Intuitionistic Fuzzy Ideals in Hyper BCI-Algebras

N. Palaniappan, *P. S. Veerappan and **R. Devi

Professor of Mathematics, Alagappa University, Karaikudi - 630 003, Tamilnadu, India. e.mail: palaniappan.nallappan@yahoo.com * Department of Mathematics, K. S. R. College of Technology, Tiruchengode - 637 215, Tamilnadu, India. e.mail: peeyesvee@yahoo.co.in

** Department of Mathematics, K.S.R. College of Engineering, Tiruchengode - 637 215, Tamilnadu, India. e.mail: devibalaji_mohi@yahoo.com

Abstract

In this paper we introduce distributive hyper BCI-ideals and the concept of intuitionistic fuzzy set is applied to investigate the relations between intuitionistic fuzzy distributive hyper BCI-ideals and the distributive hyper BCI-ideals of a hyper BCI-algebra.

2000 Mathematics Subject classification: 06F35, 03G25, 03E72.

Key words and phrases: BCI-algebra, hyper BCI-algebra, intuitionistic fuzzy ideals, hyper BCI-ideals.

Introduction

The hyper structure theory was introduced by F. Marty [13] in 1934. Y.B. Jun et al. applied this concept to BCK-algebras [7] and Xiao Xin Long introduced a hyper BCI-algebra [12], as generalization of a BCI-algebra. Different types of hyper BCI-ideals are also defined in [12]. The proper hyper BCI-algebras which coincide with hyper BCK-algebras and p-semisimple BCI-algebras of order 3 are investigated in [5]. In [8-10] the fuzzification of hyper BCK-ideals is discussed and the related results are developed. The notion of Bi-polar-valued fuzzy hyper subalgebra (briefly BFHS) of a hyper BCI-algebra based on Bi-polar-valued fuzzy set and related properties are established in [6]. Further, Bi-polar-valued fuzzy characteristic hyper subalgebra is also stated.

The idea of "intuitionistic fuzzy set" was first published by Atanassov [1, 2] as a generalization of the notion of fuzzy sets. After that many researchers considered the intuitionistic fuzzification of ideals and subalgebras in BCK/BCI-algebras. In this paper we introduce distributive hyper BCI-ideals and the concept of intuitionistic fuzzy set is applied to investigate the relations between intuitionistic fuzzy distributive hyper BCI-algebra.

Preliminaries

By a BCI-algebra we mean an algebra (X, *, 0) type (2, 0) satisfying the axioms:

If a BCI-algebra X satisfies the following identity: (v) 0 * x = 0, for all $x \in X$,

then X is called a BCK-algebra. Any BCI/BCK-algebra X satisfies the following axioms:

(vi) x*0=x, (vii) $x \le y$ imply $x*z \le y*z$ and $z*y \le z*x$, (viii) (x*y)*z = (x*z)*y, (ix) $(x*z)*(y*z) \le x*y$, for all $x, y, z \in X$.

In a BCI-algebra, we can define a partial ordering " \leq " by $x \leq y$ if and only if x * y = 0. A subset S of a BCK/BCI-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$. An ideal of a BCK/BCI-algebra X is a subset I of X containing 0 such that if $x * y \in I$ and $y \in I$ then $x \in I$. Note that every ideal I of a BCK/BCI-algebra X has the following property:

 $x \le y$ and $y \in I$ imply $x \in I$.

In what follows, *X* will denote a BCI-algebra unless otherwise specified. An intuitionistic fuzzy set *A* in a non-empty set *X* is an object having the form $A = \{ \langle x, \mu_A(x), \upsilon_A(x) \rangle | x \in X \},\$

where the functions $\mu_A: X \to [0,1]$ and $\upsilon_A: X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non membership (namely $\upsilon_A(x)$) of each element $x \in X$ to the set *A* respectively, and $0 \le \mu_A(x) + \upsilon_A(x) \le 1$ for all $x \in X$.

Such defined objects are studied by many authors (see for Example two journals:

1. Fuzzy Sets and 2. Notes on Intuitionistic Fuzzy Sets) and have many interesting applications not only in mathematics (See Chapter 5 in the book [2]).

Let X be a non empty set endowed with a hyper operation " \circ ", that is " \circ ", is a function from $X \times X$ to $P^*(X) = P(X) - \{\phi\}$. For two subsets A and B of X, denote by $A \circ B$ the set

 $\cup_{a\in A,b\in B} a\circ b$

Definition 2.1 [14]: By a fuzzy set μ in X, we mean a function $\mu: X \to [0,1]$.

Definition 2.2 [12]: By a hyper BCI-algebra, it is meant a nonempty set X endowed with a hyper operation " \circ " and a constant 0 satisfying the following axioms:

(I) $(x \circ z) \circ (y \circ z) << x \circ y,$ (II) $(x \circ y) \circ z = (x \circ z) \circ y,$ (III) x << x,(IV) x << y and y << x imply x = y,(V) $0 \circ (0 \circ x) << x, x \neq 0,$

for all $x, y, z \in X$, where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq X, A \ll B$ is defined by for all $a \in A$, there exists $b \in B$ such that $a \ll b$. In such case "<<" is called the hyper order in X.

Definition 2.3 [12]: Let A be a non-empty subset of a hyper BCI-algebra X. Then A is said to be a hyper BCI-ideal of X if

(1) $0 \in A$,

(2) $x \circ y \ll A$ and $y \in A$ imply $x \in A$ for all $x, y \in X$.

Definition 2.4: For an intuitionistic fuzzy set *A* in *X* and *t*, *s* \in [0,1], the set $A_{\langle t,s \rangle} = \{x \in X \mid \mu_A(x) \ge t, \upsilon_A(x) \le s\}$ is called a level subset of *A*.

Definition 2.5 [12]: Let (H, \circ) be a hyper BCI-algebra. Then $(H, \circ, 0)$ is a BCI-algebra if and only if $H = S_t = \{x \in H \mid x \circ x = \{0\}\}$.

Definition 2.6 [12]: Hypergroup is defined as a hyperstructure (X, \cdot) such that the following axioms hold:

(3) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in X$,

(4) $x \cdot X = X \cdot x = X$ for all $x \in X$.

Where $x. y = y \circ (0 \circ x)$ for all $x, y \in X$.

Theorem 2.7 [12]: Let (X, \circ) be a hyper BCI-algebra and satisfy the following conditions:

- (5) $x \in a \circ (a \circ x)$,
- (6) $x \circ (0 \circ y) = y \circ (0 \circ x)$.

Then (X, \cdot) is a hypergroup.

Definition 2.8: An intuitionistic fuzzy relation on any set *X* is an intuitionistic fuzzy set

 $B = \langle \mu_B, \upsilon_B \rangle$ where $\mu_B : X \times X \rightarrow [0,1]$ and $\upsilon_B : X \times X \rightarrow [0,1]$.

Definition 2.9: If B is an intuitionistic fuzzy relation on a set X and A is an intuitionistic fuzzy set in X, then B is an intuitionistic fuzzy relation on A if

 $\mu_B(x, y) \le \min\left\{\mu_A(x), \mu_A(y)\right\}$

and $\upsilon_B(x, y) \ge \max\{\upsilon_A(x), \upsilon_A(y)\}, \forall x, y \in X.$

Definition 2.10: If *A* is an intuitionistic fuzzy set in a set *X*, the strongest intuitionistic fuzzy relation on *X* is an intuitionistic fuzzy relation of *X* is $B_A = \langle (\mu_B)_{\mu_A}, (\upsilon_B)_{\upsilon_A} \rangle$, given by

$$(\mu_B)_{\mu_A}(x, y) = \min \{\mu_A(x), \mu_A(y)\}$$

and

$$(\upsilon_B)_{\upsilon_A}(x, y) = \max\{\upsilon_A(x), \upsilon_A(y)\}, \forall x, y \in X.$$

Definition 2.11: Let A & B be intuitionistic fuzzy sets in a set X. The Cartesian product of A and B is defined by

 $(\mu_A \times \mu_B)(x, y) = \min \{\mu_A(x), \mu_B(y)\}$ $(\nu_A \times \nu_B)(x, y) = \max \{\nu_A(x), \nu_B(y)\} \text{ for all } x, y \in X.$

Definition 2.12 [6]: Let X and Y be hyper BCI-algebras. A mapping $f : X \to Y$ is called a hyper homomorphism, if

(7)
$$f(0) = 0$$
,

(8) $f(x \circ y) = f(x) \circ f(y).$

3. Distributive Hyper BCI-Ideals

Definition 3.1: A non-empty set *A* of a hyper BCI-algebra *X* is called a distributive hyper BCI-ideal if it satisfies (1) and (9) $((x \circ z) \circ z) \circ (y \circ z) \ll A$ and $y \in A \Longrightarrow x \in A$.

Example 3.2: Consider a hyper BCI-algebra $X = \{0, a, b, c\}$ with the following Cayley

table.

0	0	a	b	с
0	{0,a}	{0,a}	{0,a}	{0,a}
a	{a}	{0,a}	{0,a}	{0,a}
b	{b}	{b}	{0,a,b}	{0,a,b}
с	{c}	{c}	{c}	{0,a,c}

 $\{0, a\}, \{0, a, b\}$ are the only hyper BCI-ideals in X which are also distributive hyper BCI-ideals of X.

Example 3.3: Consider a hyper BCI-algebra $X = \{0, a, b, c\}$ with the following Cayley table.

0	0	a	b	c
0	{0}	{0}	{b}	{b}
а	{a}	{0,a}	{b}	{b}
b	{b}	{b}	{0}	{0}
с	{c}	{b,c}	{a}	{0,a}

It can be easily checked that $A = \{0, a\}$ is a hyper BCI-ideal but A is not a distributive hyper BCI-ideal of X because $((c \circ b) \circ b) \circ (0 \circ b) \ll A$ and $0 \in A$ implies $c \in A$ which is a contradiction.

4. Intuitionistic Fuzzy Hyper BCI-Ideals

Definition 4.1: An intuitionistic fuzzy set A in a hyper BCI-algebra X is an intuitionistic fuzzy hyper BCI-ideal if

(10) $x \ll y$ implies $\mu_A(y) \leq \mu_A(x)$ and $\upsilon_A(y) \geq \upsilon_A(x)$, (11) $\mu_A(x) \geq \min \{ \inf_{u \in (x \circ y)} \mu_A(u), \mu_A(y) \},$

(12)
$$\upsilon_A(x) \le \max \{\sup_{u \in (x \circ y)} \upsilon_A(u), \upsilon_A(y)\}, \forall x, y \in X\}$$

Definition 4.2: An intuitionistic fuzzy set *A* in *X* is called an intuitionistic fuzzy distributive hyper BCI-ideal if satisfies (10) and

(13) $\mu_A(x) \ge \min \left\{ \inf_{v \in (((x \circ z) \circ z) \circ (y \circ z))} \mu_A(v), \mu_A(y) \right\},$ (14) $\upsilon_A(x) \leq \max \left\{ \sup_{v \in (((x \circ z) \circ z) \circ (y \circ z))} \upsilon_A(v), \upsilon_A(y) \right\}, \forall x, y, z \in X.$

Example 4.3: Consider a hyper BCI-algebra $X = \{0, a, b, c\}$ with the following Cayley table.

0	0	а	b	с
0	{0}	{0}	{b}	{b}
a	{a}	{0}	{b}	{b}
b	{b}	{b}	{0}	{0}
с	{c}	{b}	{a}	{0,a}

Define an intuitionistic fuzzy set A in X by $\mu_A(c) = \mu_A(b) = 0.2, \mu_A(a) = 0.4, \mu_A(0) = 0.6$ and

 $v_A(c) = v_A(b) = 0.6$, $v_A(a) = 0.2 \& \mu_A(0) = 0.1$. It is routine to verify that *A* is an intuitionistic fuzzy hyper BCI-ideal of *X* but not an intuitionistic fuzzy distributive hyper BCI-ideal of *X*. Because

 $\mu_A(x) \ge \min \left\{ \inf_{u \in (((x \circ z) \circ z) \circ (y \circ z))} \mu_A(u), \mu_A(y) \right\}$

and $\upsilon_A(x) \le \max \{ \sup_{u \in (((x \circ z) \circ z) \circ (y \circ z))} \upsilon_A(u), \upsilon_A(y) \}$ are not satisfied for x = b, y = a, z = c.

Example 4.4: Consider a hyper BCI-algebra $X = \{0, a, b, c\}$ with the following Cayley table.

0	0	а	b	с
0	{0,a}	{0,a}	{b}	{b}
a	{a}	{0,a}	{b}	{b}
b	{b}	{b}	{0,a}	{0,a}
С	{c}	{b}	{a}	{0,a}

Define an intuitionistic fuzzy set A in X by $\mu_A(a) = \mu_A(c) = \mu_A(b) = 0.2, \mu_A(0) = 0.4$ and

 $v_A(a) = v_A(c) = v_A(b) = 0.6 \& \mu_A(0) = 0.2$. It is routine to verify that *A* is an intuitionistic fuzzy distributive hyper BCI-ideal as well as an intuitionistic fuzzy hyper BCI-ideal of *X*.

Example 4.5: Consider a hyper BCI-algebra $X = \{0, a, b, c\}$ with the following Cayley table.

0	0	а	b	с
0	{0,a}	{0,a}	{b}	{b}
a	{a}	{0,a}	{b}	{b}
b	{b}	{b}	{0,a}	{0,a}
с	{c}	{b,c}	{a}	{0,a}

Define an intuitionistic fuzzy set A in X by $\mu_A(c) = 0.1, \mu_A(b) = 0.2, \mu_A(a) = 0.3, \mu_A(0) = 0.5$ and $\upsilon_A(c) = 0.7, \upsilon_A(b) = 0.5, \upsilon_A(a) = 0.4 \& \mu_A(0) = 0.3$. It can be easily evaluated that A is

 $v_A(c) = 0.7, v_A(b) = 0.5, v_A(a) = 0.4 & \mu_A(0) = 0.5.1t$ can be easily evaluated that A is an intuitionistic fuzzy hyper BCI-ideal of X but A is not an intuitionistic fuzzy distributive hyper BCI-ideal of X. Since

 $\mu_A(c) \ge \min \left\{ \inf_{u \in ((c \circ b) \circ b) \circ (a \circ b)} \mu_A(u), \mu_A(a) \right\}$

and $\upsilon_A(c) \le \max \left\{ \sup_{u \in ((c \circ b) \circ b) \circ (a \circ b)} \upsilon_A(u), \upsilon_A(a) \right\}$ are not satisfied.

Proposition 4.6: An intuitionistic fuzzy set *A* is an intuitionistic fuzzy hyper BCI-ideal of a hyper BCI-algebra *X* iff $A_{(t,s)}$ is a hyper BCI-ideal of *X* whenever

 $A_{(t,s)} \neq \phi$ and $t, s \in [0,1]$.

Proof. Let *A* be an intuitionistic fuzzy hyper BCI-ideal of *X* and $A_{(t,s)} \neq \phi$ for $t, s \in [0,1]$.

Since $\mu_A(0) \ge \mu_A(x) \ge t$ and $\upsilon_A(0) \le \upsilon_A(x) \le s$ for some $x \in A_{\langle t,s \rangle}$ therefore $0 \in A_{\langle t,s \rangle}$. Let $x, y \in X$ such that $x \circ y \ll A_{\langle t,s \rangle}$ and $y \in A_{\langle t,s \rangle}$ implies $\mu_A(y) \ge t$ and $\upsilon_A(y) \le s$.

For any $v \in x \circ y$ there exists $w \in A_{(t,x)}$ such that $v \ll w$ which implies that

$$t \le \mu_A(w) \le \mu_A(v)$$

and $s \ge \upsilon_A(w) \ge \upsilon_A(v)$ then $\mu_A(x) \ge \{\inf_{v \in x \circ y} \mu_A(v), \mu_A(y)\} \ge \{t, t\} \ge t$

and

 $\upsilon_A(x) \le \left\{ \sup_{v \in x \circ y} \upsilon_A(v), \upsilon_A(y) \right\} \le \left\{ s, s \right\} \le s \text{ implies that } x \in A_{\langle t, s \rangle}.$ So $A_{\langle t, s \rangle}$ is a hyper BCI-ideal.

Conversely, suppose $A_{(t,s)}$ is a hyper BCI-ideal of X. For any $x \in X$ setting $\mu_A(x) = t$ and $\upsilon_A(x) = s$ then $x \in A_{(t,s)}$.

Since $0 \in A_{(t,s)}$ which implies that $\mu_A(0) \ge t, \upsilon_A(0) \le s$ so $\mu_A(0) \ge \mu_A(x)$

and $\upsilon_A(0) \le \upsilon_A(x), \forall x \in X.$ For any $x, y \in X$, let $t = \{\inf_{w \in x \circ y} \mu_A(w), \mu_A(y)\}$

and $s = \{\sup_{w \in x \circ y} \upsilon_A(w), \upsilon_A(y)\}$.

Then for $y \in A_{\langle t,s \rangle}$ and $u \in x \circ y$ we have

$$\mu_A(u) \ge \left\{ \inf_{w \in x \circ y} \mu_A(w) \right\} \ge \left\{ \inf_{w \in x \circ y} \mu_A(w), \mu_A(y) \right\} = t$$

and $\upsilon_A(u) \le \{\sup_{w \in x \circ y} \upsilon_A(w)\} \le \{\sup_{w \in x \circ y} \upsilon_A(w), \upsilon_A(y)\} = s$ which implies that $u \in A_{\langle t,s \rangle}$ so $x \circ y \ll A_{\langle t,s \rangle}$, $y \in A_{\langle t,s \rangle}$ implies that $x \in A_{\langle t,s \rangle}$. Therefore

$$\mu_A(x) \ge t = \left\{ \inf_{w \in x \circ y} \mu_A(w), \mu_A(y) \right\}$$

and $\upsilon_A(x) \le s = \{\sup_{w \in x \circ y} \upsilon_A(w), \upsilon_A(y)\}.$

Hence A is an intuitionistic fuzzy hyper BCI-ideal of X.

Proposition 4.7: Let *A* be an intuitionistic fuzzy hyper BCI-ideal of *X* then $x \circ y \ll z$ implies that $\mu_A(x) \ge \min \{\mu_A(z), \mu_A(y)\}$ and $\upsilon_A(x) \le \max \{\upsilon_A(z), \upsilon_A(y)\}$.

Proof: Since *A* is an intuitionistic fuzzy hyper BCI-ideal then $\mu_A(x) \ge \min \{ \inf_{u \in x \lor y} \mu_A(u), \mu_A(y) \} \ge \min \{ \mu_A(z), \mu_A(y) \}$

and $\upsilon_A(x) \le \max \{ \sup_{u \in x \circ y} \upsilon_A(u), \upsilon_A(y) \} \le \max \{ \upsilon_A(z), \upsilon_A(y) \}$ because $x \circ y \ll z$ implies that

 $\mu_A(z) \le \mu_A(x \circ y)$

and $\upsilon_A(z) \ge \upsilon_A(x \circ y)$.

Theorem 4.8: Every intuitionistic fuzzy distributive hyper BCI-ideal is an intuitionistic fuzzy hyper BCI-ideal.

Proof: Let *A* be an intuitionistic fuzzy distributive hyper BCI-ideal of *X*. Then

 $\mu_{A}(x) \geq \min \left\{ \inf_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \mu_{A}(u), \mu_{A}(y) \right\}$ = min $\left\{ \inf_{u \in ((x \circ 0) \circ 0) \circ (y \circ 0)} \mu_{A}(u), \mu_{A}(y) \right\}$ = min $\left\{ \inf_{u \in x \circ y} \mu_{A}(u), \mu_{A}(y) \right\}$ for all $x, y \in X$,

and

$$\begin{split} \upsilon_A(x) &\leq \max \left\{ \sup_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \upsilon_A(u), \upsilon_A(y) \right\} \\ &= \max \left\{ \sup_{u \in ((x \circ 0) \circ 0) \circ (y \circ 0)} \upsilon_A(u), \upsilon_A(y) \right\} \\ &= \max \left\{ \sup_{u \in x \circ y} \upsilon_A(u), \upsilon_A(y) \right\} \text{ for all } x, y \in X. \end{split}$$

Hence A is an intuitionistic fuzzy hyper BCI-ideal of X. The converse of the Theorem 4.8 may not be true as seen in examples 4.3, 4.5.

Theorem 4.9: An intuitionistic fuzzy set *A* of a hyper BCI-algebra *X* is an intuitionistic fuzzy distributive hyper BCI-ideal of *X* iff for all $t, s \in [0,1]$, $A_{\langle t,s \rangle}$ is a distributive hyper BCI-ideal of *X*, whenever $A_{\langle t,s \rangle} \neq \phi$.

Proof: Suppose *A* is an intuitionistic fuzzy distributive hyper BCI-ideal of *X* and $A_{\langle t,s \rangle} \neq \phi$ for $t, s \in [0,1]$ since $\mu_A(0) \ge \mu_A(x) \ge t$ and $\upsilon_A(0) \le \upsilon_A(x) \le s$ for some $x \in A_{\langle t,s \rangle}$, we get $0 \in A_{\langle t,s \rangle}$. If $((x \circ z) \circ z) \circ (y \circ z) << A_{\langle t,s \rangle}$ and $y \in A_{\langle t,s \rangle}$ then for any $u \in ((x \circ z) \circ z) \circ (y \circ z)$ there exists $v \in A_{\langle t,s \rangle}$ with $\mu_A(v) \ge t$ and $\upsilon_A(v) \le s$ such that u << v which implies that $t \le \mu_A(v) \le \mu_A(u)$ and $s \ge \upsilon_A(v) \ge \upsilon_A(u)$. Since *A* is an intuitionistic fuzzy distributive hyper BCI-ideal therefore for all $x, y, z \in X$, we have

 $\mu_A(x) \ge \min\left\{\inf_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \mu_A(u), \mu_A(y)\right\} \ge \min\left\{t, t\right\} = t$

and $\upsilon_A(x) \le \max \{ \sup_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \upsilon_A(u), \upsilon_A(y) \} \le \max \{ s, s \} = s$ because $y \in A_{\langle t, s \rangle}$ with $\mu_A(y) \ge t$ and $\upsilon_A(y) \le s$.

So $x \in A_{\langle t,s \rangle}$. Hence $A_{\langle t,s \rangle}$ is a distributive hyper BCI-ideal of *X*. Conversely suppose that for all $t, s \in [0,1]$, $A_{\langle t,s \rangle} \neq \phi$ is a distributive hyper BCI-ideal which implies that $A_{\langle t,s \rangle}$ is a hyper BCI-ideal of *X* and hence *A* is a intuitionistic fuzzy hyper BCI-ideal of *X*. We have to prove that *A* is a intuitionistic fuzzy distributive hyper BCI-ideal of *X*. i.e. *A* has to satisfy

 $\mu_A(x) \ge \min \left\{ \inf_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \mu_A(u), \mu_A(y) \right\}$

and $\upsilon_A(x) \le \max \{ \sup_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \upsilon_A(u), \upsilon_A(y) \}.$ If not then $\mu_A(x) < \min \{ \inf_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \mu_A(u), \mu_A(y) \}$

and $\upsilon_A(x) > \max \{ \sup_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \upsilon_A(u), \upsilon_A(y) \}$. Taking t_0, s_0 satisfying $\mu_A(x_0) < t_0 < \min \{ \inf_{u \in ((x_0 \circ z_0) \circ z_0) \circ (y_0 \circ z_0)} \mu_A(u_0), \mu_A(y_0) \}$

and $\upsilon_A(x_0) > s_0 > \max \left\{ \sup_{u \in ((x_0 \circ z_0) \circ z_0) \circ (y_0 \circ z_0)} \upsilon_A(u_0), \upsilon_A(y_0) \right\}$, then $((x_0 \circ z_0) \circ z_0) \circ (y_0 \circ z_0) << A_{\langle t_0, s_0 \rangle}$ and $y \in A_{\langle t_0, s_0 \rangle}$ implies that $x_0 \notin A_{\langle t_0, s_0 \rangle}$ which is a contradiction. So *A* is an intuitionistic fuzzy distributive hyper BCI-ideal of *X*.

Theorem 4.10: For any subset A of X, let A be an intuitionistic fuzzy set in X defined by

N. Palaniappan et al

for all $x \in X$ where $t, s \in (0,1]$. Then *A* is a distributive hyper BCI-ideal if and only if *A* is an intuitionistic fuzzy distributive hyper BCI-ideal of *X*.

Proof: Since *A* is an distributive hyper BCI-ideal of *X* therefore if $((x \circ z) \circ z) \circ (y \circ z) \ll A$ and $y \in A$ then $x \in A$. Hence

$$\mu_A(((x \circ z) \circ z) \circ (y \circ z)) = t = \mu_A(y) = \mu_A(x)$$

and $\upsilon_A(((x \circ z) \circ z) \circ (y \circ z)) = s = \upsilon_A(y) = \upsilon_A(x)$

which implies that

 $\mu_A(x) = \min\left\{\inf_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \mu_A(u), \mu_A(y)\right\}$

and $\upsilon_A(x) = \max \left\{ \sup_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \upsilon_A(u), \upsilon_A(y) \right\}$

If at least one of $((x \circ z) \circ z) \circ (y \circ z)$ does not a hyper order in *A* and $y \notin A$ then $\mu_A(x) \ge \min \left\{ \inf_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \mu_A(u), \mu_A(y) \right\}$

and $\upsilon_A(x) \le \max \left\{ \sup_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \upsilon_A(u), \upsilon_A(y) \right\}$

Since $0 \in A$ implies that $\mu_A(0) = t \ge \mu_A(x)$ and $\upsilon_A(0) = s \le \upsilon_A(x)$ for all $x \in X$. So *A* is an intuitionistic fuzzy distributive hyper BCI-ideal. Converse follows from Theorem (4.9).

Theorem 4.11: Let A_1, A_2 be intuitionistic fuzzy distributive hyper BCI-ideals of X. Then $A_1 \times A_2$ is an intuitionistic fuzzy distributive hyper BCI-ideal of $X \times X$.

Proof:

Since

$$\begin{aligned} &(\mu_{A_1} \times \mu_{A_2})(x, y) = \min \left\{ \mu_{A_1}(x), \mu_{A_2}(y) \right\}, \\ &(\upsilon_{A_1} \times \upsilon_{A_2})(x, y) = \max \left\{ \upsilon_{A_1}(x), \upsilon_{A_2}(y) \right\}, \end{aligned}$$

then

$$(\mu_{A_1} \times \mu_{A_2})(0,0) = \min \left\{ \mu_{A_1}(0), \mu_{A_2}(0) \right\} \ge \min \left\{ \mu_{A_1}(x), \mu_{A_2}(y) \right\} = (\mu_{A_1} \times \mu_{A_2})(x, y)$$

and

$$(\upsilon_{A_1} \times \upsilon_{A_2})(0,0) = \max \{\upsilon_{A_1}(0), \upsilon_{A_2}(0)\} \le \max \{\upsilon_{A_1}(x), \upsilon_{A_2}(y)\} = (\upsilon_{A_1} \times \upsilon_{A_2})(x, y)$$

so

$$(\mu_{A_1} \times \mu_{A_2})(0,0) \ge (\mu_{A_1} \times \mu_{A_2})(x,y)$$

and $(\upsilon_{A_1} \times \upsilon_{A_2})(0,0) \le (\upsilon_{A_1} \times \upsilon_{A_2})(x, y)$, for all $(x, y) \in X$. Since $(\mu_{A_1} \times \mu_{A_2})((x_1, y_1) \circ (x_2, y_2)) = (\mu_{A_1} \times \mu_{A_2})(x_1 \circ x_2, y_1 \circ y_2)$ $= \min \left\{ \mu_{A_1} (x_1 \circ x_2), \mu_{A_2} (y_1 \circ y_2) \right\}$

and

$$(\upsilon_{A_1} \times \upsilon_{A_2})((x_1, y_1) \circ (x_2, y_2)) = (\upsilon_{A_1} \times \upsilon_{A_2})(x_1 \circ x_2, y_1 \circ y_2) = \max \{\upsilon_{A_1}(x_1 \circ x_2), \upsilon_{A_2}(y_1 \circ y_2)\}.$$

Consider

$$(\mu_{A_{1}} \times \mu_{A_{2}})(x_{1}, y_{1})$$

$$= \min \left\{ (\mu_{A_{1}}(x_{1}), \mu_{A_{2}}(y_{1}) \right\}$$

$$\geq \min \left[\min \left\{ \inf_{t_{1} \in ((x_{1} \circ x_{3}) \circ x_{3}) \circ (x_{2} \circ x_{3})} \mu_{A_{1}}(t_{1}), \mu_{A_{1}}(x_{2}) \right\}, \min \left\{ \inf_{t_{2} \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3})} \mu_{A_{2}}(t_{2}), \mu_{A_{2}}(y_{2}) \right\} \right]$$

$$= \min \left[\min \left\{ \inf_{t_{1} \in ((x_{1} \circ x_{3}) \circ x_{3}) \circ (x_{2} \circ x_{3})} \mu_{A_{1}}(t_{1}), \inf_{t_{2} \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3})} \mu_{A_{2}}(t_{2}) \right\}, \min \left\{ \mu_{A_{1}}(x_{2}), \mu_{A_{2}}(y_{2}) \right\} \right]$$

$$= \min \left[\min \left\{ \inf \left(\mu_{A_{1}}(t_{1}), \mu_{A_{2}}(t_{2}) \right) \right\} \left\{ \left(\mu_{A_{1}} \times \mu_{A_{2}}\right)(x_{2}, y_{2}) \right\} \right], \text{ where } t_{1} \in \left((x_{1} \circ x_{3}) \circ x_{3} \right) \circ (x_{2} \circ x_{3}), t_{2} \in \left((y_{1} \circ y_{3}) \circ y_{3} \right) \circ (y_{2} \circ y_{3}), \\ = \min \left[\inf \left\{ \left(\mu_{A_{1}} \times \mu_{A_{2}}\right)(t_{1}, t_{2}) \right\} \left\{ \left(\mu_{A_{1}} \times \mu_{A_{2}}\right)(x_{2}, y_{2}) \right\} \right] \\ = \min \left[\inf \left\{ \left(\mu_{A_{1}} \times \mu_{A_{2}}\right)((x_{1} \circ x_{3}) \circ x_{3} \right) \circ (x_{2} \circ x_{3}), ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3})) \right\} \left\{ \left(\mu_{A_{1}} \times \mu_{A_{2}}\right)(x_{2}, y_{2}) \right\} \right] \\ = \min \left[\inf t_{t \in \left[((x_{1}, y_{1}) \circ (x_{3}, y_{3}) \circ (x_{3}, y_{3}) \circ ((x_{2}, y_{2}) \circ (x_{3}, y_{3}))\right]} (\mu_{A_{1}} \times \mu_{A_{2}})(t) \right\} \left\{ \left(\mu_{A_{1}} \times \mu_{A_{2}}\right)(x_{2}, y_{2}) \right\} \right] \\ = \max \left[\lim t_{t \in \left[((x_{1}, y_{1}) \circ (x_{3}, y_{3}) \circ (x_{2}, y_{3}) \circ (x_{2}, y_{3}) \circ (y_{2}, y_{3}) \circ y_{3} \circ (y_{2}, y_{3}) \right]} \right] \\ = \max \left[\max \left\{ \sup_{t_{1} \in ((x_{1} \circ x_{3}) \circ x_{3}) \circ (x_{2} \circ x_{3}) \right\} u_{A_{1}}(t_{1}), u_{A_{2}}(x_{2}) \right\}, \max \left\{ \sup_{t_{2} \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2}, y_{3}) v_{A_{2}}(t_{2}) \right\}, \max \left\{ u_{A_{1}}(x_{2}), u_{A_{2}}(y_{2}) \right\} \right] \\ = \max \left[\max \left\{ \max \left\{ \sup_{t_{1} \in ((x_{1} \circ x_{3}) \circ x_{3}) \circ (x_{2} \circ x_{3}) \right\} u_{A_{1}}(t_{1}), u_{A_{2}}(y_{A_{2}}, y_{A_{2}}) \right\} \right\}, \left\{ (u_{A_{1}} \times u_{A_{2}})(x_{2}, y_{2}) \right\} \right], \text{ where } \\ t_{1} \in \left((y_{1} \circ y_{3}) \circ y_{3} \circ (x_{2} \circ x_{3}), t_{2} \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \circ y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \otimes y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \otimes y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \otimes y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in ((y_{1} \otimes y_{3}) \circ (y_{2} \circ y_{3}), t_{2} \in$$

$$= \max \left[\sup \left\{ (\upsilon_{A_{1}} \times \upsilon_{A_{2}})(((x_{1} \circ x_{3}) \circ x_{3}) \circ (x_{2} \circ x_{3}), ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3})) \right\}, \left\{ (\upsilon_{A_{1}} \times \upsilon_{A_{2}})(x_{2}, y_{2}) \right\} \right]$$

$$= \max \left[\left\{ \sup_{t \in [(((x_{1}, y_{1}) \circ (x_{3}, y_{3})) \circ ((x_{2}, y_{2}) \circ (x_{3}, y_{3}))](\upsilon_{A_{1}} \times \upsilon_{A_{2}})(t) \right\}, \left\{ (\upsilon_{A_{1}} \times \upsilon_{A_{2}})(x_{2}, y_{2}) \right\} \right]$$

which implies that $A_1 \times A_2$ is an intuitionistic fuzzy distributive hyper BCI-ideal of X.

Proposition 4.12: Let A be an intuitionistic fuzzy distributive hyper BCI-ideal of X. Then

 $\mu_A(x) \ge \inf_{u \in ((x \circ z) \circ z) \circ (0 \circ z)} \mu_A(u) \text{ and } \upsilon_A(x) \le \sup_{u \in ((x \circ z) \circ z) \circ (0 \circ z)} \upsilon_A(u).$

Proof: Since *A* is an intuitionistic fuzzy distributive hyper BCI-ideal of *X*. Then $\mu_{A}(x) \geq \min \left\{ \inf_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \mu_{A}(u), \mu_{A}(y) \right\}$ $= \min \left\{ \inf_{u \in ((x \circ z) \circ z) \circ (0 \circ z)} \mu_{A}(u), \mu_{A}(0) \right\}$ $= \inf_{u \in ((x \circ z) \circ z) \circ (0 \circ z)} \mu_{A}(u) \text{ because } \mu_{A}(0) = \mu_{A}(t) \text{ for all } t \in X,$ Also, $\upsilon_{A}(x) \leq \max \left\{ \sup_{u \in ((x \circ z) \circ z) \circ (y \circ z)} \upsilon_{A}(u), \upsilon_{A}(y) \right\}$ $= \max \left\{ \sup_{u \in ((x \circ z) \circ z) \circ (0 \circ z)} \upsilon_{A}(u), \upsilon_{A}(0) \right\}$ $= \sup_{u \in ((x \circ z) \circ z) \circ (0 \circ z)} \upsilon_{A}(u) \text{ because } \upsilon_{A}(0) = \upsilon_{A}(t) \text{ for all } t \in X.$

Theorem 4.13: Let *A* be an intuitionistic fuzzy set in a hyper BCI-algebra *X* and let λ_A be the strongest intuitionistic fuzzy relation on *X*. Then *A* is an intuitionistic fuzzy distributive hyper BCI-ideal of *X* iff λ_A is an intuitionistic fuzzy distributive hyper BCI-ideal of $X \times X$.

Proof: Let *A* be an intuitionistic fuzzy distributive hyper BCI-ideal of *X* then $\lambda_{\mu_A}(0,0) = \min \{ \mu_A(0), \mu_A(0) \}$ $\geq \min \{ \mu_A(x_1), \mu_A(x_2) \}$ $= \lambda_{\mu_A}(x_1, x_2) \text{ for all } (x_1, x_2) \in X \times X,$

and $\lambda_{\nu_A}(0,0) = \max \{ \upsilon_A(0), \upsilon_A(0) \}$ $\leq \max \{ \upsilon_A(x_1), \upsilon_A(x_2) \}$ $= \lambda_{\nu_A}(x_1, x_2) \text{ for all } (x_1, x_2) \in X \times X.$

Consider

$$\begin{split} \lambda_{\mu_{A}}(x_{1},x_{2}) &= \min \left\{ \mu_{A}(x_{1}), \mu_{A}(x_{2}) \right\} \\ &\geq \min \left[\min \left\{ \inf_{u \in ((x_{1} \circ z_{1}) \circ z_{1}) \circ (y_{1} \circ z_{1})} \mu_{A}(u), \mu_{A}(y_{1}) \right\}, \min \left\{ \inf_{v \in ((x_{2} \circ z_{2}) \circ z_{2}) \circ (y_{2} \circ z_{2})} \mu_{A}(v), \mu_{A}(y_{2}) \right\} \right] \\ &= \min \left[\min \left\{ \lim_{u \in ((x_{1} \circ z_{1}) \circ z_{1}) \circ (y_{1} \circ z_{1})} \mu_{A}(u) \right\}, \left\{ \inf_{v \in ((x_{2} \circ z_{2}) \circ z_{2}) \circ (y_{2} \circ z_{2})} \mu_{A}(v) \right\} \right\}, \min \left\{ \mu_{A}(y_{1}), \mu_{A}(y_{2}) \right\} \right] \\ &= \min \left[\min \left\{ \lim_{u \in ((x_{1} \circ z_{1}) \circ z_{1}) \circ (y_{1} \circ z_{1})} \mu_{A}(u) \right\}, \left\{ \inf_{v \in ((x_{2} \circ z_{2}) \circ z_{2}) \circ (y_{2} \circ z_{2})} \mu_{A}(v) \right\} \right\}, \lambda_{\mu_{A}}(y_{1}, y_{2}) \right] \\ &= \min \left[\min \left\{ \inf \left(\mu_{A}(u), \mu_{A}(v) \right) \right\}, \lambda_{\mu_{A}}(y_{1}, y_{2}) \right], \end{split}$$
where
$$u \in ((x_{1} \circ z_{1}) \circ z_{1}) \circ (y_{1} \circ z_{1}), v \in ((x_{2} \circ z_{2}) \circ z_{2}) \circ (y_{2} \circ z_{2}) \\ &= \min \left[\inf \left\{ \min \left(\mu_{A}(u), \mu_{A}(v) \right) \right\}, \lambda_{\mu_{A}}(y_{1}, y_{2}) \right] \end{split}$$

where

$$u \in ((x_1 \circ z_1) \circ z_1) \circ (y_1 \circ z_1), v \in ((x_2 \circ z_2) \circ z_2) \circ (y_2 \circ z_2)$$

= min [inf { $\lambda_{\mu_A}(u, v), \lambda_{\mu_A}(y_1, y_2)$ }]
where $(u, v) \in (((x_1, x_2) \circ (z_1, z_2)) \circ ((z_1, z_2)) \circ ((y_1, y_2) \circ (z_1, z_2))$

Also, $\lambda_{\nu_A}(x_1, x_2) = \max \{ \nu_A(x_1), \nu_A(x_2) \}$ $\leq \max \max \{ \sup \nu_A(x_1), \nu_A(x_2) \} \in \mathbb{R}$

 $\leq \max \left[\max \left\{ \sup_{u \in ((x_1 \circ z_1) \circ z_1) \circ (y_1 \circ z_1)} \upsilon_A(u), \upsilon_A(y_1) \right\}, \max \left\{ \sup_{v \in ((x_2 \circ z_2) \circ z_2) \circ (y_2 \circ z_2)} \upsilon_A(v), \upsilon_A(y_2) \right\} \right]$ $= \max \left[\max \left\{ \left\{ \sup_{u \in ((x_1 \circ z_1) \circ z_1) \circ (y_1 \circ z_1)} \upsilon_A(u) \right\}, \left\{ \sup_{v \in ((x_2 \circ z_2) \circ z_2) \circ (y_2 \circ z_2)} \upsilon_A(v) \right\} \right\}, \max \left\{ \upsilon_A(y_1), \upsilon_A(y_2) \right\} \right]$ $= \max \left[\max \left\{ \sup_{u \in ((x_1 \circ z_1) \circ z_1) \circ (y_1 \circ z_1)} \upsilon_A(u) \right\}, \lambda_{\upsilon_A}(y_1, y_2) \right],$ where $u \in ((x_1 \circ z_1) \circ z_1) \circ (y_1 \circ z_1), v \in ((x_2 \circ z_2) \circ z_2) \circ (y_2 \circ z_2)$ $= \max \left[\sup \left\{ \max \left\{ \sup_{u \in ((x_1 \circ z_1) \circ z_1) \circ (y_1 \circ z_1), v \in ((x_2 \circ z_2) \circ z_2) \circ (y_2 \circ z_2) \right\} \right\} \right]$ where $u \in ((x_1 \circ z_1) \circ z_1) \circ (y_1 \circ z_1), v \in ((x_2 \circ z_2) \circ z_2) \circ (y_2 \circ z_2)$ $= \max \left[\sup \left\{ \max \left\{ \sup_{u \in ((x_1 \circ z_1) \circ z_1) \circ (y_1 \circ z_1), v \in ((x_2 \circ z_2) \circ z_2) \circ (y_2 \circ z_2) \right\} \right\} \right]$

where $(u, v) \in (((x_1, x_2) \circ (z_1, z_2)) \circ (z_1, z_2)) \circ ((y_1, y_2) \circ (z_1, z_2))$ which implies that λ_{μ_A} and λ_{ν_A} , they are intuitionistic fuzzy distributive hyper BCIideals of $X \times X$.

Conversely suppose that λ_{μ_A} and λ_{ν_A} , they are intuitionistic fuzzy distributive hyper BCI-ideals of $X \times X$ then for all $(x, y) \in X \times X$.

 $\mu_{A}(0) = \min \{\mu_{A}(0), \mu_{A}(0)\} = \lambda_{u}(0,0) \ge \lambda_{\mu_{A}}(x,x) = \min \{\mu_{A}(x), \mu_{A}(x)\} = \mu_{A}(x)$ and $\upsilon_{A}(0) = \max \{\upsilon_{A}(0), \upsilon_{A}(0)\} = \lambda_{u}(0,0) \le \lambda_{\upsilon_{A}}(x,x) = \max \{\upsilon_{A}(x), \upsilon_{A}(x)\} = \upsilon_{A}(x)$ which implies that $\mu_{A}(0) \ge \mu_{A}(x)$ and $\upsilon_{A}(0) \le \upsilon_{A}(x) \forall x \in X$. $\min \{\mu_{A}(x_{1}), \mu_{A}(y_{1})\} = \lambda_{\mu_{A}}(x_{1}, y_{1})$ $= \min \{\inf \{u_{A}(x_{1}), u_{A}(y_{1})\} = \lambda_{\mu_{A}}(x_{1}, y_{1})$

$$= \min \left\{ \inf_{w \in (((x_1, y_1) \circ (x_3, y_3)) \circ (x_2, y_3)) \circ ((x_2, y_2) \circ (x_3, y_3))} \lambda_{\mu_A}(w), \lambda_{\mu_A}(x_2, y_2) \right\}$$
$$= \min \left\{ \inf_{w \in (((x_1 \circ x_3) \circ x_3) \circ (x_2 \circ x_3), ((y_1 \circ y_3) \circ y_3) \circ (y_2 \circ y_3))} \lambda_{\mu_A}(w), \lambda_{\mu_A}(x_2, y_2) \right\}$$

Also,

 $\max \{ \upsilon_{A}(x_{1}), \upsilon_{A}(y_{1}) \} = \lambda_{\upsilon_{A}}(x_{1}, y_{1})$ $= \max \{ \sup_{w \in (((x_{1}, y_{1}) \circ (x_{3}, y_{3})) \circ (x_{2}, y_{2}) \circ (x_{3}, y_{3}))} \lambda_{\upsilon_{A}}(w), \lambda_{\upsilon_{A}}(x_{2}, y_{2}) \}$ $= \max \{ \sup_{w \in (((x_{1} \circ x_{3}) \circ x_{3}) \circ (x_{2} \circ x_{3}), ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3}))} \lambda_{\upsilon_{A}}(w), \lambda_{\upsilon_{A}}(x_{2}, y_{2}) \}$ so if we put $y_{1} = y_{2} = y_{3} = 0$ or $(x_{1} = x_{2} = x_{3} = 0)$ then we get $\mu_{A}(x_{1}) \ge \min \{ \inf_{u \in ((x_{1} \circ x_{3}) \circ x_{3}) \circ (x_{2} \circ x_{3})} \mu_{A}(u), \mu_{A}(x_{2}) \}$ and $\upsilon_{A}(x_{1}) \le \max \{ \sup_{u \in ((x_{1} \circ x_{3}) \circ x_{3}) \circ (x_{2} \circ x_{3})} \upsilon_{A}(u), \upsilon_{A}(x_{2}) \}$

or $\mu_{A}(y_{1}) \ge \min \left\{ \inf_{v \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3})} \mu_{A}(v), \mu_{A}(y_{2}) \right\}$ $\upsilon_{A}(y_{1}) \le \max \left\{ \sup_{v \in ((y_{1} \circ y_{3}) \circ y_{3}) \circ (y_{2} \circ y_{3})} \upsilon_{A}(v), \upsilon_{A}(y_{2}) \right\}$

which implies that A is an intuitionistic fuzzy distributive hyper BCI-ideal of X.

Theorem 4.14: Let $f : X \to Y$ be an onto hyper homomorphism from a hyper BCIalgebra X to a hyper BCI-algebra Y. If A_2 is a intuitionistic fuzzy distributive hyper BCI-ideal of Y then BCI hyper homomorphic pre image A_1 of A_2 under f is also a intuitionistic fuzzy distributive hyper BCI-ideal of X.

Proof: Define $A_2(f(x)) = A_1(x), \forall x \in X$ and since A_2 is an intuitionistic fuzzy distributive hyper BCI-ideal of *Y* with $f(x) \in Y$.

Therefore, $\mu_{A_1}(0) = \mu_{A_2}(f(0)) \ge \mu_{A_2}(f(x)) = \mu_{A_1}(x)$

and

$$\begin{split} \upsilon_{A_{1}}(0) &= \upsilon_{A_{2}}(f(0)) \leq \upsilon_{A_{2}}(f(x)) = \upsilon_{A_{1}}(x) \,\forall x \in X. \\ \mu_{A_{1}}(x) &= \mu_{A_{2}}(f(x)) \\ &\geq \min\left\{ \inf_{u \in ((f(x) \circ f(z)) \circ f(z)) \circ (f(y) \circ f(z))} \mu_{A_{2}}(u), \mu_{A_{2}}(y') \right\} \\ &= \min\left\{ \inf_{u \in ((f(x) \circ f(z)) \circ f(z)) \circ (f(y) \circ f(z))} \mu_{A_{2}}(u), \mu_{A_{2}}(f(y)) \right\} \\ &= \min\left\{ \inf_{v \in (((x \circ z) \circ z) \circ (y \circ z))} \mu_{A_{1}}(v), \mu_{A_{1}}(y) \right\} \text{because } f \text{ is onto} \end{split}$$

Also,

$$\begin{aligned}
\upsilon_{A_{1}}(x) &= \upsilon_{A_{2}}(f(x)) \\
&\leq \max \left\{ \sup_{u \in ((f(x) \circ f(z)) \circ f(z)) \circ (f(y) \circ f(z))} \upsilon_{A_{2}}(u), \upsilon_{A_{2}}(y') \right\} \\
&= \max \left\{ \sup_{u \in ((f(x) \circ f(z)) \circ f(z)) \circ (f(y) \circ f(z))} \upsilon_{A_{2}}(u), \upsilon_{A_{2}}(f(y)) \right\} \\
&= \max \left\{ \sup_{v \in (((x \circ z) \circ z) \circ (y \circ z))} \upsilon_{A_{1}}(v), \upsilon_{A_{1}}(y) \right\} \text{ because } f \text{ is onto } \end{aligned}$$

Therefore A_1 is an intuitionistic fuzzy distributive hyper BCI-ideal of X.

References

- [1] [1] K.T. Atanassov, Intuitionistic Fuzzy sets, Fuzzy Sets and systems, 20(1986), 87-96.
- [2] [2] K.T. Atanassov, Intuitionistic fuzzy sets. Theory and Applications, Studies in Fuzziness and Soft Computing, 35. Heidelberg; Physica-Verlag 1999.
- [3] [3] Bhattacharya, P. and N. P. Mukherjee, 1985. Fuzzy Relations and Fuzzy groups. Inform.Sci.36:267-282.
- [4] [4] Das, P.S., 1981. Fuzzy Groups and Level Subgroups. J. Math. Anal. Appl., 84: 264-269.
- [5] [5] Farhat Nisar, Rahat Saeed Tariq and S. A. Bhatti, 2009. On Proper Hyper BCI-Algebras of order 3. European Journal of Scientific Research, 37 (2): 319-336.

- [6] [6] Farhat Nisar, Rahat Saeed Tariq and S. A. Bhatti, 2010. Bi-polar-valued Fuzzy hypersubalgebras of a Hyper BCI-algebra, WASJ, 9 (1): 25-33.
- [7] [7] Jun, Y. B., M. M. Zahedi, X. L. Xin and R. A. Borzoei, 2000. On Hyper BCK-Algebras. Ital. J. Pure Appl. Math., 8: 127-136.
- [8] [8] Jun, Y. B. and W. H. Shim, 2002. Fuzzy Implicative Hyper BCK-Ideals of Hyper BCK-algebras. International Journal of Mathematics and Mathematical Sciences, 29 (2): 63-70.
- [9] [9] Jun, Y. B. and W. H. Shim, 2005. Fuzzy Strong Implicative Hyper BCK-Ideals of Hyper BCK-Algebras. Information Sciences, 170: 351-361.
- [10] [10] Jun, Y. B. and X. L. Xin, 2001. Fuzzy Hyper BCK-Ideals of Hyper BCK-Algebras. Sci. Math. Jpn., 53 (2): 353-360.
- [11] [11] Jun. Y. B. and Seok Zun Song, 2006. Fuzzy Set Theory Applied To Implicative Ideals In BCK-Algebras. Bull. Korean Math. Soc., 43 (3): 461-470.
- [12] [12] Xiao Xin Long, 2006. Hyper BCI-Algebras, Discuss, Math., 26: 5-19.
- [13] [13] Marty, F., 1934. Sur Une Generalization de la Notion de Groupe. 8th Congress Math. Scandinaves, Stockholm: pp 45-49.
- [14] [14] Zadeh, L. A., 1965. Fuzzy Sets" Information and Control, 8: 338-353.

N. Palaniappan et al