every K. The graph of Bd is the complex graph on 
d+1 vertices and for every generic objective function there will be precisely one 

vertex of degree K for 1≤ k ≤ d. For the cube Cd, hk = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

k

d
. To see this consider the 

objective functions φ which is the sum of the co-ordinates. (This is nota generic 
objective function but it is not count on the edges of the polytopes and this is 
sufficient for our purposes). The vertices  of degree K are precisely those having φ(V) 
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= K and there are ⎟⎟
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⎞
⎜⎜
⎝

⎛
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d
 such vertices. 

 
 
Euler formula and the Dehn-Sommerville relations 
For a generic linear objective function there is a unique maximal vertex. Therefore, 
h0(S) =hd(S) and  by the formulas above we obtain. 
  f0(S)–f1(S)+f2(S)……………….+(-1)dfd (S) =1  
 
which is Euler formula usually written. 
  f0(S) – f1(S) +f2(S)………………..+ (1)d-1 fd-1 (S) =1 –(-1)d 
 
 More generally, if φ is a generic linear objective function then so is -φ. However, 
if V is a vertex of a simple Polytope S and V has degree K w.r. to φ then V has degree 
d-k w.r.t -φ. This given the Dehn – Sommerville relation 
  hK(S) =hd-K(S) 
 
 The Dehn-Sommerville relations are the only linear equalities among face number 
of simple d-Polytopes. 
 
 
Defination (Cyclic Polytopes) 
The cyclic d-Polytopes with n vertices denoted by C(d,n) is the convex hull of n 
distinct point on the moment curve x(t) =(t, t2…….. td) ⊂ Rd. This is a remarkable 
class of polytopes and the reader should consult (10, 26, 32 ) for their properties . C* 
(d,n) will denote a polar polytopes to C(d,n). (For the defination of polarity see 
[10,26,32] C* (d,n) is a simple d-polytope with n facets. 
 
 
The upper bound theorem 
Motzkin conjectured that the maximal number of vertices (and more generally of K – 
dimensional faces ) for d-polytopes with n facets. This conjecture was proved by Mc 
mullen [23]. It is easy to reduce this conjecture to simple polytopes and to calculate 
the h-number of C* (d,n) see [32,26]. This gives 

  hk (C* (d,n)) =hd-k (C*(d,n)) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+−
k

kdn 1
 

 
 For 1≤ K ≤ [d/2] 
 Since the face numbers are linear combination of h numbers with non –negative 
coefficients in upper bound theorem follows from the following relations (and the 
Dehnsomerville relation) 

  ⎥⎦
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Proof : Consider a generic linear objective function φ which gives higher values to 
verities  in a facets F than to all other vertices. (To construct such an objective 
function start with objective function whose maximum is attained precisely on the 
facet F and then make a slight perturbations to make it generic) Every vertex V of 
degree k -1 in F has precisely one neighborhood not in F and therefore the degree of 
V in k. This gives (*) hK-1 (F) ≤ hK(S) 
  Next, (* *) ∑ )( fhk =(k+1)hk+1 (S) + (d-k) hk(S) 

 
 Where the sum is over all facets F of S 
 To prove (* *) consider a vertex V of degree k in S. The vertex V is adjacent to d 
edges and every subset of (d-1) out of them determine a facet. The degree of V is (k-
1) in every facets determined by d-1 edges adjacent to V where one of the k edges 
pointing down (w.r.t φ) is deleted and there are K such facets. The degree of V is k in 
the remaining d-k facets (*) and (* *) gives the upper bound relations. 

  hd-k (S) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+−
≤

k

kdn 1
  By induction on k. 

 
 For k=1 we have equality hd-1 = n-d. For k ≥ 1 we obtain (d-k+1)hd-k+1(S) Further, 
assuming the upper bound relation to k-1 we obtain for k. 

  hd-k (S) ≤ ⎟⎟
⎠
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⎛ −+−
=⎟⎟
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 Abstract objective functions and telling the polytope form its graph consider an 
ordering α of the vertices of a simple d-polytope S for a non empty face F we say that 
a vertex V of F is a local maximum in F if V is larger w.r.t. the ordering α than all its 
neighboring vertices in F. An abstract objective function (AoF) of a simple d-polytpe 
and α is a linear ordering of the vertices we define, as if  S is a simple d-poytope and 
α is a linear ordering of the vertices we define as before, the degree of a vertex V w.r.t 
the ordering as the number of adjacent vertices to V that are smaller than V w.r.t. α. 
Thus the degree of a vertex is a non negative number between 0 and d. Let α

kh be the 

number of vertices of degree k. Finally, Put F(S) to be the total number of non empty 
faces of S. 
 
Claim 1 

  ∑
=

≥
d

r
k

k SFh
0

)(2 α  

 
 And equality holds if and only if the ordering α  is an AoF . 
 
Proof : Count pair (F,v ) were F is a non empty face of S (of any dimension) and v is 
a vertex which is local maximum is in F w.r.t the ordering α. On the one hand every 
vertex v of degree k contributes precisely 2K pairs (F,v) corresponding to all subsets 
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of edges from v leading to smaller vertices w.r.t. α. Therefore the number of pairs is 

precisely ∑ =

d

r k
k h

0
2 α  on the other hand the number of such pair is atleast F(S) (every 

face has atleast one local maximum) and it is equal to F(S) if every face has exactly 
one local maximum i.e if the ordering is an AoF. 
 
Claim 2 : A connected k-regular sub graph H of G(S) is the graph of a k-face, if and 
only if there is an AoF in which all vertices in H are smaller than all vertices not in H. 
 
Proof.: It H is the graph of a k-face F of S then consider a linear objective function φ 
which attains its minimum precisely at the point in F. (By definition for every non 
trivial face such a linear objective function exists) Now perturb Ψ a little to get a 
generic linear objective function φ in which all vertices of H have smaller values than 
all other vertices. On the other hand if there is an AoF,  in X which all vertices in H 
smaller than all vertices not in H, consider the vertex  v of H which the largest w.r.t. α 
There is a face F of S determined by the k edges in H adjacent to v and v is a local 
maximum in this face. Since the ordering is an AoF, v must be larger than all vertices 
of F hence the vertices of F are contained in H and the graph of F is a sub graph of H. 
But the only k-regular sub graph of a connected k-regular graph is the graph itself and 
therefore k is the graph of F. 
 
Claims -1. and 2 provide a proof to a theorem of Blind and Mari [3]  
 
Theorem 2.1. The combinatorial structure of a simple polytope is determined by its 
graph. 
 Indeed, claim 1 allows us to determine just form the graph all the ordering which 
are AoF’s using this claim 2 allows to determine which sets of vertices form the 
vertices of some k-dimensional face. Let us mention that the proof gives a very poor 
algorithm (exponential in the number of vertices) and it is an open problems to find 
better algorithms. 
 Further facts without such simple geometric proofs one of the most important 
developments in the theory of convex polytopes is the complete descriptions of h-
vertices of simple d-polytopes, conjectured by McMullen and proved by Stanley and 
Billena and Lee see.[2,30,24]. 
 Crucial part of this characterization is the following. For every simple d-polytopes 
h1(S) ≤h2(S) ≤ ………..≤h[d/2]

(S) 
 In words the number of vertices of degree k is smaller or equal than the number of 
vertices of degree k+1, when k≤ [d/2]. It is a challenging problem to find  a direct 
geometrical proof for this inequality. (The existing proofs have algebraic ingredients 
and are very difficult). 
 One possible measure for the progress of a certain pivot rule of the simplex 
algorithm would be via the degree of the vertices. Unfortunately, it seems difficult to 
predict how the degree of vertices will behave in a path of vertices given by some  
pivot rule. Starting with a random vertex of a simple polytope it is possible to say 
what will be the effect on the degree in a single random pivot step. By a random pivot 



316  Das Sashi Bhusan et al 

 

step we mean the following. Starting with a vertex v we choose at random one of the 
d neighboring vertices W. It φ (w) >  φ (v). We move to w and otherwise we stay at v. 
The average degree Eo(S) of vertices in a simple d-polytopes (which is the excepted 
degree of a random vertex) is by the Dehn-Sommerville relations d/2. The average 
degree E1(s) of a vertex of s obtained by a single random pivot step (as described 
above) starting from a random vertex v is 1+2f2(s)/f1(s). For example, for the d-cube = 
1/2d+1/2. (Simian formulas exist it we choose at random an r-containing v and move 
from v to its higest vertex. The above formula for E1(s) note that the probability that  
after one random pivot  step we reach a (specific) vertex w  of degree k is 

d

k

sf

2

)(

1

0
⎥
⎦

⎤
⎢
⎣

⎡
.  Indeed, if we start at w (this occurs with probability ⎥

⎦

⎤
⎢
⎣

⎡

)(

1

0 sf
then with 

probability 
d

k
we stay at w. If we start with one of the k lower neighbors of w 

(altogether this occur with probability ⎥
⎦

⎤
⎢
⎣

⎡

)(0 sf

k
. then we reach w after one step with 

probability 
d

1
. It follows that  

  E1(s) = )(
2

)(

1

0

2

0

sh
d

k

sf k

d

k
∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 

 Which equals  
)(

)(2
1

1

2

sf

sf+ by the formulas above. Note that E1(S) does not depend 

on the objective function. This is no longer true if we are interested in E2(s) the 
average degree after two random pivot steps. The following problem (of independent 
interest ) naturally arises.  
 Problem 2.1 Let S be a simple d-polytopes and φ be generic linear objective 
function. Let hij be the numbers of pair of adjacent vertices v,w such that φ(v) < φ(w) 
and deg (v) = i, deg (w)=j What can be said about the collection of numbers (hij 1≤i , 
j≤d ) . This array of numbers depends on the objective function and not only on the 
polytopes. It will be interesting to describe the possible hij numbers  even for the 
special case when the Polytopes is combinatorialy  isomorphic to the d-dimensional 
cube (The question is interesting also for abstract objective function) 
 
 
Arrangements 
We would like to close this section with the following remarks. Consider an 
arrangement of n hyper planes in general position in Rd, and a generic linear objective 
function φ. This arrangement divides Rd into simple d- polyhedral. The average value 

of hk(s) over all these polyhedra is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

k

d
. To see this just note that every vertex v in the 
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arrangement belongs to 2d, d-polyhedra and has degree k in ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

k

d
 of these polyhedra. 

Similarly, the average h-vector over r dimensional faces of the arrangement is the h-
vector of the r-dimensional cube. 
 Hirsch conjecture and sub exponential randomized pivot also for the simplex 
algorithm. In this section we describe recent developments concerning the simplex 
algorithm. We describe sub exponential randomized pivot rules and recent upper 
bounds for the diameter of graphs of polytopes. The algorithm we consider should be 
regarded in the general context of LP algorithms discovered by Megiddo [25] 
Clarkson [5] seidel [28]. Dyer and Frieze [7] and many others . But we will not 
attempt to prove this, but we give this general picture here. For the use of randomized 
algorithm in computational  geometry the reader is referred to Mulmuley books [26]. 
Another word of warning is that the language we use is quite different than the usual 
LP terminology and we leave it to the interested reader to make the translation. 
 
 
The Complexity of linear Programming 
Given a linear program max (b,x) subject to Ax ≤ c with n inequalities in d variables, 
we denote L as the total input size of the problem when the co-efficient are described 
in binary. We denote CA(d,n,L) as the number of arithmetic operations needed in the 
worst case by an algorithm A to solve a linear programming problem with d variables 
, n inequalities and input size L . The (worst case) complexity of linear programming 
is (roughly) the function C(d,n, L) which described for every value of d,n, L the 
smallest possible value of CA(d,n,L) over all possible algorithms. 
 Khachiyan’s breakthrough result [12] was that the complexity of the ellipsoid 
method E is a polynomial function of d,n and L namely CE (d,n, L ) ≤ S(d,n) L. Other 
algorithms which improve on Khachiyan’s original bound (and also had immense 
practical impact on the subject) were found by Karmarkar and many others. By 
considering solutions to all subsets of d from the n inequalities we can easily see that 
C(d,n, L) ≤ f(d,n) i.e. linear programming can be solved by a number of arithmetic 
operation which is a function of d and n and independent of the input size L It is an 
outstanding open problem to find a strongly polynomial algorithm for linear 
programming, that is to find an algorithm which requires a polynomial number in d 
and n of arithmetic operations which is independent from L. Denote C(d,n) = 
maxLC(d,n,L) Klee and Minty [18] and subsequently others have shown that several 
common pivot rules for the simplex algorithm are exponential in the worst case. 
Explaining the excellent performance of the simplex algorithm in practice (especially 
in view of the exponential worst case  behavior on various Pivot rules) is a major 
challenge of the simplex algorithm. The result on the average case behaviour provide 
one such explanation. (see Borgwardt’s book [4] for a description of his work and for 
references to otherworks in [29]. The fact that the complexity of linear programming 
is a polynomial (by Khachiyan’s result) even if not via the simplex algorithm provide 
another practical explanation. 
 Of course, finding a pivot rule which requires a polynomial number of steps in the 
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worst case  or even proving that there are always a polynomial number of Pivot steps 
leading to the optimal vertex (without prescribing an algorithm to find these steps) are 
very desirable. 
 
 
Using randomness for Pivot Rules 
We will consider now randomized algorithms. Namely, algorithm which depend on 
internal random choices. Given such a randomized algorithm A we denote by R

AC (d, 
n) the excepted number of arithmetic operation needed – in the worst case – by A on a 
LP-Problem will d variables and n inequalities. CR(d,n)≤C(d,n). (Note we are 
interested in a worst case analysis of the average running time where the 
randomization is internal to the algorithm. This is in contrast with average case 
analysis where the LP problem itself is random. Perhaps the simplest random pivot 
rule is to choose at each step at random with equal probabilities a neighboring vertex 
with a higher value of the objective function. Unfortunately it seems very difficult to 
analyses  this rule for general  problem. Recently Gartner, Henk and Ziegler [9] 
managed to analyze the behavior of random pivoting on the Klee – Minty cube. 
 
 
Hirsch Conjecture  
Let Δ (d,n ) denote the maximal diameter of the graphs of  d-polyhedra S with n facets 
and Let  Δb(d,n) denote the maximal diameter of the graphs of d-polytopes with n-
vertices. Given a d-polyhedron S, a linear objective function φ which is bounded from 
above on S and a vertex v of S, denote by m(v) the minimal length of a monotone 
path in G(S) from v to a vertex of S on which φ attains its maximum. Let H(d,n) be  
the maximum of m(v) overall d-polyhedral S with n facets, all linear  functionals φ on 
Rd and all vertices v of S (A monotone path is a path in G(S) on which φ is 
increasing). Let M(d, n) be the maximal number of vertices in a monotone path in 
G(S) over all d-polyhedra  S with n facets and all linear functional φ on Rd. Clearly. 
  Δ (d, n) ≤ H (d,n) ≤ M(d,n) 
 
 Here H (d,n) can be regarded as the number of pivot steps needed by the simplex 
algorithm when the pivots are chosen by an oracle in the best possible way. M(d,n ) 
can be regarded as the number of pivot steps needed when pivots are chosen by an 
adversary in the worst possible way. In 1957 Hirsch conjecture is false for unbounded 
polyhedra. The Hirsch conjecture for polytopes is still open. The special case 
asserting that Δb(d,2d) = d is called the d-step conjecture and it was shown by Klee 
and walkup to imply the general case. 
 
Theorm 3.1 (Klee and walkup [19], 1967) 
  Δ (d,n) ≥ n-d +min {[d/4],[(n-d)/4]} 
 
Theorem 3.2 (Holt and Klee [11], 1997) for all d ≥14 and n>d  
  Δb (d,n) ≥ n-d  
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Theorem 3.3 (Larman [20], 1970) 
  Δ (d,n) ≤ n2d-3  
 
Theorem 3.4 (Kalai and Kleitmann [17], 1992 

  Δ(d,n) 1log

log

log +≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
≤ dn

n

dn
n   

 
 Klee and Minty [18] considered a certain geometric realization of the d-cube 
(called now the Klee – Minty cube) to show that Klee and Minty [18] considered a 
certain geometric realization of the d-cube (called now the “Klee – Minty cube”) to 
shown that Theorem 3.5  
 
Theorem 3.5 (Klee and Minty [18], 1972, M(d,2d) ≥2d. 
 
 
Subex potential randomized pivot rules 
We will assume (and thre is no loss of generality assuming this ) that the LP problem 
is non-degenerate (i.e the feasible polyhedron is simple ) and that a vertex v of the 
feasible polyhedron is given with a slight change of terminology all the algorithms 
and results we describe apply to the degenerate  case. Several years ago the author 
[16] and independently Matousek, Shanier and Welzel [22] found a randomized sub 

exponential pivot rule for LP thus proving that CR(d,n)  ≤ exp(K nd log ). Slightly 

sharper bounds are described below ). In my paper various variants of the algorithm 
were presented and we will see here two variants. The first and simplest variant is one 
of our originals and is equivalent (in a dual – setting) to the sharier – Welzel 
algorithm (27) on which (22) is based. The second variant presented here is a joint 
work with Martin Dyer and Nimrod Negiddo. It is a better and simplified version of 
other variants from [16]. All these algorithms apply to abstract objective functions 
and even more general’s settings see also Gantner’s paper [8]. Consider an LP 
problem of optimizing a linear objective function  φ over a d-polyhedron S and a 
vertex v of S. our aim is to reach top (S) which is a vertex of S on which the objective 
function is maximal or an edge of S on which the objective functions is unbounded  
from above. 
 
Algorithm -1 
Given a vertex v ∈ S choose a facets F containing v at random. 
Apply the algorithm on F until reaching w=top (F)  
Repeat the algorithm from w 
 
Remark : The algorithm terminates if v = top (S). It v = top (F/) for some facet F 
containing v (in which case v has only one improving edge ) we choose F at random 
from the other d-1 facets containing F. 
(Unless v= tops (S) there is at must one such facets F/)  
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Algorithm –II Chose at random an ordering of the facets Fπ(1), Fπ(2) …… Fπ(n). 
Phase – 1 Apply the algorithm until you reach  a vertex  in Fπ(1) (on reach Top (S)). 
Phase –II : Apply the algorithm recursively inside Fπ until reaching w=top(Fπ(1)) 
Phase –III Delete the facts Fπ(1) from the ordering and continue  turn the algorithm 
from w. 
Phase I and phase –III are performed w.r.t. initial random order of the n inequalities 
but in phase II you have to find again a new random a ordering of the facets. 
 
 
Analysis of the rules 
We say that a facet F of S is active w.r.t v if φ (v) < max {φ(x);x∈ F}. We will study 
the number of pivot steps as a functions of the number of variables d and the number 
of active facet n. The number of pivot step avail not depend on the total number of 
facets n. However, we do not assume that we know while running the algorithms 
which facts are active and the number of arithmetic operations  per pivot step depends 
therefore (poly nominally) also on N note that in Algorithm  II only the ordering of 
the active facets matters. 
 For a linear programming problems U with d variables and N inequalities and a 
feasible vertex  v of U such that there are n  active facets v, we denote by f(U,v) the  
excepted number of pivot steps needs by algorithm I  on the problem U starting with 
the vertex v. f(d,n) denote the maximal value of f(U,v) over all problems U and 
vertices v. The function f(d,n) is not decreasing with n. Similarly, g(d,n) will be the 
average number of pivot steps in the worst case problem for Algorithm – II 
 Analysis of Algorithm 1 we start with a situation where there are n active facets 
let F1, F2, F3…………. Fd be the facets containing v, ordered such that φ (top (F1) ≤ φ 
((top (F2)) ≤ …….. φ (top (Fd).Note that (unless v = top (S) at most one namely only 
F1) of there facets can be non – active. The average number of steps needed to reach 
top (F) from v is at most f(d-1, n-1) 
 If F1 is active then with probability 1/d the chosen random facet F equals Fi for i = 
1, 2, 3 ………….. d and then after reaching w = top (F) there are at most n-I active 
facts remaining and the average number of steps needed to reach top (S) from w is at 
most f(d,n-i+1). Aver aging over i we get that the average number of steps needed to 

reach top (S) from w is at most ∑ =
−d

i
indf

d 1
),(

1
  

 If F1 is not active the F = Fi with probability 
1

1

−d
 for i = 2, 3…d and by the same 

taken the average number of steps needed to reach top (S) from w is at most 

∑
−

=
−

−
1

1
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1

1 d

i
indf

d
. This is (slightly) higher than the previous expression by the 

montonicity  of f(d,n) as a function of n. In sum 
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 This given f(d,n) )logexp( dnK≤  see [22] 

 
Analysis of Algorithm – II 
For phase –II we need at most G(d-1), n-1) steps on the average. For phase III we can 
repeat the argument of the previous algorithm with probability 1/n there are (at most ) 
n-I active facets let after reaching top (Fπ(i)) for i = 1, 2, …. n  so the average number 

of pivot step for this phase is at most ∑
=

−
n

i

idg
n 1

),1(
1

 . We claim now that the average 

number of pivot steps for phase 1 is also at most ∑
=

−
n

i

idg
n 1

),1(
1

 To see this note. 

 As long as we run the algorithm from v meeting only vertices in r active facets we 
can regard our self running the algorithm from v in the LP problem obtained by 
deleting the inequalities corresponding to the other active facets. This LP problem has 
only r active facets. Since the average number of pivot steps needed for this problem 
is at most g(d,r ) we conclude that after an average number of g(d,r) pivot steps 
teaking running the algorithm while meeting vertices on  r active facets. 
 The pivot steps taken running the algorithm white meeting vertices on r active 
facets do not depend on the ordering of the remaining active facets. Therefore the 
identity of the active facets to be the next we meet. (which is a probability distribution 
on the remaining active facets) does not depend on the ordering of the remaining n-r 
active facets. It follows that with probability 1/n the facts Fπ(i). will be the ith active 
facet to be met i= 1,2,……….. 

 So we get g(d,n) ∑
=

−+−−≤
n

i

indg
n

ndg
1

),(
2

)1,1(  

 
 This relation implies the following. 

  g(d,n) ≤ exp )log( nk  

 
 If d and n are comparable we get a better estimate g(d,Td) ≤ exp [k(T) √d] 
 [K(T) is a constant depending on T] 
 The following estimates are useful when t =n-d is small w.r.t n  

 g(d, d+t) ≤ K( ∈
⎟
⎠

⎞
⎜
⎝

⎛

∈
∈+

d
t

1
, g(d,d+1)≤ k(logd)t-1  These bounds apply to f(d, d+t) as 

well 
 The following estimates are useful when d is small w.r.t n  

 g(d,n) ≤ Kk ∈+
⎟
⎠

⎞
⎜
⎝

⎛

∈
∈+ 12

n
d

 for every ∈ >0 and g(d, n) ≤ k(logn)d-1n 

 
 It is possible to use generating function techniques to get a precise asymptotic for 
f(d,n ) and g(d,n). It follows from the recession that n! g(d,n) is bounded above by 
t(d,n) – the number of permutations of {1,2, ….n} such that each cycle  in the 
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permutation (considered as a product of disjoint cycles ) is decorated by a 
nonnegative integer an by a plus or minus sign such that the sum of the integers is  d. 
For t(d,n) there is the closed formula. 

  t(d,n) = ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−+
1

1
),(2

k

kd
knCk  

 
 When C(n,k) is the number of permutation of  {1, 2..n} with k cycles. (C(n,k) is 
the absolute value of the stirling number of first  kind ) However, for the asymptotic 
facts describe above (without getting the precise constants) the simplest proofs are by 
direct estimations. 
 Remark matousek [21] found remarkable classes of abstract objective functions on 
the d-dimensional cube for which the except number of pivot steps for Algorithm I 
described above is indeed exp (c√d). Further understanding of similar examples may 
give impression on some of the problems described in this section. 
 Lp duality to LP duality allows us to move form a problem with d variables and n 
inequalities to the dual problems with n-d variable and n inequalities. 
 
 
Conclusion 
The situation develop due to Hirsch conjecture and the complexity of the simplex 
algorithm is rather frustrating. Again we are short of Polynomial bounds for the 
diameter and despite the simplicity of the proofs for the known bounds we can not 
modify them any further. For n=2d we can not find a randomized pivot rule which 
will require exp(d1/2-∈) pivot steps for some ∈>0, even if the feasible polytope is 
combinatorially equivalent to to a d – dimensional cube. And we can not find a 
deterministic pivot rule (without randomization) which is not exponential. We leave 
these tasks for the reader.  
 
 
Reference  
 

[1] N Amenta and G Ziegler, Deformed products and maximal shadows preprint 
502/1996, TU Berlin to appear. 

[2] LJ Billera and C, W Lee, A proof of sufficiency of Mac muller’s conditions for 
f-vectors of simplified convex polytopes J. Combes Theory, series A 31 (1981) 
237 – 255. 

[3] R Blind and P mani, on Puzzles and polytopes isomorphism, Ae-quations math 
34 (1987) 287 -297. 

[4] K.H. Borgwardt, The simplex method A probabilities  Analysis Algorithms and 
combinations Vol – I (Springer, Berlies 1987) 

[5] K.L ciarkson , A Lasveges Algorithm for linear Programming when the 
dimensional is small, J ACM 42(2) (1995)  488 -499. 

[6] G.B. Dantzig linear programming and extensions (Princeton University Press, 
Princelon NJ 1963. 



Linear Programming the Simplex Algorithm 323 

 

[7] M.E.  Dyer and A Frieze Random walks totally Modular Matrices and a 
randomized dual simplex algorithm Mathematical programming 64 (1994) 1-
16. 

[8] B.Gartner, A sub exponential algorithm for abstract optimization problems 
SIAM J. Compute 24 (1995) 1018 -1035. 

[9] B. Gantner M. Henk and G Ziegler, Randomized simplex algorithms on Klee- 
Minty cubes to appear. 

[10] B. Grunbaum convex prlytoes (Inter science Londaon 1967) 
[11] F Holt and V. Klee, Many Dolytopes Meeting the conjectured Hirsch bound 

(1997), to appear. 
[12] L.G. Khachiyan A Dolynomial Algorithm in LP soujet math, Doklady 20 

(1979) 191-194. 
[13] G. Kalai, A simple way to tell a simple polytope forms its graph, J. Combine, 

Theory series A 49 (1988) 381 – 383. 
[14] G- Kalai, The diameter of graphs of convex polytopes and f- vector theory in 

Applied Geometry and Discreate mathematics, The Klee Festschrifts, DIMACS 
Series in discrete mathematics and computer science Vol-4 (1941) 387 -411. 

[15] G.Kalai upper bounds for the diameter of graphs of convex plywpes discreet 
computational geometry 8 1992) 363 – 372. 

[16] G. Kalai, A sub exponential randomized simplex algorithm in Preceding of the 
24th Annual ACM symposium on the Theory of computing (ACM Press 
Victoria 1992) 475 – 482. 

[17] G Kalai and D.J. Kleitman, A quasi – Polynomial bound  for diameter of 
graphs of polyhedral, Bull Amer Muth Soc 26  (1992) 315 -316. 

[18] V. Klee and G.J. Minty, How good is simplex algorithm is o shisha, ed 
inequalities III (Academic press, New Youk, 1972 315-316. 

[19] V Kle and D walkup the d step connective for polyhedral of dimension d < 6 
Acts math 133 PP S3 -78. 

[20] D.G. Lanma, paths on polytopes, proc London math SOC 20 (1970) 161 – 178. 
[21] J. Matousek, Lower bounds for a sub exponential optimization algorithm 

Random structures and algorithms 5 (1994) 591 – 607. 
[22] J. Matousek, Msharir and E Welzel, A sub exponential bound for LP in 

Proceeding of the 8th Annual symposium on computational Geometry 1992-1-
8. 

[23] P McMullen, The maximal number of faces of a convex polypes, mathematical 
17 (1970) 179 – 184. 

[24] P Mc Mullen, on simple polytpes, Inver Math 113 (1993) 419 – 444 
[25] N. Megiddo, LP in linear time when the dimension is fixed J ACM 31 (1984) 

114 – 127. 
[26] K. Mulmuley, computational geometry, An introduction through Randomized 

Algorithm (Prentice – Hall , Englewood liffs NT 1994). 
[27] M. sharir and E. Welzel A combinational bound for LP and related problems 

proceedings of the 9th symposium on theoretical aspect of computer science 
letter Notes in computer science Vol 577 (Springer, Berlies , 1992, 569-579. 



324  Das Sashi Bhusan et al 

 

[28] R – Slidel, Small – Dimensional LP and convex nulls made easy, discreate 
computational geometry 6 (1991) 423 -434. 

[29] A Schrijver, Theory of linear and integer programming (Wiley –intense, New 
Yourk 1980. 

[30] R. Stanly, the number of faces of simplified convex poltpes it adv math 35 
(1980) 236-23. 

[31] E. Tandos, A strongly polynomial algorithm to solve combinational linear 
programs, operation research 34 (1986) 250 – 256. 

[32] GM Ziegler, Lichens on polytopes, Gnaduat Texts Mathematics Vol -152 
(Springer, New Your, 1995) 


