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Abstract 
 

For a connected graph G, let h(G) be the length of a Hamiltonian walk in G 
and call it the Hamiltonian number of G. Let i be a non-negative integer. A 
connected graph G of order n is called i-Hamiltonian if h(G)=n+i. In this 
paper, we define i-Hamiltonian-t-laceable graphs and i-Hamiltonian-t*-
laceable graphs. We explore i-Hamiltonian-t*-laceability properties in the 
cartesian product of graphs involving paths and cycles. 
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Introduction 
Let G be a finite, simple, connected and undirected graph. Let u and v be two vertices 
in G. The distance between u and v denoted by d(u,v) is the length of a shortest u-v 
path in G. In [1] Goodman and Hedetniemi introduced the concept of a Hamiltonian 
walk in a connected graph G, defined as a closed spanning walk of minimum length in 
G. They denoted the length of a Hamiltonian walk in G by h(G) and called h(G) as the 
Hamiltonian number of G. Therefore, for a connected graph of order n≥3, it follows 
that h(G)=n if and only if G is Hamiltonian. Figure 1 below shows a connected graph 
G with h(G)=6.  
 Let i be a non-negative integer. A connected graph G of order n is called i-
Hamiltonian [2] if h(G)=n+i. Thus a 0-Hamiltonian graph is Hamiltonian. An almost 
Hamiltonian graph is a graph G of order n and h(G)=n+1.  
 A graph G is Hamiltonian-t-laceable [3] if there exists in G a Hamiltonian path 
between every pair of vertices u and v with d(u,v)=t, 1≤ t ≤ diamG, where t is a 
positive integer. 
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 A graph G is Hamiltonian-t*-laceable [4] if there exist in G a Hamiltonian path 
between at least one pair of distinct vertices u and v such that d(u,v)=t, 1≤ t ≤ diamG. 
 With the concepts of i-Hamiltonicity and Hamiltonian Laceability, we define the 
following 
 
Definition 1: Let G be a connected graph of order n, let hp(G) be the length of a 
Hamiltonian path between any two distinct vertices in G. A Hamiltonian path in G is 
called a 0-Hamiltonian path if hp(G)=n-1 and a path in G is called 1-Hamiltonian 
path if hp(G)=n. 
 
Definition 2: Let i be a non-negative integer. A connected graph G of order n is 
called i-Hamiltonian-t-laceable if there exists in G, a i-Hamiltonian path between 
every pair of distinct vertices u and v with the property d(u,v)=t , 1≤ t ≤ diamG. 
 
Definition 3: A connected graph G of order n is called i-Hamiltonian-t*-laceable if 
there exists in G, a i-Hamiltonian path between at least one pair of distinct vertices u 
and v with the property d(u,v)=t , 1≤ t ≤ diamG. 
 
 Figure 1 below illustrates a 1-Hamiltonian graph G with h(G)=6. With respect to 
the vertices v1 and v2 this graph is 1-Hamiltonian-2*-laceable. 

 

 
 

Figure 1: A graph with h(G)=6 
 
 

Results 
Theorem 1: Let G=Pm and H=Pn. If m and n are odd integers such that m ,n ≥ 3, the 
Cartesian-product G×H is 1-Hamiltonian-t*-laceable, for t=1, 3 and 5. 
 
Proof: Let G1=G×H. In G1 there are mn vertices and diameter of G × H is (m+n)-1. 
Let the vertices of G1 be denoted by aij, 1≤ i≤ m, 1≤ j≤ n.  
 Let Bi denote the m paths in G1 given by; Bi: ai1-ai2-ai3-………..-ain and let Pj 
denote the n paths in G1 given by; Pj: a1j-a2j-a3j-………..-amj.  
 Then, in G1, d(a11,a12) = 1 and the path P: {P1 ∪ Bm ∪(amn,am-1n)∪ (am-12, am-22) ∪ 
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(Bm-1 – (am-11, am-12)) ∪ (Bm-2 – (am-21, am-22)) ∪…..∪ (B4 – (a41, a42)) ∪ (a42, a32) ∪ (B3 
– (a31, a32)) ∪ (a3n, a2n) ∪ (B2 – (a2n, a2n-1) ∪……∪ (a23, a22) ∪ (a22, a21)) ∪ (B1 – 
(a1n-1,a1n-2)……..(a14, a13) ∪(a13,a12))∪(a2n,a1n) ∪(a1n-1,a2n-1) ∪ (a2n-2, a1n-2) ∪ ….. ∪ 
(a14,a24) ∪ (a23,a13) ∪(a13,a22) ∪(a22,a12) } is a 1-Hamiltonian path. Hence G1 is 1-
Hamiltonian-1*-laceable. 
 

 
 

Figure 2: Cartesian product of G=Pm and H= Pn, d(a11,a12) = 1 
 
 
 Also, in G1, d(a11,a14) = 3 and the path P: {P1 ∪ Bm ∪ (am-12, am-22) ∪ (Bm-1 – (am-

11, am-12)) ∪ (Bm-2 – (am-21, am-22)) ∪…..∪ (B4 – (a41, a42)) ∪ (a42, a32) ∪ (B3 – (a31, 
a32)) ∪ (a3n, a2n) ∪(a2n,a1n) ∪ (a1n,a2n-1) ∪ (B2-(a2n, a2n-1) ∪(a2n-1,a2n-2)…..(a24, a23)) 
∪(B1-(a1n,a1n-1)--- ∪(a11,a12))} is a 1-Hamiltonian path. Hence G1 is 1-Hamiltonian-
3*-laceable. 
 

 
 

Figure 3: Cartesian product of G=Pm and H= Pn, d(a11,a14) = 3 
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 Further, in G1 d(a11,a1n-1) = 5 and the path P: {P1 ∪ Bm ∪ (am-12, am-22) ∪ (Bm-1 – 
(am-11, am-12)) ∪ (Bm-2 – (am-21, am-22)) ∪…..∪ (B4 – (a41, a42)) ∪ (a42, a32) ∪ (B3 – (a31, 
a32)) ∪ (a3n, a2n) ∪(a2n,a1n) ∪ (a1n,a2n-1) ∪ (a22,a12) ∪ (B2-(a2n, a2n-1) ∪………. 
∪(a21a22)) ∪{B1-(a11,a12) ∪ ….∪(a1n,a1n-1)} is a 1-Hamiltonian path. Hence G1 is 1-
Hamiltonian-5*-laceable. 
 

 
 

Figure 4: Cartesian product of G=Pm and H= Pn, d(a11, ,a1n-1) = 5 
 
 
 Hence the proof.  
 
Theorem 2: Let G=Pm and H=Pn. If m and n are odd integers such that m ,n ≥ 3, the 
Cartesian-product G×H is 1-Hamiltonian-t*-laceable, for t=2, 4 and 6. 
 
Proof: Let G1=G×H. In G1 there are mn vertices and diameter of G × H is (m+n)-1. 
Let the vertices of G1 be denoted by aij, 1≤ i≤ m, 1≤ j≤ n.  
 Let Bi denote the m paths in G1 given by; Bi: ai1-ai2-ai3-………..-ain and let Pj 
denote the n paths in G1 given by; Pj: a1j-a2j-a3j-………..-amj.  
 Then, in G1, d(a11,a13) = 2 and the path P: {P1 ∪ Bm ∪(amn,am-1n)∪ (am-12, am-22) ∪ 
(Bm-1 – (am-11, am-12)) ∪ (Bm-2 – (am-21, am-22)) ∪…..∪ (B4 – (a41, a42)) ∪ (a42, a32) ∪ (B3 
– (a31, a32)) ∪ (a3n, a2n) ∪ (B2 – (a2n, a2n-1) ∪……∪ (a22, a21)) ∪(a2n, a1n)∪ (B1 – (a1n-

1,a1n-2)……..(a14, a13) ∪(a11,a12)) ∪(a1n-1,a2n-1) ∪ (a2n-2, a1n-2) ∪ ….. ∪ (a14,a24) ∪ 
(a22,a12)} is a 0-Hamiltonian path. Hence G1 is 0-Hamiltonian-2*-laceable. 
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Figure 5: Cartesian product of G=Pm and H= Pn, d(a11,a13) = 2 
 
 
 Also, in G1, d(a11,a1n-2) = 4 and the path P: {P1 ∪ Bm ∪ (amn, am-1n) ∪ (Bm-1 – (am-

11, am-12)) ∪ (am-12, am-22) ∪ (Bm-2 – (am-21, am-22)) ∪…..∪ (B4 – (a41, a42)) ∪ (a42, a32) ∪ 
(B3 – (a31, a32)) ∪ (a3n, a2n)∪ (B2-(a21, a22) ∪……. ∪(a2n,a2n-1) ∪(B1-(a11,a12)∪ (a1n-

2,a1n-1) ∪(a11,a12))} is a 0-Hamiltonian path. Hence G1 is 0-Hamiltonian-4*-laceable. 
 

 
 

Figure 6: Cartesian product of G=Pm and H= Pn, d(a11,a1n-2) = 4 
 
 
 Further, in G1, d(a11,a1n) = 6 and the path P: {P1 ∪ Bm ∪ (am-12, am-22) ∪ (Bm-1 – 
(am-11, am-12)) ∪ (Bm-2 – (am-21, am-22)) ∪…..∪ (B4 – (a41, a42)) ∪ (a42, a32) ∪ (B3 – (a31, 
a32)) ∪ (a3n, a2n) ∪ (B2-(a21, a22)) ∪{B1-(a11,a12))} is a 0-Hamiltonian path. Hence G1 
is 0-Hamiltonian-6*-laceable. 
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Figure 7: Cartesian product of G=Pm and H= Pn, d(a11,a1n) = 6 
 
 Hence the proof 
Theorem 3: Let G=Pm and H=Pn. If m and n are even integers such that m ,n ≥ 3, 
the Cartesian-product G×H is 1-Hamiltonian-t*-laceable, for t=2, 4 and 6. 
 
Proof: Let G1= G×H. In G1 there are mn vertices and diameter of G × H is (m + n) -
1. Let the vertices of G1 be denoted by aij, 1≤ i≤ m, 1≤ j≤ n. Let Bi denote the m paths 
in G1 given by Bi: ai1-ai2-ai3-………..-ain and let Pj denote the n paths in G1 given by 
Pj: a1j-a2j-a3j-………..-amj. 
 Then in G1, d(a11,a13) = 2 and the path P: {P1 ∪ Bm ∪(amn, am-1n) ∪ (Bm-1 – (am-11, 
am-12)) ∪ (am-12, am-22) ∪ (Bm-2 – (am-21, am-22)) ∪…..∪ (B4 – (a41, a42)) ∪ (a42, a32) ∪ 
(B3 – (a31, a32)) ∪ (a3n, a2n) ∪ (B2 – (a2n, a2n-1) ∪……∪ (a21, a22)) ∪ (B1 – (a1n-1,a1n-

2)……..(a11, a12)) ∪(a2n,a1n) ∪(a1n-1,a2n-1) ∪ (a2n-2,a1n-2) ∪ ….. ∪ (a14,a24) ∪ (a22,a12)} 
is a 1-Hamiltonian path. Hence G1 is 1-Hamiltonian-2*-laceable. 
 

 
 

Figure 8: Cartesian product of G=Pm and H= Pn, d(a11,a13) = 2 
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 Also, in G1, d(a11,a1n-2) = 4 and the path P: {P1 ∪ Bm ∪(amn, am-1n) ∪ (Bm-1 – (am-

11, am-12)) ∪ (am-12, am-22) ∪ (Bm-2 – (am-21, am-22)) ∪…..∪ (B4 – (a41, a42)) ∪ (a42, a32) ∪ 
(B3 – (a31, a32)) ∪ (a3n, a2n) ∪ (B2 – (a2n, a2n-1) ∪……∪ (a21, a22)) ∪ (B1 – (a1n-1,a1n-

2)…….. ∪ (a11, a12)) ∪ (a2n,a1n) ∪ (a1n-1,a2n-1) ∪…..∪(a22,a12)} is a 1-Hamiltonian 
path. Hence G1 is 1-Hamiltonian-4*-laceable. 
 

 
 

Figure 9: Cartesian product of G=Pm and H= Pn, d(a11,a1n-2) = 4 
 
 
 Further in G1, d(a11,a1n) = 6 and the path P: {P1 ∪ Bm ∪(amn, am-1n) ∪ (Bm-1 – (am-

11, am-12)) ∪ (am-12, am-22) ∪ (Bm-2 – (am-21, am-22)) ∪…..∪ (B4 – (a41, a42)) ∪ (a42, a32) ∪ 
(B3 – (a31, a32)) ∪ (a3n, a2n) ∪ (B2 – (a21, a22)) ∪ (a22, a12) ∪ (B1-(a11, a12))} is a 1-
Hamiltonian path. Hence G1 is 1-Hamiltonian-6*-laceable. 
 

 
 

Figure 10: Cartesian product of G=Pm and H= Pn, d(a11,a1n) = 6. 
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 Hence the proof.  ■ 
 
Theorem 4: Let G=Pm and H=Pn . Then the Cartesian-product G × H is 0-
Hamiltonian-t*-laceable, for t=1, 3, 5 such that 1 ≤ t ≤ (m+n)-2 where m and n be 
even for m, n ≥ 3 . 
 
Proof: Let G1= G × H. In G1 there are mn vertices and diameter of G × H is (m + n) -
1. Let the vertices of G1 be denoted by aij, 1≤ i≤ m, 1≤ j≤ n. Let Bi denote the m paths 
in G1 given by Bi: ai1-ai2-ai3-………..-ain and Pj denote the n paths in G1 given by; Pj: 
a1j-a2j-a3j-………..-amj. 
 Then in G1, d(a11,a12) = 1 and the path P: {P1 ∪ Bm ∪(amn,am-1n)∪ (am-12, am-22) ∪ 
(Bm-1 – (am-11, am-12)∪ (Bm-2 – (am-21, am-22)) ∪…..∪ (B5 – (a51, a52)) ∪ (a52, a42) ∪ (B4 – 
(a41, a42)) ∪ (a4n, a3n) ∪ (B3 – (a31, a32))∪ (a32, a22) ∪ (B2 – (a21, a22)) ∪ (a2n, a1n)) ∪ 
(B1 – (a11,a12))} is a 0-Hamiltonian path. Hence G1 is 0-Hamiltonian-1*- laceable. 
 

 
 

Figure 11: Cartesian product of G=Pm and H= Pn, d(a11,a12) = 1 
 
 
 Also, in G1, d(a11,a14) = 3 and the path P: {P1 ∪ Bm ∪(amn,am-1n)∪ (am-12, am-22) ∪ 
(Bm-1 – (am-11, am-12)∪ (Bm-2 – (am-21, am-22)) ∪…..∪ (B5 – (a51, a52)) ∪ (a52, a42) ∪ (B4 – 
(a41, a42)) ∪ (a4n, a3n) ∪ (B3 – (a31, a32)) ∪ (a32, a22) ∪(a22,a12) ∪(a13,a23) ∪ (B2 – (a21, 
a22) ∪(a22,a23)) ∪ (a2n, a1n)∪ (B1 – (a11,a12) ∪(a13,a14))} is a 0-Hamiltonian path. 
Hence G1 is 0-Hamiltonian-3*- laceable. 
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Figure 12: Cartesian product of G=Pm and H= Pn, d(a11,a14) = 3 
 
 
 Further in G1, d(a11,a1n-1) = 5 and the path P: {P1 ∪ Bm ∪(amn,am-1n)∪ (am-12, am-22) 
∪ (Bm-1 – (am-11, am-12)∪ (Bm-2 – (am-21, am-22)) ∪…..∪ (B5 – (a51, a52)) ∪ (a52, a42) ∪ 
(B4 – (a41, a42)) ∪ (a4n, a3n) ∪ (B3 – (a31, a32)) ∪ (a32, a22) ∪ (B2 – (a21, a22) ∪ (a22, 
a23) ∪ (a24, a25)……… ∪ (a2n-3, a2n-2)) ∪ (a2n, a1n) ∪ (B1 – (a11, a12) ∪ (a13, a14) 
∪……..∪ (a1n-3, a1n-2)) ∪ (a12, a22) ∪ (a22, a13) ∪(a24,a14) ∪(a15,a25)…… ∪(a2n-3,a1n-

3)} is a 0-Hamiltonian path. Hence G1 is 0-Hamiltonian-5*- laceable. 
 

 
 

Figure 13: Cartesian product of G=Pm and H= Pn, d(a11,a1n-1) = 5 
 
 
 Hence the proof 
 Theorem 5: Let G=Cm and H=Pn. If n ≥ 2 is an integer and m ≥ 3 is an odd 
integer, the Cartesian-product G×H is 0-Hamiltonian-t*-laceable for t=1,2 and 3. 
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Proof: Let G1= G × H. Let the vertices of G1 be denoted by aij, 1≤ i≤ m, 1≤ j≤ n. Let 
Bi denote the m paths in G1 given by Bi: ai1-ai2-ai3-………..-ain and Pj denote the n 
paths in G1 given by; Pj: a1j-a2j-a3j-………..-amj. Where n is an integer and m is odd. 
 Then in G1, d(a11,a1n)=1 and the path P: P1∪ Bm ∪ (amn,am-1n) ∪ (Bm-1-(am-11,am-

12)) ∪ (am-12,am-22) ∪ Bm-2-(am-21,am-22)) ∪ …..∪ (B4-(a41,a42)) ∪ (a42,a32) ∪ (B3-
(a31,a32)) ∪ (a3n,a2n) ∪ (B2-(a22,a12)) ∪ (a2n,a1n) ∪ (B1-(a11,a12)) is a 0-Hamiltonian 
path. Hence G1 is a 0-Hamiltonian-1*- laceable. 
 

 
 

Figure 14: Cartesian product of G=Cm and H= Pn, d(a11,a1n)=1 
 
 
 Also, in G1, d(a11,a1n-1)=2 and the path P: (a11,a1n) ∪ (a1n,a2n) ∪ (a2n,a21) ∪ 
(a21,a31) ∪ (a31,a3n) ∪ (a3n,a4n) ∪ (a4n,a41) ∪ ……… ∪ (am-21,am-2n) ∪ (am-2n,am-1n) ∪ 
(am-1n,am-11) ∪ (am-11,am1) ∪ (am1,amn) ∪ (Bm-(amn,amn-1) ∪ (am1,am2)) ∪ (P2-(am2,am-12)) 
∪ (a12,a13) ∪ (a2n,a1n)) ∪ (P3- (am3,am-13)) ∪ (am-13,am-14) ∪ (P4-(am-14,a14)) ∪ ………∪ 
(Pn-2-(am-1n-2,amn-2))∪ (am-1n-2,am-1n-1) ∪ (Pn-1-(am-1n-1,amn-1)) is a 0-Hamiltonian path. 
Hence G1 is a 0- Hamiltonian-2*- laceable. 
 

 
 

Figure 15: Cartesian product of G=Cm and H= Pn, d(a11,a1n-1)=2 
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 Further, in G1, d(a11,a1n-2)=3 and the path 
 P: (a11,a1n) ∪ (a1n,a2n) ∪ (a2n,a21) ∪ (a21,a31) ∪ (a31,a3n) ∪ (a3n,a4n) ∪ (a4n,a41) ∪ 
……… ∪ (am-21,am-2n) ∪ (am-2n,am-1n) ∪ (am-1n,am-11) ∪ (am-11,am1) ∪ (am1,amn) ∪ (Bm-
(amn,amn-1) ∪ (am1,am2) ∪ (am2,am-12) ∪ (Bm-1-(am-11,am-12) ∪ (am-1n-1,am-1n)) ∪ (am-1n-

1,am-2n-1) ∪ (Bm-2-(am-2n,am-2n-1) ∪ (am-21,am-22)) ∪ ……∪ (B4-(a41,a42) ∪ (a4n-1,a4n)) ∪ 
(B2-(a21,a22) ∪ (a22,a23)) ∪ ………∪ (a2n-1,a2n) ∪ (a2n-1,a1n-1) ∪ (B1-(a1n,a1n-1) ∪ 
…….∪ (a13,a14) ∪ (a11,a12)) is a 0-Hamiltonian path. Hence G1 is 0-Hamiltonian-3*- 
laceable. 
 

 
 

Figure 16: Cartesian product of G=Cm and H= Pn, , d(a11,a1n-2)=3 
 
 
Hence the proof 
 
Theorem 6: Let G=Cm and H=Pn. If n ≥ 2 is an integer and m ≥ 3 is an even integer, 
the Cartesian-product G×H is (i) 0-Hamiltonian-t*-laceable for t=1 and 3 (ii) 1-
Hamiltonian-t*-laceable for t=2 and 4. 
 
Proof: Let G1= G × H. Let the vertices of G1 be denoted by aij, 1≤ i≤ m, 1≤ j≤ n. Let 
Bi denote the m paths in G1 given by Bi: ai1-ai2-ai3-………..-ain and Pj denote the n 
paths in G1 given by; Pj: a1j-a2j-a3j-………..-amj. Where n is any integer and m is even. 
 Then in G1, d(a11,a1n)=1 and the path 
 P: P1∪ (am1,am2) ∪ P2 ∪ (a12,a13) ∪ P3 ∪ (am3,am4) ∪ P4 ∪ ……∪ Pn-1∪ (amn-1,amn) 
∪ Pn is a 0-Hamiltonian path. Hence G1 is 0-Hamiltonian-1*- laceable. 
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Figure 17: Cartesian product of G=Cm and H= Pn, d(a11,a1n)=1 
 
 
 Also, in G1 , d(a11,a2n)=2 and the path 
 P: P1∪ (am1,am2) ∪ P2 ∪ (a12,a13) ∪ P3 ∪ (am3,am4) ∪ P4 ∪ ……∪ (Pn-1∪ (amn-

1,amn) ∪ (Pn-(a3n,a2n)) ∪ (a3n,a1n) is a 1-Hamiltonian path. Hence G1 is 1-
Hamiltonian-2*- laceable. 
 

 
 

Figure 18: Cartesian product of G=Cm and H= Pn, d(a11,a2n)=2 
 
 
 Further in G1, d(a11,a3n)=3 and the path P: P1 ∪ (am1,am2) ∪ P2 ∪ (a12,a13) ∪ P3∪ 
(am3,am4) ∪ P4∪ ……∪ (Pn-1 -(a1n-1,a2n-1)) ∪ (a1n-1,a1n) ∪ (a2n-1,a2n) ∪ (amn-1,amn) ∪ 
(Pn-(a3n,a2n)) is a 0-Hamiltonian path. Hence G1 is 0-Hamiltonian-3*- laceable. 
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Figure 19: Cartesian product of G=Cm and H= Pn, d(a11,a3n)=3 
 
 
 Next in G1, d(a11,a4n)=4 and the path 
 P: P1 ∪ (am1,am2) ∪ P2 ∪ (a12,a13) ∪ P3 ∪ (am3,am4) ∪ P4 ∪ ……∪ (Pn-1 -(a1n-1,a2n-

1)) ∪ (a2n-1,a3n-1) ∪ (amn-1,amn) ∪ (Pn-(a1n,a2n) ∪ (a3n,a4n)) ∪ (a1n,a2n-1) is a 1-
Hamiltonian path. Hence G1 is 1-Hamiltonian-4*- laceable. 
 

 
 

Figure 20: Cartesian product of G=Cm and H= Pn, d(a11,a4n)=4 
 
 
 Hence the proof 
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