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Abstract 
 

Real definite integrals like  ௦ሺଶ௧ሻ
ହାସ ௦ ሺ௧ሻ

ଶగ
  and ݐ݀  ௗ௫

ଵା௫మ
ஶ

  may be evaluated 
using in built command “int” available in MATLAB.  However, to resolve real 
integrals in the form of   ௦ሺ௫ሻ

௫ሺଵି௫మሻ
ஶݔ݀ 

  whose pole(s) are lying on the real axis, 
do not have specialized command like ‘int’.  These types of integrals need to 
be evaluated through contour integration techniques, or through other 
methods. In the present article we have developed a command ‘cint’ using 
MATLAB.  To show the efficiency of this code ‘cint’ we have given some 
examples.  
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Introduction 
In early literatures, Cauchy (1789-1857) used his integral theorem as a tool for 
evaluating various definite integrals of functions of a real variable, especially 
improper integrals. The application of Cauchy-Gourst theorem played a key role in 
the history of mathematics [6]. 
 Now, to develop the code ‘cint’ the following theorems have been used.    
 
Theorem A [7]: If ݂ሺݖሻ has a pole ݖ of order ‘k’ then the residue of ݂ሺݖሻ at   ݖ is 
denoted by ܴ݁ݏ ሺ݂ሺݖሻ;  ݖሻ and is given by 
ሻݖ  ;ሻݖሺ݂ሺ ݏܴ݁ ൌ ଵ

!
 ݈݅݉௭՜ ௭బ ቂ ௗೖషభ

ௗ௭ೖషభ ሼሺݖ െ   ሻ ሽቃݖሻ ݂ሺݖ 
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Theorem B: Cauchy-Residue theorem [1]: Let ݂ሺݖሻ be a function which is analytic 
inside and on a simple closed curve C except for a finite number of singular points 
,ଵݖ ,ଶݖ ,ଷݖ … . ,   inside C thenݖ

න ݂ሺݖሻ݀ݖ ൌ ቐ ݅ߨ2 ൯ݖ  ;ሻݖ൫݂ሺ ݏܴ݁


ୀଵ

ቑ 


 

 
Theorem C [5]: Let ݂ሺݖሻ ൌ ሺ௭ሻ

ொሺ௭ሻ
  where P and Q are polynomials with real 

coefficients of degree ‘m and n’ respectively, where ݊  ݉  2. If P and Q has 
simple zeros at the points ݐଵ, ,ଶݐ … ,    on the x-axis, thenݐ
ܲ.  ܸ ݂ሺݔሻ݀ݔ ൌ ܲ. ܸ ஶ

ିஶ  ሺ௫ሻ
ொሺ௫ሻ

ݔ݀ ൌ ஶ
ିஶ ݅ߨ2 ∑ ,ሺ݂ݏܴ݁ ሻݖ

ୀଵ  ∑ ݅ߨ ,ሺ݂ݏܴ݁ ሻݐ
ୀଵ , 

where ݖଵ, ,ଶݖ … ,  . are the poles of ‘f’ that lie in the upper half-planeݖ
 
Theorem D [2]: Let f be a meromorphic in ԧ with finitely many singularities in the 
closure of the upper-half space H. Suppose ݈݅݉௭՜ஶ ݂ሺݖሻ ൌ 0. Then for any ܽ  0, we 
have 
 ܸܲ ݂ሺݔሻ݁௫ஶ

ିஶ ݔ݀  ൌ ∑ൣ ݅ߨ2 ܴ௪௪ఢு ൛݂ሺݖሻ݁௭ൟ൧  ∑ൣ݅ߨ ܴ௪൛݂ሺݖሻ݁௭ൟ௪ఢԹ ൧  
 
 The following code ‘mult2’ has been used in the executed MATLAB code ‘cint’. 
 
MATLAB code: (Unique elements and its order of multiplicity in a given array: 
mult2) 
%a=input('enter an array:'); 
function [ua rc]=mult2(a)  
ua=sort(unique(a)); 
lua=length(ua); 
al=length(a); 
rc=[]; 
for i=1:lua 
    r=0; 
    for j=1:al 
        b=ua(i)-a(j); 
        if b==0 
            r=r+1; 
        end 
    end 
            rc=[rc r]; 
end 
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MATLAB code: cint  
syms x z 
n1=input('enter the numerator of integrand in terms of x:'); 
d1=input('enter the denominator of integrand in terms of x:'); 
l=input('enter the int limits as -inf, 0, inf in an array:'); 
%[n1,d1]=numden(f)% if you use this command there is -ve sign difference in 
%the answer. so better use n1, d1 seperately% 
drp1=sym2poly(d1); 
in_n1=inline(char(n1)); 
h1=n1; 
h1d=diff(h1); 
h1d2=diff(h1d); 
a11=simplify(h1d2/h1); 
a1=sqrt(abs(a11)); 
la1=length(a1); 
c1=h1; 
if la1~=0 
c1=[cos(a1*x) sin(a1*x) c1]; 
n10=simplify(n1/c1(1)); 
n11=simplify(n1/c1(2));    
c_2=isreal(n10); 
c_3=isreal(n11); 
n2=inline(char(n1)); 
nr=n2(z); 
else 
    c_2=0; 
    c_3=0; 
    nr=h1; 
end 
d2=inline(char(d1)); 
dr=d2(z); 
drp=((1/drp1(1))*drp1); 
[r,p,k]=residue(1,drp); % root command will not give the desired answer always, 
hence residue command has been used%  
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lp=length(p); 
a_ip=angle(p); 
aip=rad2deg(a_ip); 
p1=[]; 
if c_2==1 || c_3==1 
    nr=exp(i*a1*z);    
else  
    nr=nr; 
end 
for k1=1:lp 
    if 0<aip(k1) & aip(k1)<180 
        p1=[p1 p(k1)]; 
    end 
end 
[p2,m1]=mult2(p1);% unique elements of p1 with multiplicity wrt to p1 
lp2=length(p2); 
sum=0; 
if lp2~=0 
   for k2=1:lp2 
       a=[p2(k2)]; 
       s=[]; 
       for k3=1:lp 
           if p(k3)~=a 
              s=simplify([s p(k3)]); 
           end 
       end 
       ls=length(s); 
       ps=1; 
       if ls~=0 
           for k4=1:ls 
               ps=(ps*(z-s(k4))); 
           end 
       end 
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       nd1=simplify(nr/ps); %multiplying of given fn with pole fn factor 
       dn1=simplify((1/factorial(m1(k2)-1))*diff(nd1,(m1(k2)-1))); 
       dnin1=inline(char(dn1)); 
       rq1=dnin1(p2(k2));     
       sum=sum+(2*pi*i*rq1); 
   end 
end 
rp=[]; 
for k=1:lp 
    r1=isreal(p(k)); 
    if r1==1 
        rp=[rp p(k)]; 
    end 
end 
lrp=length(rp); 
[rp1,m2]=mult2(rp); 
lf=0; 
if lrp~=0 
for j1=1:lrp  % for Jordan's in equality % 
    nf1=simplify((z-rp1(j1))^(m2(j1))*(nr/dr)); 
    nf2=simplify((1/(factorial(m2(j1)-1)))*diff(nf1,m2(j1)-1)); 
    nf2in=inline(char(nf2)); 
    nf=nf2in(rp1(j1)); 
    th=i*nf*(0-pi); 
    lf=lf+th; 
end 
end 
rf=((1/drp1(1))*sum)-lf; 
r_rf=real(rf); 
i_rf=imag(rf); 
g1=0; 
if c_2==1 
    g1=g1+r_rf; 
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else if c_3==1 
        g1=g1+i_rf; 
    else if c_2==0 & c_3==0 
    g1=g1+rf; 
        end 
    end 
end 
if l(1)==0 
    g=g1/2; 
disp('the integral value in [0,inf] is:');disp(g) 
else if l(1)==-inf 
disp('the integral value in [-inf,inf] is:');disp(g1) 
    end 
end 
 
 Now, we are going to show in the following examples 1 to 3 both ‘int’ and ‘cint’ 
codes can be used.  
  
Examples 

1. Prove that  ௗ௫
ଵା௫మ ൌ గ

ଶ
ஶ

  

Solution: let  ݂ሺݖሻ ሻݖwhere  ݂ሺ  ݖ݀ ൌ ଵ
ଵା௭మ and C is the contour consisting 

of a large semi-circle  ߁  of radius R along with the part of real axis from 
ݔ ൌ െܴ to ݔ ൌ ܴ 

  ݂ሺݖሻ ݖ݀ ൌ  ଵ
ଵା௫మ ݔ݀    ଵ

ଵା௭మ ݖ݀ ൌ ∑ ݅ߨ2 ܴା
௰

ோ
ିோ    

Where ∑ ܴା=sum of the residues of the poles within C 
Now ݈݅݉௭՜ஶ ሻݖሺ݂ ݖ ൌ ݈݅݉௭՜ஶ

௭
ଵା௭మ ൌ 0  

Also, ݈݅݉ோ՜ஶ  ଵ
ଵା௫మ ோݔ݀ 

ିோ ൌ  ଵ
ଵା௫మ ஶݔ݀ 

ିஶ  

  ଵ
ଵା௫మ ݔ݀  ൌ ∑ ݅ߨ2 ܴାஶ

ିஶ ൌ ݅ߨ2 ቀ ଵ
ଶ

ቁ ൌ   ߨ
ฺ  ௗ௫

ଵା௫మ ൌ గ
ଶ

ஶ
   

 
2. Prove that  ௦ሺ௫ሻ

௫మାସ௫ାହ
ݔ݀ ൌ ିగ


ஶ

ିஶ  ሺ2ሻ ݊݅ݏ

Solution: let ݄ሺݖሻ ൌ ݁௭ ݂ሺݖሻ ൌ ݁௭. ଵ
௭మାସ௭ାହ

 where ݈݅݉௭՜ஶ ݂ሺݖሻ ൌ

݈݅݉௭՜ஶ
ଵ

௭మାସ௭ାହ
ൌ 0 

Proceed as above example-1, we may get 
 ݄ሺݔሻ݀ݔ ൌ గ


ሼܿݏሺ2ሻ െஶ

ିஶ   ሺ2ሻሽ ݊݅ݏ ݅
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Equating the imaginary part on both sides,  ௦ሺ௫ሻ
௫మାସ௫ାହ

ݔ݀ ൌ ିగ


ஶ
ିஶ  ሺ2ሻ ݊݅ݏ

 

3. Prove that  ௦ሺగ௫ሻ
௫ሺଵି௫మሻ

ݔ݀ ൌஶ
  ߨ

Solution: let  ݂ሺݖሻ ݀ݖ  where ݂ሺݖሻ ൌ ഏ

௭ሺଵି௭మሻ
 

The given function has poles at ݖ ൌ െ1, ݖ ൌ ݖ ݀݊ܽ 0 ൌ 1 on the real axis. We 
choose the contour C to be a large circle |ݖ| ൌ ܴ indented at ݖ ൌ െ1, ݖ ൌ
ݖ ݀݊ܽ 0 ൌ 1 and by small semi circles ߛଵ,  ଷ respectively of radiiߛ ݀݊ܽ ଶߛ
,ଵݎ  .ଷݎ ݀݊ܽ ଶݎ
The given function has no singularity within C and as such by Cauchy’s 
residue theorem 

 ݂ሺݖሻ݀ݖ ൌ ∑ ݅ߨ2 ܴ  ∑ ݅ߨ  ܴோ   
Where  ∑ ܴ ൌSum of the residues of the poles within C 
∑ ܴோ ൌSum of the residues of the poles on the real axis 

 ഏೣ

௫ሺଵି௫మሻ ݔ݀ ൌஶ
ିஶ ሺ0ሻ݅ߨ2  ߨ݅ ቀଵ

ଶ
 1  ଵ

ଶ
ቁ ൌ   ߨ2݅

Equating the imaginary part on both sides,  ௦ሺగ௫ሻ
௫ሺଵି௫మሻ

ݔ݀ ൌஶ
ିஶ  ߨ2

ฺ  ௦ሺగ௫ሻ
௫ሺଵି௫మሻ

ݔ݀ ൌஶ
   ߨ

 
 We have seen how the residue theorem is useful to evaluate the real definite 
integrals of the forms [4]: 

 1 ,ߠݏሺܿܨ ଶగߠሻ݀ߠ݊݅ݏ
  

 2 ݂ሺݔሻ ݀ݔஶ
ିஶ  

 3 ݂ሺݔሻ ܿݏ ሺܽݔሻ ݀ݔஶ
ିஶ     or     ݂ሺݔሻ ሻݔሺܽ݊݅ݏ ஶݔ݀

ିஶ   where F in (1) and f in (2) 

and (3) are rational functions. For the rational function ݂ሺݔሻ ൌ ሺ௫ሻ
ொሺ௫ሻ

 in (2) and 
(3), we will assume that the polynomials P and Q have no common factors.  

 The same command ‘int’ cannot give the solution in the following examples-4 to 
8, while the solution can be obtained by contour integration. Hence, a new code has 
been developed by incorporating contour integration, and thereby developing a new 
command ‘cint’ to evaluate real integrals in short span of time. To further substantiate 
the validity of the developed code, different real integrals are evaluated in this study, 
and the responses are recorded using the code which show accuracy and effectiveness.   

4. Evaluate    ௦ሺ௫ሻ
௫ሺଵି௫మሻ

ஶݔ݀ 
   [ans: గ

ଶ
ሼ1 െ  [ሺ1ሻሽݏܿ

5. Evaluate  ௦ሺ௫ሻ
ଵି௫మ ஶݔ݀ 

    [ans: గ
ଶ

 [ሺ1ሻ ݊݅ݏ

6. Evaluate  ௫ర

௫లିଵ
ஶݔ݀ 

      [ans: గ
 √3] 

7. Evaluate  ଵ
௫యିଵ

ஶݔ݀ 
ିஶ     [ans: ିగ

√ଷ
]  

8. Evaluate  ଵ
ሺ௫మାଵሻమ ሺ௫ିଶሻ 

ஶݔ݀ 
ିஶ   [ans: ିగ

ଶହ
] 
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Ex-1: 
syms x 
>> int(1/(1+x^2),0,inf) 
  
ans = 
  
1/2*pi 
 

Or cint 
enter the numerator of integrand in terms of 
x:1 
enter the denominator of integrand in terms 
of x:1+x^2 
enter the int limits as -inf, 0, inf in an 
array:[0 inf] 
the integral value in [0,inf] is: 
    1.5708 

 
 
Ex-2: 
syms x 
>> simplify(int(sin(x)/(x^2+4*x+5),-inf,inf)) 
  
ans = 
  
-pi*sin(2)*(-sinh(1)+cosh(1)) 
Or 
Cint 
enter the numerator of integrand in terms of x:sin(x) 
enter the denominator of integrand in terms of x:x^2+4*x+5 
enter the int limits as -inf, 0, inf in an array:[-inf inf] 
the integral value in [-inf,inf] is: 
   -1.0509 
 
 
Ex-3: 
syms x 
>> (int(sin(pi*x)/(x*(1-
x^2)),0,inf)) 
  
ans = 
  
Pi 
 

Or Cint 
enter the numerator of integrand in terms of 
x:sin(pi*x) 
enter the denominator of integrand in terms of 
x:x*(1-x^2) 
enter the int limits as -inf, 0, inf in an array:[0 
inf] 
the integral value in [0,inf] is: 
    3.1416  

Ex-4: 
cint 
enter the numerator of integrand in 
terms of x:sin(x) 
enter the denominator of integrand in 
terms of x:x*(1-x^2) 
enter the int limits as -inf, 0, inf in an 
array:[0 inf] 
the integral value in [0,inf] is: 

Ex-5: 
cint 
enter the numerator of integrand in terms 
of x:cos(x) 
enter the denominator of integrand in 
terms of x: 
1-x^2 
enter the int limits as -inf, 0, inf in an 
array:[0 inf] 
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    0.7221 the integral value in [0,inf] is: 
    1.3218 

Ex-6: 
cint 
enter the numerator of integrand in 
terms of x:x^4 
enter the denominator of integrand in 
terms of x:x^6-1 
enter the int limits as -inf, 0, inf in an 
array:[0 inf] 
the integral value in [0,inf] is: 
   0.9069 + 0.0000i 

Ex-7: 
cint 
enter the numerator of integrand in terms 
of x:1 
enter the denominator of integrand in 
terms of x:x^3-1 
enter the int limits as -inf, 0, inf in an 
array:[-inf inf] 
the integral value in [-inf,inf] is: 
  -1.8138 + 0.0000i 

Ex-8: 
cint 
enter the numerator of integrand in terms of x:1 
enter the denominator of integrand in terms of x:(x^2+1)^2*(x-2) 
enter the int limits as -inf, 0, inf in an array:[-inf  inf] 
the integral value in [-inf ,inf] is: 
  -0.8796 - 0.0000i 
 
 
 Type-1 integrals ሼ ,ߠݏሺܿܨ ሽଶగߠሻ݀ߠ݊݅ݏ

 , cannot be evaluated by using ‘cint’ 
command as it is not considered in developing the ‘cint’ code. The reason being 
MATLAB has an inbuilt command ‘int’ to evaluate these kinds of integrals.  
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