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Abstract 
 

This paper defines the concept of Fuzzy 2-bounded linear operator. Two types 
(strong and weak) fuzzy 2-boundedness are defined. Relation between 
strongly fuzzy 2-boundedness and weakly fuzzy 2-boundedness is studied.  
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1. INTRODUCTION 
The concept of fuzzy set was introduced by Zadeh [11] in 1965. Katsaras [6] in 1984, 
first introduced the notion of fuzzy norm on a linear space. In 1992, Felbin [3] 
introduced an idea of fuzzy norm on a linear space by assigning a fuzzy real number 
to each element of the linear space so that the corresponding metric associated this 
fuzzy norm is of Kaleva type [5] fuzzy metric. She also introduced an idea of fuzzy 
bounded linear operator, the norm of which is a fuzzy number. Recently Xiao and Zhu 
[10] redefined in a more general setting the Idea of Felbin's [3] definitions of fuzzy 
norm of a linear operator from a normed linear space to another fuzzy normed linear 
space.  
 A satisfactory theory of 2-norm on a linear space has been introduced and 
developed by Gähler [4]. In 2009, Sundaram and Beaula[9] defined the concept of 
fuzzy 2-normed linear space and introduced fuzzy 2-linear operator.  
 In the present paper, we introduce the concept of fuzzy 2-bounded linear 
operator on a fuzzy2-normed linear space to another fuzzy 2-normed linear space and 
also two types (strong and weak) fuzzy 2-bounded linear operators are defined.  
 T. Bag, S.K. Samanta [2] have proved some results on fuzzy boundedness of 
fuzzy linear operator on a fuzzy normed linear space using fuzzy norm, we have 
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generalized this concept to a fuzzy 2-normed linear space and discuss the relation 
between strong fuzzy 2-bounded  linear operator and weak fuzzy 2-bounded linear 
operator. 
 
 
2. PRELIMINARIES 
Definition 2.1[4]:  Let X  be a real vector space of dimension greater than 1 and let 
.,.  be a real valued function on XX   satisfying the following conditions  

(1) 0, yx  if and only if x  and y are linearly dependent.  

(2) xyyx ,,   

(3) yxyx ,  ,   , where  is real. 

(4) zxyxyzx ,, ,   
 

 .,.  is called 2-norm on X  and the pair  .,.,X  is called a 2-normed linear 
space. 
 
Definition 2.2 [1]:  Let X  be a linear space over the field K  (where K  is the field of 
real or complex numbers). A fuzzy subset N of RX   ( R  is the set of real numbers) 
is called a fuzzy norm on X iff for all Xux ,  and .Kc  
(N1) for all ,Rt  with   .0,  ,0  txNt  
(N2) for all ,Rt  with   1,  ,0  txNt  if and only if .0x  

(N3) for all ,Rt with   











c
txNtcxNt ,,  ,0  if .0c  

(N4) for all       .,  ,,min,   ,,   ,, tuNsxNtsuxNXuxRts   
(N5)  ,xN  is non-decreasing function of R and   .1,lim 


txN

t
 

 The pair  NX ,  will be referred to as a fuzzy normed linear space.  
 
Definition 2.3 [8]:  Let X be a linear space over a field F . A fuzzy subset N of 

RXX   ( R is the set of real numbers) is called a fuzzy 2-norms on X  if and only 
if  
1. for all ,Rt  with   .0,,  ,0 21  txxNt  
2. for all ,Rt  with   1,,  ,0 21  txxNt  if and only if 1x  and 2x are linearly 

dependent.  
3.  txxN ,, 21  is invarient under any permutation of ., 21 xx  

4. for all ,Rt  with   











c
txxNtcxxNt ,,,,   ,0 2121  if .   ,0 Fcc   

5. for all       txxNsxxNtsxxxNRts ,,,,,min,,    . , 2121221   
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6.  ,, 21 xxN  is non-decreasing function of R and  

 
  1,,lim 21t




txxN  

then  NXN ,  is called a fuzzy 2-normed linear space.  
 
Example 2.1: Let  .,.,X  be 2-normed linear space define  

 txxN ,, 21 ,
, 21 xxt

t


  when BAxxRtt  21,   ,  ,0  

       0 ,      when BAxxRtt  21,   ,  ,0  
 Then  NX , fuzzy 2-normed linear space.  
 
Definition 2.4 [9]: A fuzzy 2-linear operator T is a function from BA  to DC   
where BA,  are subspaces of fuzzy 2-normed linear space  1, NX  and DC,  are 
subspaces of fuzzy 2-normed linear space  2, NY  such that  

),(),(),(),(),( 212121 xxTxxTxxTxxTxxxxT   
    and   ),( ),( 2121 xxTxxT   . 
 
 
3. Fuzzy 2-bounded linear operator 
In this section we define the notion of weakly fuzzy 2-boundedness and strongly 
fuzzy 2-boundedness for fuzzy 2-bounded linear operators over fuzzy 2-normed linear  
spaces and relation between fuzzy 2-continuity and fuzzy 2-boundedness are studied.     
 Let X and Y  be two linear spaces over the same field of scalars. Let 1N and 2N
be two fuzzy 2 norms on X and Y  respectively. Then  1, NX  and  2, NY  are fuzzy 
2-normed linear spaces.   
 
Definition 3.1: Let T : DCBA   be a fuzzy 2-linear operator, where BA,  are 
subspaces of  1, NX  and DC,  are subspaces of  2, NY  then T  is said to be strongly 
fuzzy 2- bounded on BA  if and only if  a positive real number M  such that 

  BAxx  ,   and 

 
     .,,    ,,    , 12 



 

M
sxxNsxxTNRs  

 
Definition 3.2: Let BCBAT :  be a fuzzy 2-linear operator, where BA,  are 
subspaces of  1, NX  and DC,  are subspaces of  ,, 2NY  then T  is said to be weakly 
fuzzy 2-bounded on BA  if for any   0    1,0   M such that 

  ,     ,,  RtBAxx   

 
     











txxTN

M
txxN ,',,', 21
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Theorem 3.1:  Let BCBAT : be a fuzzy 2-linear operator, where BA, are 
subspaces of  1, NX  and  DC,  are subspaces of  ,, 2NY then T  is strongly fuzzy-2 
bounded then it is weakly fuzzy 2-bounded but not conversely.  
 
Proof: First we suppose that T  is strongly fuzzy 2-bounded. Thus 0   M  such that 

  BAxx  ,   and  Rs   , we have  

 
     



 

M
sxxNsxxTN ,,,, 12   

 Thus for any     ,0      ,1,0  MM  Such that  

 
       RsBAxxsxxTN

M
sxxN 








    ,,     ,,',,', 21 



 

this implies that T  is weakly fuzzy 2-bounded.  
 For conversely, we consider the following example.  
 
Example (3.1):  Let 2RX   be a linear space over R .  
Let    baxbax  ,    ,,  
 Define  

 babaxx ,   and  abbax  ,        

then  .,.,X  be a 2-normed linear space.  
 Now we define  
 1N  and  1,0:2  RXXN  as  

    
 
 

||',||

||',||

,0

,
||',||
||',||

,',
22

22

1

xxt

xxt
xxt
xxt

txxN
















  

and  

  
0

0

,0

,
||',||,',2















t

txxt
t

txxN  

 We know that 2N  is a fuzzy 2-normed space. Now we want to show that 1N is a 
fuzzy 2-normed linear space on .X  
(i) for all Rt  with ,0t  we have from definition  
    0,,1  txxN   
(ii) for ,0t  we have  
         1,,1  txxN   

 1
',
',

22

22







xxt
xxt
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2222 ',', xxtxxt   

 0', 2
 xx  

 0,  xx  

 xx  , are linearly dependent.  
(iii) for Rt  with 0t   

    22

22

1 ',
',

,',
xxt
xxt

txxN



  

 
22

22

22

22

,'
,'

',
',

xxt
xxt

xxt
xxt









  

  txxN ,'1  
(iv)  for all Rt with 0t , and Fcc     ,0 (field)  

 
222

222

1
',

',
,',

xxct
xxct

c
txxN















 

 
22

22

',
',

cxxt
cxxt




  

  tcxxN ,',1   
(v)  we have to prove  

       txxNsxxNtsxxxN ,,,,',min,', 0101   
 If xxs  ,  or 0, xxt   
then relation is obivious.  
 Suppose,  xxs  ,  and 0, xxt   
without loss of generality assume ,    sxxNtxxN ,,,, 101   
then  

 0,, 0
222  xxsxxt                (i) 

 Now  
 0,, xxxxts   

 0,, xxxts   
so  

    
  2

0
2

2
0

2

01
',

',
,',

xxxts
xxxts

tsxxxN



  

    
   20

2

2
0

2

,',

,',

xxxxts

xxxxts




  
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 Again  

 

   
    22

22

2
0

2

2
0

2

',

',

,',

,',

xxs

xxs

xxxxts

xxxxts








    
     222

0
2

2
0

222

',,',

,',2',2

xxsxxxxts

xxxxsxxts




  

 
    2

0
222 ,',2',2 xxxxsxxts

A
  

 Where       222
0

2 x'x,sxx,x'x,tsA   

 
   0,',',2,',2

0
2

0
222  xxsxxtxxsxxsxxt

A  
[ by (i) ] 

 Thus  

    sxxNtsxxxN ,,,, 101    if     sxxNtxxN ,,,, 101   
similarly  

    txxNtsxxxN ,,,, 0101   if    txxNsxxN ,,,, 011   
 Thus   tsxxxN ,, 01 min     txxNsxxN ,,,,, 011   
(VI)  for all ,, 21 Rtt   if xxtt  ,21  then by definition  
     0,,,, 2111  txxNtxxN  
suppose t2 > t1 > ||x,x'|| then  

 
22

1

22
1

22
2

22
2

',

',

',

',

xxt
xxt

xxt
xxt








  

 

     
  22

1
22

2

22
2

22
1

22
1

22
2

',',

',',',',

xxtxxt
xxtxxtxxtxxt




  

  0  
for all   BAxx ,  implies  

 
22

1

22
1

22
2

22
2

',
',

',
',

xxt
xxt

xxt
xxt









 

     1121 ,',,', txxNtxxN   
 Thus  txxN ,',1  is non-decreasing function.  
 Also  

 
  22

22

1
',

',
lim,',lim

xxt
xxt

txxN
tt 





 


































2

2
2

2

2
2

',
1

',
1

lim

t
xx

t

t
xx

t

t
 1   

 Thus  1, NX  is an fuzzy 2-normed linear space.  
 Now we define a fuzzy 2-linear operator  
 DCBAT :  be a fuzzy 2-linear operator, where BA, are subspaces of 
 1, NX  and  DC, are subspaces of  2, NY as 
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       BAxxxxxxT  ,        ,,   

 We choose )1,0(
1

1



 

M , Then for xxt  ,  

 












M

txxN ,',1
 

 





 





2
2

2

2
2

2

',

',

xx
M
t

xx
M
t

 

 










 222

222

',)1(
',)1(

xxt
xxt  

   222222 ',1',)1( xxtxxt    

     222222 ',',11 xxxxtt    

      2222 ',',11 xxxxt    

         1',11 222 xxt  

 
 








1
11

',
22

2 t
xx  

 
 








1

11', txx (Since 1 ) 

 
  ttxxt 








1

11',  

 
 








1

111 tt  

 

  






1

111t  

 
  







 111
1

', xxt
t   ……    (ii) 

 Now  

    








111
1  

     1111  

       1111  

  11 (Since 1 )  

    11 2  

 231    
 This is true for all  .1,0  Thus form (ii)  
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 We get )1,0(,
',





xxt

t  

    ',,',2 xxtiftxxTN    

 Again since for ,', xxt    

 
0

',
',

22

22






xxt
xxt  

 If follows that, 










M

txxN ,',1
 

    )1,0(,,2  txxTN  
 Thus is any case, we get  

 
  )1,0(),',(,', 21 












txxTN
M

txxN  

 Hence T  is weakly fuzzy 2-bounded.  
 Now for xxt  ,  

 
    








M
txxNtxxTN ,',),',( 12  

 
2

2

2

2
2

2

',

',

', xx
M
t

xx
M
t

xxt
t







  

 
222

222

',

',
', xxMt

xxMt
xxt

t








 

 
22222 , ,,, 2 xxxxMxxtxxMt   

   xxtxxtxxM  ,,2, 222  

   ',',2

2
2

xxxxt
tM


    

     2
1

',',2 xxxxt

tM


   0', xx  

  M  as t  
 Hence T  is not strongly fuzzy 2-bounded.  
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