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Abstract: 
 

In this study the differential transform method is applied to solve the multi-
pantograph equation . This method involves less computational work and can, 
thus, be easily applied to initial value problems. Firstly, we stated the 
definition of the one dimensional transform method, and some related 
theorems. Then some illustrative examples are given, The numerical results 
obtained by these examples are found to be the same  
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I. Introduction 
The differential transform method has been successfully utilized by Zhou (1986) to 
solve linear and nonlinear initial value problem in electric circuit analysis. Moreover, 
Chen and Ho developed this method for partial differential equations and Ayaz 
applied it to system of differential equations. The current Projected differential 
transform method ( PDTM) is an improvement of the former differential version[1]-
[2]-[4]-[6]-[14]  
 The purpose of this paper is to employ the differential transformation method to 
systems of differential equations which are often encounter in many branches of 
physics, chemical and engineering. A variety of methods, exact, approximate, and 
purely numerical are available for the solution of systems of differential equations. 
Most of these methods are computationally intensive because they are trial-and-error 
in nature, or need complicated symbolic computations [11 ]  
 The differential transform method (DTM) is one of the approximate methods 
which can be easily applied to many linear and nonlinear problems and is capable of 
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reducing the size of computational work. Differential transform method is a semi-
numerical analytic technique that formalizes the Taylor series in a totally different 
manner. With this method, the given differential equation and related initial 
conditions are transformed into a recurrence equation, that finally leads to a system of 
algebraic equations which can easily be solved. In this method no need for 
linearization or perturbations, large computational work and round- off errors are 
avoided In resent years many researchers apply the DTM for solving differential 
equations[9 ]-[13] 
 This method constructs, for differential equations an analytical solution in the 
form of a polynomial. Not like the traditional high order Taylor series method that 
requires symbolic computations. Another important advantage is that this method 
reduces the size of computational work while the Taylor series method is 
computationally taking long time for large orders. This method is well addressed 
in[3]-[5] 
 
 
II. One dimensional Differential transform method: 
The basic definitions and fundamental theorems of one dimensional differential 
transform method are defined and proved in[7] and will be stated brief in this paper. 
 Differential transform of function  y px  is defined as follows: 
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 Where  y px the original is function and  y k  is the transformed function, 
which is also called the T- function.  
  The inverse differential transform of  y k  is defined as. 
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  Combining equations (1) and (2) we have  
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 The fundamental theorems of the one dimensional differential transform are:  
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Note that c  is Constant and n  is a nonnegative integer. 
 
 
III. Application: 
The pantograph type equations have been studied extensively owing to the numerous 
applications in which these equations arise. The name pantograph originated from the 
work of Ockendon and Tayler on the collection of current by the pantograph head of 
an electric locomotive, this equations are appeared in modeling of various problems in 
engineering and sciences such as biology, economy, control and electrodynamics 
.Consider the flowing system of multi-pantograph equation[ 8] 

 
             

1 1
, 1, 2,...., 4

n n

i ij j ij j j i
j j

u t t u t t u p t f t i n 
 

       

 With the initial condition  

  0i iu   
 Where ,ij ij   and if  are known functions , ,i ip  are constants such that 
0 1ip  iu  unknown analytical functions on the given interval to de determined . 
 Taking the projected differential transform method of equation (4) we have 
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 Substituting  iu k into equation (2) we have 
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IV. Numerical examples : 
In this section, we present three example with analytical solution to show the 
efficiency of methods described in the Section III 
 
Example 4.1:[12] Consider tow-dimensional pantograph equation 
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 With the initial condition    1 20 1 , 0 1u u   
 Applying the differential transform method to equation (5) we get 

 

             

             

1 1 2 1

2 1 2 2

11 1
2

11 1
2

k

k

k u k u k u k u k A k B k

k u k u k u k u k C k D k

          
  


            

 

 Where      , ,A k B k C k and  D k  correspond to transformation of 
1
2, ,

tt te e e
  and 

1
2

t
e  respectively and this leads to 

 
         

1 1
1 12 2, , ,
! ! ! !

k k

k

A k B k C k D k
k k k k

               

 

       

       

1 1 1 1

2 2 2 2

1 1 11 1 , 2 , 3 , 4
2! 3! 4!
1 1 11 1, 2 , 3 , 4
2! 3! 4!

u u u u

u u u u

   


    

  



Exact Solution of multi-pantograph Equation 65 
 

 

and so on in general      
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 Substituting  1u k and  2u k  into equation (2) we get 
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Example 4. 2:[10] Consider tow-dimensional pantograph equation 
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 With the initial condition    1 20 0 , 0 1u u   using the differential transform 
method in to equation (6) we have 
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 Substituting  1u k and  2u k  into equation (2) we get 
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Example 4. 3:[12] Consider three-dimensional pantograph equation 
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 Applying the differential transform method to equation (6) we get 
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 Substituting    1 2,u k u k and  3u k  into equation (2) we get 
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 
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V. Conclusion:- 
In this work, we used the differential transform method for solving the multi-
pantograph equation and compared our results with the exact solution in order to 
demonstrate the validity and applicability of the method. This method is better than 
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numerical methods, since it is free from rounding off error, and does not require large 
computer power In summary, using differential transformation method to solve ODE, 
consists of three main steps. First, transformation ODE in to algebra equation, second, 
solve the equations, finally inverting the solution of algebraic equations to obtain a 
closed form series solution. 
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