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Abstract 
 

The interior point algorithm of Karmarkar (1984) was received with great 
interest. His work was the route of various development in the field of linear 
programming and very soon in related field such as linear complimentarily, 
quadratic, convex as well as non-linear programming problems. 

In this paper we developed theoretical and as well as algorithm procedure 
for interior point method. We consider the optimization of non-convex 
function subject to linear inequalities constraints. The objective function is 
minimize over the interior ellipsoids to generate sequence of interior point 
converging to optimal solution. The decent direction is computed.  

The second part of this paper contains affine scaling algorithm. This 
algorithm helps to solve quadratic programming problem resulting from the 
original problem. The computational complexity of the method is also shown 
through minimal norm theorem.  
 
Keywords: IPP, QPP, Affine Scaling Algorithm, Computational complexity, 
Minimal Norm.  

 
 
Introduction 
Karmarkar (9) introduced his paper in the year 1984 about the interior point method 



92  Das Sashi Bhusan et al 
 

 

was a first kind of paper on which the computational complexity of the method for 
Linear Programming Problem was known. According to his claim the method requires 
0(n3.5L) arithmetic operations and in practice it is much faster than the Simplex 
method. His work stimulated tumultuous developments in the field of linear 
programming and soon after in related fields such as linear complementarily, 
quadratic and convex programming and non-linear programming in general. 
 Many interior point algorithms use a potential or multiplicative barrier function to 
measure the progress of algorithm (for complexity analysis) and / or to calculate 
search direction. This search direction is often a projected gradient or Newton 
direction with respect to the function. D Den hertog and C. Roos [7] have given a nice 
survey of projected gradient and Newton directions for all used potential and barrier 
functions. 
 Quadratic programming plays a unique roll in optimization theory. It is a 
continuous optimization that includes linear progamming and fundamental subroutine 
for general non-linear programming and is considered one of the most challenging 
combinatorial optimization problems. 
 The combinatorial nature of quadratic programming is basically embedded in the 
existence of inequality constraints, which in general make inequality constrained 
optimization(ICD) harder to solve than equality constrained optimization (ECO). 
Most of the methods such as simplex type methods of Cottle and Dantzig [3], Lemke 
[12] and Wolfe [15], gradient projection (GP) method of Rosen [14] solve a sequence 
of ECO’s in order to approach the optimal solution for ICO. Geometrically, they 
move along the boundary of the feasible region to approach the optimal feasible 
solution. These methods are not polynomial time. Kachiyan[11] in 1979 published a 
proof showing that certain LP algorithm called the ellipsoid method is polynomial. 
 In this chapter, we present Karmarkar’s interior point method for linear 
programming problem based on the minimization of a non-convex potential function. 
The constraint set is determined by the set of Linear inequalities, and the method 
generates a sequence of strict interior points of this polytope and at each consecutive 
point, the value of the potential function is reduced. The direction used to determine 
the new iterate is computed by solving a non-convex quadratic program on an 
ellipsoid. 
 
 
The Problem  
We consider the dual standard form of linear programming problem :  
 (P) Minimize CTx 
 Subject to  
 Ax =b 
 X≥0 
 
 Where C, x ∈Rn, b∈Rm, A is an mxn matrix. The dual problem associated with (p) 
is  
 (D) Maximize b Ty 
 Subject to  
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 ATy ≤ c 
 
 Where y ∈ Rm, we make the following assumptions. 

• The feasible region y = {y ∈Rm |AT y≤ c } is bounded. 
• The interior, int{y} of the feasible region is non empty. 
• The maximum value of the objective function is v. 

 
 Many interior point algorithm use potential or barrier function. The potential 
function associated with (D) is  
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 Where, di (y)=Ci - i = 1, 2, 3…….n, The multiplicative barrier formulation of 
potential function is 

  
 
 
Non-Convex Optimization. 
Consider the following non-convex optimization problems :  
 Minimize {Φ (y) } ATy≤C). 
 
 Is solve this problem, we use and approach similar to classical Levenberg –
Marquardt method. Let yo∈Int y ={y∈Rm :ATy <c} be given initial interior point. The 
algorithm we propose generates a sequence of interior points of Y. Let yK be in Int(y) 
at the kth iteration. Around yk a quadratic approximation of potential function is set 
up. Let D =diag(di(y)), e=[1, 1, …, 1]T Φ0 =v-bTy and k be a constant. The quadratic 
approximation of Φ(y) around YK is given by  

 ( ) KyyhyyHyyyQ KTKTk +−+−−= )()(
2
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)( where the gradient,  

  
 
and the hessian,  

  
 
 Now minimizing Q(y) subject to AT y ≤ c is carried in substituting the polytope 
by an inscribed ellipsoid defined by the hessian matrix, and the resulting 
approximation problem becomes easy. Ye[84] has independently proposed a 
polynomial time algorithm for non convex quadratic programming on an ellipsoid. 
Imai [8] propose the approximation of the multiplicative penalty function by a linear 
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function defined by the gradient on an ellipsoid, determined by the hessian at the 
point. His method is polynomial and requires D(n2L) arithmetic iterations, where each 
iterations requires D(n3) operations on numbers of L bits. 
 
Proposition 3.3.1 Consider the polytope defined by  

 Y = {Y∈ Rm : AT y ≤ C} 

and yK ∈ Int (Y). Consider the ellipsoid. 

 E(r) = {y ∈Rm : (y-yK)TA D-2AT(y-yk)≤ r2} 

 Then for r ≤ 1, E(r) ⊂ Y, i.e. E(r) is an inscribed ellipsoid in Y. 
 
Proof. When r=1 E(r) ⊂ E(1), for 0≤r < 1. Assume that we ∈ E(1).  

 Then (w-YK)T A D-2AT(w-yK) ≤ 1 and consequently D-1AT(w-yK) ≤ 1. 

 Denoting ith row of AT by , we have 

  

  

  consequently, w ∈ P. 
 

Corollary 3.3.1. )
2

1
(E  is contained in the feasible region P. 

 (Note r = 1
2

1 < ) 

 
 A geometric expression derived from the LP affine scaling algorithm (Dikin [4], 
Barnes [1], Kortanek and Shi [10] can be drawn as an interior ellipsoid centered at the 
starting interior point in the feasible region. Then the objective function can be 
minimized over this interior ellipsoid to generate the next interior solution point. A 
series of such ellipsoids can thus be constructed to generate a sequence of interior 
points converging to the optimal solution point that sets on the boundary. In case the 
solution point itself is an interior solution (which can happen if the objective function 
is a nonlinear function) then the series terminates as soon as the optimal point is 
encircled by the nearest ellipsoid. The above geometric expression can be represented 
by the following optimization problem. 

 Minimize ½ (Δy) TH Δy + hT Δy  (3.3.1) 

 Subject to (Δy)T A D-2 AT Δy ≤ r2    (3.3.2) 

 
 Where A D-2AT is invertible matrix and by assumption is positive definite and Δy 
= y-yK. The optimal solution Δy* to (3.3.1) and (3.3.2) is a descent direction of Q(y) 
from yK. For a given radius r>0, the value of the original potential function Φ(y), may 
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increase by moving in the direction Δy* because of the higher order terms ignored in 
the approximation. If the radius is decrease sufficiently, the value of the potential 
function will decrease by moving in the new Δy* direction. We say local minimum to 
function Φ(y) has been found if the radius must be reduced below a tolerance level ε 
to achieve a reduction in the value of the potential function. 

 In place of the ellipsoid. 

 {Δy ∈ RM : ΔyT AD-2ATΔy ≤ r2}  (3.3.3) 
 
may be replaced by the sphere 

 {Δy ∈ RM : ΔyT Δy ≤ r2}  (3.3.4) 
 
 Without loss of generality, since A D-2AT is be assumption positive definite and 
(3.3.3) can be converted to (3.3.4) by means of non singular transformation space. 
 
 
Computing the descent direction 
ΔY* is optimal to (3.3.1) and (3.3.2) if and only if there exists μ≥0 such that  

 (H +μ A D-2AT)Δy* = -h  (3.4.1) 
 
 Or,  

 (H + μ 1) Δy* = -h  (3.4.1a) 

 μ(Δy*T A D -2 AT Δy* - r2) = 0  (3.4.2) 
 
 Or 

 μ (||Δy*|| -r) =0  (3.4.2a) 
 
and 

 H + μ A D-2 AT  (3.4.3) 
 
 Is positive semi definite. With the change of variable  and substituting h 

and H in to (3.4.1) we obtain an expression for ΔY* satisfying (3.4.1) 
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  In (3.3.4), r does not appear however (3.3.4) is not defined for all values ofγ. But 
if radius r of the ellipsoid is kept within certain bound, then there exists an interval 
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0≤γ≤γmax such  

 That  is non-singular. 

 
Proposition 3.4.1. There exists γ >0 such that the direction ΔY*, given in (3.4.4) is a 
descent direction of Φ(Y). 

  

  

  

   (3.4.5) 

 
 Let γ = ε > 0 and considering 

  we have  

  
 
 And therefore,  

  
 
 Since by assumption, ε > 0 and hT (AD-2AT)-1 h > 0 then  

  
 
 Let 

 H⊂ = AD-2AT 

 H0 = -  

 And define M = H⊂ +γH0 
 
 Given that the current iterate YK, we first find the value of γsuch that MΔY = γ h 
has a solution ΔY*. This can be done by binary search method. Once the parameter γ 
is found out the linear system. 
 M ΔY* = γ h 
 
 Is solved for ΔY* = ΔY* ((γ(r))). The length ι(ΔY*(γ)) is a monotonically 
increasing function of γ in interval 0≤γ≤γmax. From the optimality condition (3.4.2) 
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implies that γ =√{ι(ΔY*(γ))} if μ >0. Small lengths results in small change in 
potential function, since γ is small and the optimal solution lies on the surface of the 
ellipsoid. A very large length may not correspond to an optimal solution of (3.3.1) and 
(3.3.2), since this may requires γ>1. Let the acceptable length of interval be (ι, ī) of 
ι(ΔY*(γ)) if (ι≤ ì(ΔY*(γ))≤ī. When ι(ΔY*(γ)) <ι, γ is increased and the system 
MΔY* = γh is resolved with new M and h. On the other hand, if 1(ΔY*(γ)) >Ī, γ is 
reduced and MΔY* = γ h is resolved. Once the acceptable length is produced, we use 
ΔY* (γ) as the descent direction. 
 
 
Affine scaling algorithm 
We propose affine scaling algorithm for the problem. 
 
Lemma 3.5.1 Let H be symmetric rational matrix and L be its encoding length and λ 
be any eigen value of H. Then  

   (3.5.1) 

 
 And either 

 λ = 0 or |λ | > 2-20(L)  (3.5.2) 
 

Proof.  

  

  

  

  

  
 
 Similarly, we have 

  

 

 As λ is one of the roots of the characteristic polynomial corresponding to H : 



98  Das Sashi Bhusan et al 
 

 

  
 
 Where aj is are all rationales of the minor of H and there sizes are all bounded by 
1. If λ ≠ 0 and |λ| ≤ 20(L) and suppose for simplicity a0 ≠ 0, then 

  

  
 
 Which contradict the fact a0 is a non zero rational number whose size is bounded 
by L. 
 
Lemma 3.5.2. If P∧ by orthogonal projection matrix on to the null space {x∈Rn : Ax 
=0}, and B be an orthonormal basis spanning the null space. Then λ(BTHB)∈ 
{λ(P∧HP∧)} and the columns of AT are the eigen vector of P P∧HP∧ corresponding to 
the zero eigen values of P∧HP∧.  
 
Proof. Let λ be an eigen value of BT HB. Then there exists a v such that 

 BTHBV = λ v 
 
 Define u such that B u = P∧HBv then  

 BT P∧HBv = B BTu =u 
 

 Which together with BTP∧ =BT imply  

 u = BTHBv=λu 
 
 Therefore  

 BvBuHBvPBvHPP λ==∧=∧∧ )(  which shows that λ is an eigen values of 
∧∧ HPP  with Bv being the eigen vector. Moreover,  

 P∧ H P∧ AT = 0 ∈ Rnxm 

 Each column of AT is an eigen vector of P∧ H P∧ corresponding to zero eigen 
values. 
 
 
Optimality condition for problem 
The first order necessary condition for problem (3.5.1) and (3.3.2). 

 (H + μi)ΔY = -h  (3.6.1) 
 
and  
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 ||ΔY || ≤ r, μ ≥ 0 and μ (r - ||ΔY|| ) =0  (3.6.2) 
 
 The second order condition for problem (3.3.1) and (3.3.2) is  

 λ (h + μ1)≥ 0 
 
 Denoted λ is the least eigen values of H. Then the second order condition can be 
expressed as 

 μ ≥ max (0, -λ) 
 
 When λ <0 we must have ||ΔY || = r in (3.6.2). Since μ > |λ| >0 from (3.6.3). 
 
Lemma 3.6.1 if λ1 < 0 then g( ) – g(0) ≤ -1/2 r2 |λ| 
 
Proof. Using (3.6.1), (3.6.2) and (3.6.3) noting ||( || =r in the non convex case 

 G(0) – g((  = -1/2 TH  - hT (  

 = -1/2 TH  +  (H +μI)   

 = T(1/2H + μI)   

 ≥ r2 (μ +1/2 λ) 

 ≥ ½ r2 |λ|. 
 
Lemma 3.6.2 Let (μ1, ΔY1), and (μ2, ΔY2) satisfy (3.6.1), (3.6.2) and (3.6.3). Then 
μ1=μ2 and g(ΔY1) =g(ΔY2). 
 
Proof. Lemma (3.6.2) is obviously true if H is convex since the solution of the 
problem is unique. Now suppose H is non-convex and μ1 ≠  μ2. Without loss of 
generality, we assume that μ1> μ2 >0 Note that ||ΔY1|| = ||ΔY2|| = and (H+μ1) is 
positive definite and (H +μ1)

-1 (H +μ2I) ΔY2 = -(H+μ1I)
-1 h =ΔY1  

 Which > ||(H +μ1I)
-1 (H +μ2I)|| 

 = ||(H +μ1I)
-1 (H +μ2I)|| ||ΔY2||/r 

 ≥||(H +μ1I)
-1 (H +μ2I)ΔY2||/r 

  

 
 
Results a contradiction 
To prove the uniqueness of the minimal objective, value, we only need to concerned 
with the case μ1=μ2 =|λ|, since, otherwise the minimal solution for the problem is 
again unique. For any solution satisfying (3.6.1) with μ =|λ| 

 ΔY = v + b 
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 Where b is a particular solution and v is a homogenous solution to (3.6.1) (As V is 
also a sub space of all eigen vectors corresponding to the least eigen value of H). Thus  

 G(ΔY) = - (v+ b)T (1/2 H + |λ| I) (v +b) 

 = - ½ |λ| (||v||2 +||b||2) – ½ bT (H +|λ| I) b 

 = -1/2 |λ| (||ΔY||2) – ½ BT (H +|λ| I) b 

 = -1/2 r2|λ| – ½ BT (H +|λ| I) b 
 
 Which is independent of v. 
 
Lemma. 3.6.3.  
 
Proof. We only need to be concerned with the case . In this case 

 ||H + rI =||μ   
 
 Which implies 

  

 
 Which further implies 

  
 
 Hence 

  

 
 Therefore from lemma (3.6.1) 

  

 
 Lemma (3.6.1) and (3.6.2) establish a theoretical bade of using the binary search 
for . In particular, we propose the following procedure similar to the one of Ye [86]. 
 
Procedure 
Step 1. Set μ1 = 0 and  μ3  

 
Step 2. Set μ2 = ½( μ1 +μ3) 
 
Step 3. Let μ = μ2 and then solve (3.6.1) 
 
Step 4. If μ3 - μ1 <∈ then stop and return else if H +μ 1 is indefinite or negative 
definite or (3.6.1) has no solution, or the norm of the minimal-norm solution of (3.6.1) 



Interior Point Algorithm for Linear Programming Problem 101 
 

 

is greater than r, then μ1 =μ2 and go to step 2; else if the norm of the solution of 
(3.6.1) is less than r, then μ3 =μ4 and go to step (2) 
 The above procedure can be terminated 0(n3) arithmetic operation by using 
standard gauss elimination method. 
 
Theorem (3.6.1) (Minimal norm theorem the algorithm is terminated in 0(n3 1n (1/ε)) 
arithmetic operation and the solutions resulting from the procedure for μ =μ3 satisfy 
(3.6.1), (3.6.2) and (3.6.3) with 0 ≤ μ3 -  <0(ε) 

 |||ΔY|| - r | < 0 (ε) 
 
Proof. The checking of definiteness of H +μ I and solving (3.6.1) requires 0(n3) 
arithmetic operations. The intervals of μ3 - μ1 is bounded by 2L., and binarily shrinks 
to zero. Therefore, the total 0(n3 ln (1/ε)) arithmetic operation is sufficient to 
terminate the procedure. 
 In order to proof the second part of the theorem we consider the case λ < 0. The 
procedure ends with 

 μ1 <  < μ3 and μ3 - μ1 < ε ≤ 20(L) 

 if =|λ| in which case we also have,  

 0 ≤ (μ3 - ) / |  | < 0 (ε) ≤ 20(-L) from lemma (3.5.1) then μ3 can be viewed as a 
rational approximation to  with relative error 20(-L). Therefore, a solution Δy = Δy + v 
with ||Δy|| = r can be obtained where Δy is the minimal norm particular solution 
(3.6.1) and v is orthogonal to Δy is homogeneous solution to (3.6.1). Otherwise μ3 - 
|λ| ≥ 20(-L) in which case H +μ1 is positive definite μ= μ3 and ||(H + μI)-1 || is bounded 
by 20(-L), and  

 ||Δy|| - r | < 20(-L) (μ3 - μ1) ≤ 0 (ε). 
 
 
Conclusion 
In this chapter we have introduced interior point algorithm for linear programming 
problem. We have described in detail the procedure for generating a descent direction 
for potential function we also used affine scaling algorithm for solving quadratic 
program resulting from the original problem. Its time complexity is a polynomial in 
log (1/ε) (where ε is the error tolerance). 
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