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THEOREM:-Let EN (T, Φ’, Φ’’) denote the average number of real zeros of the 
random trigonometric polynomial  
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in the interval (Φ’, Φ’’). Assuming ak(w) are independent random variables 
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1. INTRODUCTION:- Let N (T, Φ’, Φ’’) be the number of real roots of the 
trigonometric polynomial   
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(1) 

in the interval (Φ’, Φ’’) where the coefficients ak(w) are mutually independent 
random variables identically distributed according to the normal law, bk=kp are 
positive constants and when multiple roots are counted only once. Let EN (T, Φ’, Φ’’) 
denote the exception of N (T, Φ’, Φ’’). Obviously, Tn(θ, w) can have at most 2n zeros 
in the interval (0, 2π). Das [1] studied the class of polynomials 
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where gk are independent normal random variables for fixed p>-1/2 and proved that in 
the interval (0, 2π) the function (2) have 
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number of real roots when n is large. Here, q= max (0, -p) and ).q21)(13/2(ε1   
The measure of the exceptional set does not exceed 1ε2n  . 
 Das [2] took the polynomial (1) where ak(w) are independent normal random 
variables identically distributed with mean zero and variance done. He proves that in 
the interval π2θ0  , average number of real zeros of polynomials (1) is  
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 In this paper we consider the polynomial (1) with conditions as in das [2] and 
use the Kac-Rice formula for the exception of the number of real zeros and obtain that 
for p≥0. 
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 Our asymptotic estimate implies that Das’s estimate in [1] is approached from 
below.Also our error term is smaller. 
 The particular case for p=0 has been considered by Dunnage [3] and Pratihari 
and Bhanja [4]. Dunnage has shown that in the interval π2θ0   all save a certain 
exceptional set of the functions (Tn(θ,w) have 
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zeros when n is large. The measure of the exceptional set does not exceed (log n)-1. 
Using the Kac-Rice formula we tried to obtain in [4] that 
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 Professor Dunnage [5] comments that our result is incorrect. He is quite right 
when he says than an asymptotic estimate is unique and both results (4) and (5) 
cannot be correct. But in his calculations given in paragraph 4 and 5 he seems to have 
imported a factor 2 and the correct calculation would give 3/nπ2~I . Accepting 
his own statement in paragraph 3 that I<I’, our point is clear. However, since 

3/nπ2~I  on direct integration, our estimation of EN as found in [4], contained in 
the statement (5) above, must be wrong. We are sorry about our mistake. In this paper 
we consider our original integral I and evaluate it directly instead of placing it 
between two integrals as in [4], the second one being possibly suspect. This 
rectification eventually raises our estimate for EN but, all the same, keeps it below 
Dunnage’s estimate stated in (4) above. The purpose of our result is that EN 
approaches the value 2n/√3 from below. This is something meaningful. We prove the 
following theorem. 
 
Theorem. The average number of real zeros in the interval (0, 2π) of the class of 
random trigonometric polynomials of the form     
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where ak(w) are mutually independent random variables identically distributed 
according to the normal law with mean zero and variance one and bk=kp(p≥0) are 
positive constants, is asymptotically equal to 
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outside an exceptional set of measure at most (2/n) where 
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2. THE APPROXIMATION FOR ) T;0,2π EN(  Let L(n) be a positive-valued 
function of n such that L(n) and n/L(n) both approach infinity with n. We take 

n/)n(Lε   throughout. 
 Outside a small exceptional set of values of w, (Tn(θw) has a negligible number 
of zeros in each of the intervals  )π2 ,επ2( and )επ ,επ(),ε,0(  . By periodicity, 
the number of zeros in  )π2 ,επ2( and )ε,0(  is the same as the number in  )ε,ε( . 
We shall use the following lemma, which is due to Das[2]. 
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LEMMA :- The probability that T has more than 
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 The step in this section follow closely those in section 2 of 4. Therefore, we 
indicate only the modifications necessary. In this case we have 
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for fixed non-zero real constants A and B to be chosen. 
 
 
3. ESTIMATION OF THE INTEGRAL OF EQUATION :-Consider the integral   
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 As in Das[2] letting bk=kp(p≥0) we get 
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 Outside the set    2 ,0, ππ  of the values of θ, AB>C2. We have 
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When  X→∞, we have 
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 Now the result follows from the section 4 of [4], choosing L(n)=log n. The cases 
where –1/2< p<0 and p=-1/2 can be similarly dealt with and results can be obtained to 
show that Das’s estimate are approached . 
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