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Abstract 
 

As traffic demand on road networks steadily increases every year, the need for 
alleviation of global congestion arises. Our contribution lies in assisting of 
traffic engineers and policy makers who are faced with the problem of 
controlling the traffic flows. In this paper, we explore the usefulness of 
cellular automata to traffic flow modeling. We extend some of the existing CA 
models to capture characteristics of traffic flow that have not been possible to 
model using either conventional analytical models or existing simulation 
techniques. The well-known NaSch model for one lane, Deterministic CA 
model is discussed. NaSch model with modified cell size and variable 
acceleration rate is extended to two-lane cellular automaton model for traffic 
flow. A set of state rules is applied to provide lane-changing maneuvers. S-t-s 
rule given in the BJH model which describes the behavior of jammed vehicle 
is implemented in the present model and effect of variability in traffic flow on 
lane-changing behavior is studied. Flow rate between the single-lane road and 
two-lane road is compared under the influence of s-t-s rule and braking rule. 
Simulation results show the ability of this modeling paradigm to capture the 
most important features of the traffic flow phenomena. 
 
Keywords: Cellular automata, Deterministic CA, NaSch Model, Modified 
NaSch Model, Braking probability, Slow-to-start rule, Slow-to-start 
probability and Two- lane CA . 

 
 
Introduction 
The growing of traffic volumes demand new solutions from traffic engineering and 
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traffic science in order to be able to accommodate the changing requirements. 
Building new and safe routes for traffic is expensive and in many areas of the world 
there is already lack of space. Although these concerns primarily urbanized areas, the 
lining out of new, multi-lane highways may be a different problem even through 
thinly populated areas. In cities even widening of streets may be impossible because 
of the local housing stock. Consequently, often the only option is to intensify the use 
of the existing road networks. Most efficient usage of the existing road infrastructure 
is related to the management and controlling of traffic flows, not forgetting safety and 
convenience for the people traveling there. Traffic flow modeling is an important step 
in the design and control of transportation systems. In the research of traffic flow, 
there have been proposed simplified models that still capture the essentials of the 
dynamics of the transportation system .Mathematical modeling and computer 
simulations play important roles in studying the impacts of various policies on 
vehicular traffic. Modeling and simulation techniques are integral components of 
intelligent information systems being used in advanced countries. Recently there has 
been much of interest in studying traffic flow with Cellular Automata (CA) models. 
CA models have the distinction of being able to capture micro-level dynamics and 
relate these to macro level traffic flow behavior.  
 
 
Traffic Flow Modeling in Literature  
A cellular automata (CA) is a extremely simplified program for the simulation of 
complex transportation systems. The first application of the CA for simulation model 
of traffic flows on street and highways was introduced by Nagel and Schreckenberg 
popularly known as NaSch Model [1].This model is based on the homogeneous traffic 
flow. Chowdhury et al. made an attempt to model two kinds of vehicles using CA, 
This model is a two-lane traffic flow model with two different types of vehicles , 
characterized by two different values of the maximum speed )( max

kv for kth type of 
vehicle [2]. A simple model for two-lane traffic was investigated , but the update rules 
were not defined in the same manner as in NaSch model. The two-lane cellular 
automata model based upon the single-lane CA introduced by Rickert et al. was 
examined [3]. Several branches and hysteresis in flow-density graph are observed. 
Results relative to a simple CA model without periodic boundary condition for a 
highway with variable number of on-ramps were presented [4]. A 2D extended 
version of the 1D Fukui-Ishibashi model, elaborated by Wang et al [5], was presented 
for single-lane traffic to take into account the exchange of vehicles between the first 
and second lane. In general lane-changing rule can be symmetric or asymmetric with 
respect to the lanes or to the vehicles. While symmetric rules treat both lanes equally, 
asymmetric rule sets especially have to be applied for the simulation of German 
highways, where lane changes are dominated by right lane preferences and a right 
lane overtaking ban [6]. A new CA model by introducing the Honk effect into the 
basic symmetric two-lane CA model was proposed by [7]. The set of lane-changing 
rules suggested by Chowdhury et al. [8] was revised to take the Honk effect into 
account. A simple lattice-based exclusion model which can be considered as a crude 
representation of traffic on a two-lane motorway was introduced [9].Effect of an 
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aggressive lane-changing behavior on a two-lane road in presence of slow vehicles 
and fast vehicles has been further studied [10]. A highway traffic flow model with 
blockage induced by an accident vehicle was introduced in which both symmetric and 
asymmetric lane-changing rule were adopted [11]. Further it is found that vehicles 
will change lane more frequently when the traffic is heterogeneous with an accident 
car. In presence of a signalized intersection, existence of a certain combination of 
density ρ and cycle time which optimizes the traffic efficiency in a two-lane model 
due to overtaking is studied [12]. 
 In the present study the cell size is reduced and variable acceleration rate ( rather 
than 1 ) is taken into account [13]. A slow-to-start (s-t-s) rule used in the Benjamin-
Johnson-Hui (BJH) CA model for single lane traffic simulation [14] is implemented 
to two-lane traffic simulation. We investigate the effect of s-t-s and braking 
probability rule over lane-changing maneuver among vehicles in two-lane road and a 
detailed comparison of effect of braking probability and s-t-s probability over two-
lane traffic flow is carried out using simulation. 
 
 
Traffic Model Classifications 
In general, there are two types of traffic models: Macroscopic and Microscopic. 
 Macroscopic models describe traffic with aggregate variables such as traffic 
density, mean speed, and volume. The use of such variables reduces the computation 
requirements for macroscopic modeling, making real-time calculation quite feasible 
 Microscopic modeling considers the individual vehicle’s physical status and the 
factors that control human driving behavior. The movement of individual vehicles is 
governed by the driver’s behavior, the road topology, the status of surrounding 
vehicles, and the headway distribution. Each vehicle in the traffic may be described 
by a set of parameters that includes position, actual speed, desired speed, route choice, 
and willingness to pass the other vehicles. 
 
 
Definition of CA 
Cellular Automata are dynamical systems in which space and time are discrete. A 
cellular automaton consists of a regular grid of cells, each of which can be in a finite 
number of k possible states, updated synchronously in discrete time steps according to 
local, identical interaction rules. The state of a cell is determined by the previous 
states of surrounding neighbor-hood of the cell. 
 
 
Mathematicians View 
Notation: d = dimension, k = states per site, r = radius. For simplicity, assume d = 1 
for the moment. 
 Formally, a CA is represented by the 4-tuple {Z, S, N, f} where: Z is the finite or 
infinite lattice S is a finite set of cell states or values , N is the finite neighborhood , f 
is the local transition function defined by the transition table or the rule .  
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 A ``local (or neighborhood) function’’ f is defined on a finite region as 
SSf r →= +12   

 Both the domain and range of f are finite. The global function zz SSF →:  arises 
from f, is defined as ),........,()( riri ccfcF +−=   
 
 
Cellular Automata for One-Lane Traffic Flow 
CA are mathematical idealizations of physical systems in which space and time are 
discrete, and physical quantities take on a finite set of discrete values. A cellular 
automaton consists of a regular uniform lattice, usually finite in extent, with discrete 
variables occupying the various sites. The state of a cellular automaton is completely 
specified by the values of the variables at each site. The variables at each site are 
updated simultaneously, based on the values of the variables in their neighborhood at 
the preceding time step, and according to a definite set of "local rule." 
 Our initial traffic model is defined as a one dimensional array with L cells with 
closed (periodic) boundary conditions. This means that the total number of vehicles N 
in the system is maintained constant. Each cell (site) may be occupied by one vehicle, 
or it may be empty. Each cell corresponds to a road segment with a length l equal to 
the average headway in a traffic jam. Traffic density is given by ρ = N/L. Each vehicle 
can have a velocity from 0 to vmax. The velocity corresponds to the number of sites 
that a vehicle advances in one iteration. The movement of vehicles through the cells is 
determined by a set of updating rules. These rules are applied in a parallel fashion to 
each vehicle at each iteration. The length of iteration can be arbitrarily chosen to 
reflect the desired level of simulation detail. The choice of a sufficiently small 
iteration interval can thus be used to approximate a continuous time system. The state 
of the system at iteration is determined by the distribution of vehicles among the cells 
and the speed of each vehicle in each cell. 
 We use the following notation to characterize each system state: 
 x(n): position of the nth vehicle, 
 v(n): speed of nth vehicle, and 
 d(n): gap between the nth and the (n+1)th vehicle (i.e., vehicle immediately ahead) 
and is given by d(n) = x(n + 1) - x(n) - 1. 
 
Deterministic CA 
In the deterministic single lane model, vehicle motion is determined by the following 
set of updating rules: 

1. Acceleration of free vehicles: If v(n) < vmax and d(n) ≥ v(n) + 1, then  
  v(n) = v(n) + 1. 
 

2. Slowing down due to other vehicles: If v(n) > d(n) - 1, then v(i) = d(n). 
3. Vehicle motion: Vehicle is advanced v(n) sites. 

 
 These updating rules were first suggested by Nagel. 
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 Figure 1 shows the application of these three updating rules to an example system 
with 24 cells and 7 vehicles: 

 

 
 

Figure 1: Example CA Model Evaluation 
 
 
 Under these rules, all vehicles have identical behaviors and obey the same 
maximum speed. These assumptions can be easily relaxed. For example, different 
vehicles could be assigned different maximum speeds. The tolerated gap between 
vehicles could also be made vehicle-dependent. Erratic acceleration and deceleration 
may also be included by introducing random accelerations and decelerations. 
Throughout the simulation, we use a maximum speed vmax = 5 cells/iteration. We let 
each iteration correspond to one second. The length of each cell is taken to be 7.5 
meters, which includes the average length of a vehicle and the gap between two 
neighboring vehicles in a traffic jam. Therefore, vehicles assume the discrete speeds 
v0 = 0 km/h, v1 = 27 km/h, v2 = 54 km/h, …, and vmax = 135 km/hr. This scaling is, 
however, not unique. Deterministic CA can also be useful as a modeling paradigm for 
automated highway systems, where vehicle speeding and vehicle deceleration are 
externally controlled 
 
 
NaSch Model of Cellular Automaton for Two- Lane Traffic Flow 
The Model and its rules 
Designing a simulation model as simple as possible, the most radical way is to use 
integer variables for space, time and speed. Such a simulation model is called a 
cellular automaton [ ]. In cellular automata traffic flow model, the road is divided into 
L cells, and a vehicle has a length of l cell(s).It is usually assumed that the length of a 
vehicle is 7.5 m, and then the length of a cell corresponds to 7.5/l m. In This model, l 
= 1 is selected.. The length of a cell is given by the minimum space headway between 
vehicles in jam. This philosophy is represented by the following four rules in the 
Nasch Model. 
Rule 1. Acceleration : },1{min )()3/(

xam
t

n
tt

n vvv +=Δ+ ; 

Rule 2. Deceleration : },{min )3/()3/2(
n

tt
n

tt
n dvv Δ+Δ+ = ; 

Rule 3. Randomization : }0,1{max )3/2)( −= Δ+Δ+ tt
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Rule 4. Movement : )()( tt
n

t
n

tt
n vxx Δ+Δ+ += .   
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 Where t
nx  and t

nv  denote the position and speed of the nth vehicle at a time t 
respectively; xamv  is the maximum velocity ; −−= +

t
n

t
nn xxd 1 , (here )1= the 

number of empty cells in front of nth vehicle at a time t, is called distance headway ; p 
is the randomization probability. Generally, when comes to description of highway 
traffic, length of a cell is about 7.5m, which is the length of a car during heavy 
congestion. A time step of tΔ  = 1 sec and maximum speed xamv = 5 cells/time step, 
that is, 135 km / hr is taken in this model. This indicates that changing speed will only 
be 7.5 m/sec, 15 m/sec, and 22.5 m/sec and so on. To overcome this problem, 
different cell sizes are modeled and a reduced cell size of 0.5 m and variable 
acceleration rate that depends upon the speed of the particular vehicle, are taken into 
account. Under this fine discretization, we can describe the vehicle moving process 
more properly. A light vehicle occupies 12 cells with xamv = 60 cells which 
correspond to 108 km/hr where as heavy vehicle occupies 20 cells with xamv = 40 
cells which correspond to 72 km/hr. For this discretization of cell size, Rule 1 of 
NaSch Model is modified as below. 
 
Rule 1. Acceleration : },{min )()3/(

xam
t

n
tt

n vavv +=Δ+ ,  
where acceleration a  is defined as follows: 
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 Vehicle parameters are all discrete, as position, speed, acceleration, time and so 
on. When time is from 1+→ tt , model will be updated by rules. Although it is one of 
the simplest traffic flow models, it is nevertheless capable of reproducing properties 
of real traffic flow, like the density-flow relation and the spatial-temporal evolution of 
jams.  
 According to theses rules the speed and the acceleration/deceleration ratio of a 
vehicle are independent of speed of other vehicles at any time. They are only 
functions of the gap in the front. Thus, these rules can be updated in parallel for any 
vehicle. However, the acceleration and deceleration ratio can take infinite large value 
if a vehicle changes its speed according to these rules. The average deceleration ratio 
over the driver population is pbrake. The average acceleration ratio over the driver 
population yields 1-pbrake. Despite its extreme simplicity, this model shows many 
features which agree with the real-world traffic.  
 
 
Two-Lane CA Model for Traffic Flow 
The single lane model is very inadequate for realistic modeling purposes. In reality, 
vehicles would be moving in a multi-lane road. The next logical step after modeling a 
single lane traffic is to model a two-lane traffic. Nagel and Schreckenberg introduced 
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a two lane model consisting of two parallel single lane models with periodic boundary 
conditions and four additional rules defining the exchange of vehicles between the 
lanes. A basis for modeling the lane changing is as follows: 
Rule (i) : Check ahead your current lane if another car is in your way. 
Rule (ii) : Check ahead on the other lane if it is better there 
Rule (iii) : Check back on the other lane if you would get in the way of another 
vehicle. 
Rule (iv) : Based on the result of the first three rules, decide whether to remain on the 
same lane or change to the other lane. 
 
 Using these rules and the algorithm for the one-lane model, we can add the 
following algorithm for lane changing. A vehicle will only be allowed to change to 
other lane if the following conditions are satisfied. 
 
Incentive Criteria ( Rule (i) ) : 
  },{min xamnn vavd +< , (2)  
 
Improvement Criteria ( Rule (ii) ) : 
  nothern dd >,  , (3) 
 
Safety Criteria ( Rule (iii)) : 
  xambackn vd >,  (4) 
 
where othernd , , backnd , denote the number of empty cells between the nth and its two 
neighbor vehicles in the other lane at time t, respectively. If all rules are satisfied then 
the vehicle will change lanes. 

 
 

 
 

Figure 2: Extensions for lane changing behavior 
 
 
 (Here, RLC is the abbreviation of “ Region for Lane Changing”, FCLC for “First 
Cell for Land Changing”) 
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Benjamin-Johnson-Hui CA Model 
The BJH model is a fairly straightforward extension of the NaSch model. The authors 
attempt to more accurately simulate the behavior of drivers which have come to a 
complete stop in traffic jams on the highway. Cars which have velocity 0 either 
accelerate at their first available opportunity ( as soon as there is an empty space 
ahead of them) with probability slowp−1  , or on the time step immediately after that 
with probability slowp .Otherise, they follow the NaSch model. This scheme is intended  
 To reflect the fact that drivers take longer to accelerate from a complete stop, 
perhaps because they do not immediately notice the car ahead of them moving or 
because of the slow pick-up of their car’s engine. So the BHJ model is essentially the 
NaSch model with the addition of ‘slow-to-start’ rule [15]. 
 
Slow-to-Start Rule ( S-t-s rule) 
S-t-s rule is defined mathematically as follows: 

 If ,0,0)( == n
t

n dv then 0)()3/2()3/( === Δ+Δ+Δ+ tt
n

tt
n

tt
n vvv ,  (5) 

 
where )( t

nv  is the speed of the nth vehicle at time t and tΔ  is the time interval.  
 This s-t-s rule is applied only to the stopped vehicles having 0 headway in the 
previous time step with s-t-s probability q. It implies that s-t-s rule has no effect on 
the vehicles stopped due to randomization in the previous time step. 
 
Modified Stochastic NaSch Model for Two-lane 
The updating rules of the modified stochastic NaSch model with reduced cell size and 
variable acceleration rate and with implementation of s-t-s rule are given as follows: 
 
Rule1 

 If ,0,0)( == n
t

n dv then 0)()3/2()3/( === Δ+Δ+Δ+ tt
n

tt
n

tt
n vvv  (6) 

 
with s-t-s probability q. 
 
Rule2 

 },{min )()3/(
xam

t
n

tt
n vavv +=Δ+   (7) 

 
Rule 3 

 },{min )3/()3/2(
n

tt
n

tt
n dvv Δ+Δ+ =   (8) 

 
Rule 4  

 }0,1{max )3/2)( −= Δ+Δ+ tt
n

tt
n vv with braking probability p.  (9) 
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Rule 5 

 )()( tt
n

t
n

tt
n vxx Δ+Δ+ += .  (10) 

 
 Together with lane-changing rules:  

 },{min )3/(
xam

tt
nn vvd Δ+<  (11) 

 nothern dd >,  and xambackn vd >,  with lane changing probability s,  (12) 
 
where −−= +

t
n

t
nn xxd 1 , (here )12= . 

 
 
Simulation Results and discussion 
Description of Simulation Procedure 
We carry out the simulation of the model under the periodic boundary condition. 
 The numerical simulation is carried out with randomly generated initial 
configurations on a closed track containing 10,000 cells which represents a simulated 
road section of 5 km. The periodic boundary condition is that N vehicles were 
randomly distributed on both lanes. For each initial configuration of vehicles, results 
are obtained by averaging over 3600 time steps. For each density ρ  , results are 
averaged over 10 different initial configurations. 
 The computational formula used numerical simulation are given as follows: 

 ∑
=

=

=
Tt

t
jj tn

T 1

)(1ρ , (13) 

 ∑
=

=

=
Tt

t
jj tm

T
q

1

)(1 , (14) 

 
where equation (13) represents the density of the vehicles on the jth site over a time 
period T; )(tn j = 0 if the jth site is empty and )(tn j  = 1 if the jth site is occupied by a 

vehicle at time t. Equation (14) represents the flow of vehicles on jth site; )(tm j = 1, if 
at time t-1, there was a vehicle behind or at the jth site, and at time t, it is found after 
jth site. Density and flow are measured and averaged out over a time period T. 
 
Lane- Changing Behavior 
The behavior of lane-changing criteria can be explained if two criteria are fulfilled to 
initiate lane change. First, the situation on the other lane must be more convenient ad 
second , the safety rules must be followed. We analyses the effect of two parameter p 
(braking probability) and q (slow-to-start probability) on lane changing behavior of 
vehicles. It can be shown by simulation that initially vehicles change lanes frequently 
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and the lane- changing rate drops rapidly at time evolves. Figures 3 and 4 show 
independent effects of s-t-s probability and braking probability when acting alone, 
respectively, over the lane-changing behavior of a periodic two-lane system. From 
figures 3 and 4, it can be observed that an introduction of non-zero q has a strong 
influence than non-zero p on lane-changing rate of vehicles in two-lane road. With 
smaller values of p and q, vehicles rarely change lanes. With increase in the value of p 
and q, the lane-changing tendency among the vehicle increases. With higher values of 
p and q, there will always be cluster formation and between the two clusters there is 
sufficient space on the right lane for vehicles to change the lane, and lane change 
becomes more likely. Hence, maximum lane changes occur even at higher values of 
traffic density. Here, we choose the lane-changing probability as s = 0.8. As described 
in BJH model, an introduction of non-zero s-t-s probability makes the queues less 
fragmented and the inter-queue regions widen, as a result vehicles find enough gaps in 
the target lane to change the lane. Figure 5 shows the lane-changing behavior of 
vehicles when both parameters act together. With higher values of both parameters, 
safety criteria are not fulfilled and lane-changing behavior rate again reduces 
drastically. Figure 6 describes the lane changing behavior of the NaSch model when 
simulated with implementation of s-t-s rule. Parameter q has more effect than 
parameter q on lane-changing behavior among vehicles. When both parameters are 
working together, the lane-changing tendency among vehicles increases. It can be 
noted that the results simulated from the NaSch model and modified cell model are 
close to each other except the magnitude of lane-change rate/cell, because of the 
reduced cell size. 
 
Single Lane Versus Two-Lane 
Figure 7 describes the comparison of the single-lane model with the corresponding 
two-lane model with effects of parameters p and q. The graph shows rise in maximum 
flow xamq , when simulating two-lane traffic as compared to one-lane system. Since 
parameter p affects all the vehicles with equal probability, whereas parameter q 
affects only static vehicle that is, vehicles blocked by leading vehicles in the previous 
time step, the parameter p is more responsible than parameter q in reducing the 
throughput. However, when values of p and q are high, this reduction can be 
significant. In the low-density region ( )cρρ < , the average velocity of the traffic 
system is close to maximum velocity xamv . Hence there is not much difference in 
throughput of the system with non-zero p as shown in figure 7. But with zero value of 
parameter p , flow rises even in low-density region because parameter q comes to 
action only in high density region ( )cρρ >  as it affects only jammed vehicles. 
Figure 8 describes the effect of parameters p and q over average velocity of the two-
lane system with maximum speed xamv = 60 cells / Δt. In high-density region, average 
speed becomes the decreasing function of density. 
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Fundamental Diagrams 
 

 
 

Figure 3: Relation between lane changing rate and density at braking probability p = 
0.0 

 

 
 

Figure 4: Relation between lane changing rate and density at s-t-s probability q = 0.0 
 

 
 

Figure 5: Relation between lane changing rate and density at non-zero values of p 
and q. 
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Figure 6: Relationship between lane-changing rate and density obtained from the 
NaSch model at various values of p and q. 

 

 
 

Figure 7: Relationship between density and flow with lane change and without lane 
change at various values of parameters p and q 
 
 
Conclusion 
In this paper, we have extended the BJH model to two-lane model with a reduced cell 
size and a variable acceleration rate.The modified NaSch model with reduced cell size 
is more appropriate to describe the finer variability in traffic flow rather than the 
NaSch model with cell size 7.5 m. We have observed the effects of braking 
probability and s-t-s probability over lane-changing maneuver. We studied through 
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simulation how vehicles fulfill both the incentive and safety criteria with high values 
of braking and s-t-s probabilities. Combined effect of braking rule and s-t-s rule 
increases the effectiveness of the lane changes, because gap acceptance is increased 
between the vehicles. We also compared the flow and average velocity of the two-
lane system with single lane under the influence of braking probability and s-t-s 
probability. S-t-s probability has more effect than braking probability on lane-
changing rate. It is also observed that the maximum lane changing frequency occurs 
long after the critical density cρ  of maximum throughput. This model reveals all the 
features of two-lane traffic flow. 
 
 
References 
 

[1] Nagel ,K., and Schrekenberg , M.,1992, “A Cellular Automata for freeway 
traffic”, Journal of Physics I France, 2, pp. 2221-2229 . 

[2] Chowdhury, D., Wolf, D.E, and Schreckenberg, M., 1997, “Particle hopping 
models for two-lane traffic with two kinds of vehicles: Effects of lane changing 
rules”, Journal of Physica A , 235, pp. 417-439. 

[3] Rickert, M., Nagal, K., Schreckenberg, M., Latour, A.,1996, “Two lane traffic 
simulations using cellular automata”, Physica A, vol.231, no.4, pp.534-550.  

[4] Campri, E.G., Levi, G., 2000, “A cellular automata model for highway 
traffic”,The Europian Physical Journal B, vol.17, no.1, pp. 159-166.  

[5] Wang, L., Wand, B.H., Hu, B., 2001, “Cellular automaton traffic flow model 
between the Fukui-Ishibashi and Nagel-Schreckenberg models”, Physical 
Review E, vol. 63, no. 5, Article ID 056117, 5 pages.  

[6] Knope, W., Santen, A., S.chadschneider,A., and Schreckenberg, M., 2002, “ A 
realistic two-lane traffic model for highway traffic “, Journal of Physics A, 
vol.35, no.15, pp. 3369-3388. 

[7] Jia, B., Jiang, R., Wu,Q.S., and Hu, M.B.,2005, “Honk effect in the two-lane 
cellular automaton model for traffic flow”, Physica A, vol.348, pp. 544-552. 

[8] Chowdhury, D., Santan, L., and Schadschneider,A ., 2000, “Statistical physics 
of vehicular traffic and some related systems”, Physics Report, vol.329, no.4-6, 
pp. 199-329. 

[9] Harrish, R, J., and Stinchcombe, R, B., 2005, “ Ideal and disordered two-lane 
traffic models”, Physica A, vol, 354, no. 1-4, pp. 582-596. 

[10] Li, X, G., Jia,B., Gao, Z,Y., and Jiang, R., 2006, “ A realistic two lane cellular 
automata traffic model considering aggressive lane-changing behavior of fast 
vehicle “, Physica A, vol. 367, pp. 479-486. 

[11] Zhu, H, B., Lei, L., and Dai, S, Q., 2009, “Two-lane traffic simulations with a 
blockage induced by an accident car”, Physica A, vol. 388, no. 14, pp. 2903-
2910. 

[12] Chen, C., Chen,J.,and Guo, X., 2010, “ Influences of overtaking on two-lane 
traffic with signals”, Physica A, 389, no. 1, pp. 141-148. 



90  S. Rajeswaran and S. Rajasekaran 
 

 

[13] Mallikarjuna,C., and Rao, K., 2007, “ Identification of a suitable cellular 
automata model for mixed traffic”, Journal of the Eastern Asia Society for 
Transportation Studies, vol. 7, pp. 2454-2468. 

[14] Benjamin, S, C., Johnson, N, F., and Hul, P.,1996, “ Cellular automata models 
of traffic flow along a highway containing a junction”, Journal of Physics A, 
vol. 29, no. 12, pp. 3119-3127. 

[15] Clarridge, A., and Salomaa, K., 2010, “ Analysis of a cellular automaton model 
for car traffic with a slow-to-start rule”, Theoretical Computer Science, vol. 
411, no. 38-39, pp.3507-3515. 


