Properties of T – Anti Fuzzy Ideal of ℓ – Rings

¹ J. Prakashmanimaran, ² B. Chellappa and ³ M. Jeyakumar

`IResearch Scholar (Part Time - Mathematics), Manonmaniam Sundharanar University, Tirunelveli, Tamilnadu, India.

²Principal, Nachiappa Suvamical Arts and Science College, Karaikudi - 630 003, Tamilnadu, India.

³Assistant Professor, Dept. of Mathematics, Alagappa University Evening College, Rameswaram – 623 526, Tamilnadu, India.

Abstract

In this paper, we made an attempt to study the properties of T – anti fuzzy ideal of ℓ – ring and we introduce some definitions and theorems in join, union, join of a family and the union of a family of T – anti fuzzy ideal of ℓ – ring.

Keywords: Fuzzy subset, T – fuzzy ideal, T – anti fuzzy ideal, join of T – anti fuzzy ideal, union of T – anti fuzzy ideal, join of a family T – anti fuzzy ideal and the union of a family of T – anti fuzzy ideal.

INTRODUCTION

The concept of fuzzy sets was initiated by L.A.Zadeh [9] in 1965. After the introduction of fuzzy sets several researchers explored on the generalization of the concept of fuzzy sets. In this paper we define, characterize and study the T-anti fuzzy right and left ideals. Z. D. Wang introduced the basic concepts of TL-ideals. We introduced T-anti fuzzy right ideals of ℓ -ring. We compare fuzzy ideal introduced by Liu to T-anti fuzzy ideals. We have shown that ring is regular if and only if union of any T-anti fuzzy right ideal with T-anti fuzzy left ideal is equal to its product. We discuss some of its properties. We have shown that the join of T-anti fuzzy ideal of ℓ -ring, union of T-anti fuzzy ideal of ℓ -ring, join of a family T-anti fuzzy ideal of ℓ -ring and the union of a family of T-anti fuzzy ideal of ℓ -ring.

Definition: 1

A nonempty set R together with two binary operation "+" and "." is called a ring if

- (i). (R, +) is an abelian group,
- (ii). (R, .) is a semigroup
- (iii). x(y+z) = xy + xz; (x+y)z = xz + yz, for all x, y, z in R

Definition: 2

A non-empty set R is called lattice ordered ring or ℓ -ring if it has four binary operations "+", "\cdot", \vee , \wedge defined on it and satisfy the following

- (i) $(R, +, \cdot)$ is a ring
- (ii) (R, \vee, \wedge) is a lattice

(iii)
$$x + (y \lor z) = (x + y) \lor (x + z); \quad x + (y \land z) = (x + y) \land (x + z)$$

 $(y \lor z) + x = (y + x) \lor (z + x); \quad (y \land z) + x = (y + x) \land (z + x)$

(iv)
$$x \cdot (y \vee z) = (xy) \vee (xz); x \cdot (y \wedge z) = (xy) \wedge (xz)$$

 $(y \vee z) \cdot x = (yx) \vee (zx); (y \wedge z) \cdot x = (yx) \wedge (zx),$
for all x, y, z in R and $x \ge 0$

Example: 1

 $(Z, +, \cdot, \vee, \wedge)$ is a ℓ -ring, where Z is the set of all integers.

Example: 2

 $(nZ, +, \cdot, \vee, \wedge)$ is a ℓ -ring, where Z is the set of all integers and $n \in Z$

Definition: 3

A mapping $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a triangular norm [t-norm] if and only if it satisfies the following conditions:

(i).
$$T(x, 1) = T(1, x) = x$$
, for all $x \in [0, 1]$

(ii). if
$$x \ge x^*$$
, $y \ge y^*$ then $T(x, y) \ge T(x^*, y^*)$

(iii).
$$T(x, y) = T(y, x)$$
, for all $x, y \in [0, 1]$.

(iv).
$$T(x, T(y, z)) = T(T(x, y), z)$$
.

Definition: 4

A mapping from a nonempty set X to [0, 1] $\mu: X \to [0, 1]$ is called a fuzzy subset of X.

Proposition: 1

Every t - norm T, has a useful property

- (i) $T(\alpha, \beta) \leq \min\{\alpha, \beta\}$, and
- (ii) $T(\alpha, 0) = 0$, for all $\alpha, \beta \in [0,1]$

Definition: 5

Let μ_A and λ_A be an anti fuzzy subsets of a set X. An anti fuzzy subset $\mu_A \cup \lambda_A$ is defined as $(\mu_A \cup \lambda_A)(x) = \max \{\mu_A(x), \lambda_A(x)\}$

Example: 3

Let
$$\mu_A = \{\langle a, 0.4 \rangle, \langle b, 0.7 \rangle, \langle c, 0.3 \rangle\}$$
 and

$$\lambda_A = \{\langle a, 0.5 \rangle, \langle b, 0.3 \rangle, \langle c, 0.43 \rangle\}$$
 be an anti fuzzy subsets of $X = \{a, b, c\}$

The union of two anti fuzzy subsets of μ_A and λ_A is

$$\mu_A \cup \lambda_A = \{\langle a, 0.5 \rangle, \langle b, 0.7 \rangle, \langle c, 0.43 \rangle\}$$

Definition: 6

Let μ_A and λ_A be the fuzzy subsets of a set X. An anti-fuzzy subset $\mu_A \vee \lambda_A$ is defined as $(\mu_A \vee \lambda_A)(x) = T(\mu_A(x), \lambda_A(x))$

Definition: 7

An anti fuzzy subset μ_A of a ring R is called T – anti fuzzy left (resp. right) ideal if

(i)
$$\mu_A(x-y) \le T(\mu_A(x), \mu_A(y)) = \max\{\mu_A(x), \mu_A(y)\}$$

(ii)
$$\mu_A(xy) \le \{\mu_A(x)\}$$
 (resp. left $\mu_A(xy) \le \{\mu_A(y)\}$), for all x, y in R

Theorem: 1

Every anti-fuzzy right ideal of a ring R is an T – anti fuzzy right ideal.

Proof:

Let μ_A be an anti fuzzy right ideal of R.

Then $\mu_A(x-y) \leq T(\mu_A(x), \mu_A(y))$ and $\mu_A(xy) \leq \{\mu_A(x)\}$, for all $x, y \in R$. Hence μ_A is an T – anti fuzzy ideal.

Definition: 8

An anti fuzzy subset μ_A of a lattice ordered ring (or ℓ -ring) R is called an anti fuzzy sub ℓ -ring of R, if the following conditions are satisfied

(i)
$$\mu_A(x \vee y) \leq \max \{\mu_A(x), \mu_A(y)\}$$

(ii)
$$\mu_A(x \wedge y) \leq \max \{\mu_A(x), \mu_A(y)\}$$

(iii)
$$\mu_A(x-y) \le \max\{\mu_A(x), \mu_A(y)\}$$

(iv)
$$\mu_A(xy) \le \max \{\mu_A(x), \mu_A(y)\}$$
, for all x, y in R

Example: 4

Consider an ant-fuzzy subset μ_1 of the ℓ -ring $(Z, +, \cdot, \vee, \wedge)$

$$\mu_1(x) = \begin{cases} 0.4 & \text{if } x \in \langle 2 \rangle \\ 0.7 & Z - \langle 2 \rangle \end{cases}$$
 Then μ_1 is an anti-fuzzy ℓ – sub ring

Definition: 9

An anti fuzzy subset μ_A of an ℓ -ring R is called an anti fuzzy ℓ -ring ideal (or) fuzzy ℓ -ideal of R, if for all x, y in R the following conditions are satisfied

(i)
$$\mu_A(x \vee y) \leq \max \{\mu_A(x), \mu_A(y)\}$$

(ii)
$$\mu_A(x \wedge y) \leq \min \{\mu_A(x), \mu_A(y)\}$$

(iii)
$$\mu_A(x-y) \leq \max \{\mu_A(x), \mu_A(y)\}$$

(iv)
$$\mu_A(xy) \leq \min\{\mu_A(x), \mu_A(y)\}$$

Definition: 10

An anti fuzzy subset μ_A of a ring R is called an T – anti fuzzy ideal, if the following conditions are satisfied,

(i)
$$\mu_A(x-y) \leq T(\mu_A(x), \mu_A(y))$$

(ii)
$$\mu_A(xy) \le \mu_A(x)$$
; $\mu_A(xy) \le \mu_A(y)$, for all $x, y \in R$

Definition: 11

An anti fuzzy subset μ_A of a ℓ -ring R is called an T-anti fuzzy ideal, if the following conditions are satisfied,

(i)
$$\mu_A(x-y) \leq T(\mu_A(x), \mu_A(y))$$

(ii)
$$\mu_A(xy) \le \mu_A(x); \mu_A(xy) \le \mu_A(y)$$

(iii)
$$\mu_A(x \vee y) \leq T(\mu_A(x), \mu_A(y))$$

(iv)
$$\mu_A(x \wedge y) \leq T(\mu_A(x), \mu_A(y))$$
, for all $x, y \in R$

Example: 5

Now $(R = \{a, b, c\}, +, \cdot, \vee, \wedge)$ is a ℓ -ring. The operations $+, \cdot, \vee$ and \wedge defined by the following tables

Consider an anti-fuzzy subset μ_A of the ℓ -ring R

$$\mu_A(x) = \begin{cases} 0.2 & \text{if } x = a \\ 0.5 & \text{if } x = b \\ 0.8 & \text{if } x = c \end{cases}$$

Then μ_A is an T – anti fuzzy ideal of ℓ – ring R

Theorem: 2

If μ_A and λ_A are T-anti fuzzy ideals of a ℓ -ring R, then $\mu_A \vee \lambda_A$ is an T-anti fuzzy ideal of a ℓ -ring R.

Proof:

Given μ_A and λ_A are T – anti fuzzy ideals of a ℓ – ring R, Let $x, y \in R$

(i)
$$(\mu_A \vee \lambda_A)(x-y) = T(\mu_A(x-y), \lambda_A(x-y))$$

$$\leq T(T(\mu_A(x), \mu_A(y)), T(\lambda_A(x), \lambda_A(y))),$$
 (by definition)

$$= T\left(T\left(T\left(\mu_A(x), \mu_A(y)\right), \lambda_A(x)\right), \lambda_A(y)\right)$$

$$= T\left(T\left(T\left(\mu_A(x), \lambda_A(x)\right), \mu_A(y)\right), \lambda_A(y)\right)$$

$$= T\left(T(\mu_A(x), \lambda_A(x)), T(\mu_A(y), \lambda_A(y))\right)$$

$$= T ((\mu_A \vee \lambda_A)(x), (\mu_A \vee \lambda_A)(y))$$

Therefore $(\mu_A \vee \lambda_A)(x-y) \leq T((\mu_A \vee \lambda_A)(x), (\mu_A \vee \lambda_A)(y))$, for all $x, y \in R$

(ii) Since
$$\mu_A(xy) \le \mu_A(x)$$
 and $\lambda_A(xy) \le \lambda_A(x)$

Now
$$(\mu_A \vee \lambda_A)(xy) \leq T(\mu_A(xy), \lambda_A(xy))$$
, (by definition)

$$\leq T(\mu_A(x), \lambda_A(x))$$

$$\leq (\mu_A \vee \lambda_A)(x)$$

Therefore $(\mu_A \vee \lambda_A)(xy) \leq (\mu_A \vee \lambda_A)(x)$, for all $x, y \in R$

(iii)
$$(\mu_A \vee \lambda_A)(x \vee y) = T(\mu_A(x \vee y), \lambda_A(x \vee y))$$

$$\leq T\left(T(\mu_A(x), \mu_A(y)), T(\lambda_A(x), \lambda_A(y))\right)$$
, (by definition)

$$= T\left(T(\mu_A(x), \mu_A(y)), \lambda_A(x), \lambda_A(y)\right)$$

$$= T\left(T(T(\mu_A(x), \lambda_A(x)), \mu_A(y)), \lambda_A(y)\right)$$

$$= T\left(T(\mu_A(x), \lambda_A(x)), T(\mu_A(y), \lambda_A(y))\right)$$

$$= T ((\mu_A \vee \lambda_A)(x), (\mu_A \vee \lambda_A)(y))$$

Therefore $(\mu_A \vee \lambda_A)(x \vee y) \leq T((\mu_A \vee \lambda_A)(x), (\mu_A \vee \lambda_A)(y))$, for all $x, y \in R$

(iv)
$$(\mu_A \vee \lambda_A)(x \wedge y) = T(\mu_A(x \wedge y), \lambda_A(x \wedge y))$$

$$\leq T(T(\mu_A(x), \mu_A(y)), T(\lambda_A(x), \lambda_A(y))),$$
 (by definition)

$$= T\left(T\left(T\left(\mu_A(x), \mu_A(y)\right), \lambda_A(x)\right), \lambda_A(y)\right)$$

$$= T\left(T\left(T\left(\mu_A(x), \lambda_A(x)\right), \mu_A(y)\right), \lambda_A(y)\right)$$

$$= T\left(T\big(\mu_{A}(x),\,\lambda_{A}(x)\big),\,T\big(\mu_{A}(y),\,\lambda_{A}(y)\big)\right)$$

$$= T ((\mu_A \vee \lambda_A)(x), (\mu_A \vee \lambda_A)(y))$$

Therefore $(\mu_A \vee \lambda_A)(x \wedge y) \leq T((\mu_A \vee \lambda_A)(x), (\mu_A \vee \lambda_A)(y))$, for all $x, y \in R$ Thus $\mu_A \vee \lambda_A$, is an T – anti fuzzy right ideal of a ℓ – ring R.

Theorem: 3

If μ_A and λ_A are T – anti fuzzy ideals of a ℓ – ring R, then $\mu_A \cup \lambda_A$, is an T – anti fuzzy ideal of a ℓ – ring R.

Proof:

Let μ_A and λ_A are T – anti fuzzy ideals of a ℓ – ring R, Let $x, y \in R$

(i)
$$(\mu_A \cup \lambda_A)(x-y) = \max \{\mu_A(x-y), \lambda_A(x-y)\}$$

$$\leq \max \left\{ \max \left\{ \mu_A(x), \mu_A(y) \right\}, \max \left\{ \lambda_A(x), \lambda_A(y) \right\} \right\}$$

$$= \max \left\{ \max \left\{ \max \left\{ \mu_A(x), \mu_A(y) \right\}, \lambda_A(x) \right\}, \lambda_A(y) \right\}$$

$$= \max \left\{ \max \left\{ \max \left\{ \mu_A(x), \lambda_A(x) \right\}, \mu_A(y) \right\}, \lambda_A(y) \right\}$$

= max
$$\{\max\{\mu_A(x), \lambda_A(x)\}, \max\{\mu_A(y), \lambda_A(y)\}\}$$

$$= \max \{ (\mu_A \cup \lambda_A)(x), (\mu_A \cup \lambda_A)(y) \}$$

Therefore $(\mu_A \cup \lambda_A)(x-y) \le \max \{(\mu_A \cup \lambda_A)(x), (\mu_A \cup \lambda_A)(y)\}$, for all $x, y \in R$

(ii) Since
$$\mu_A(xy) \le \mu_A(x)$$
 and $\lambda_A(xy) \le \lambda_A(x)$

Now
$$(\mu_A \cup \lambda_A)(xy) \leq \max \{\mu_A(xy), \lambda_A(xy)\}$$

$$\leq \max\{\mu_A(x), \lambda_A(x)\}$$

$$\leq (\mu_A \cup \lambda_A)(x)$$

Therefore $(\mu_A \cup \lambda_A)(xy) \leq (\mu_A \cup \lambda_A)(x)$, for all $x, y \in R$

(iii)
$$(\mu_A \cup \lambda_A)(x \vee y) = \max \{\mu_A(x \vee y), \lambda_A(x \vee y)\}$$

$$\leq \max \left\{ \max \left\{ \mu_A(x), \mu_A(y) \right\}, \max \left\{ \lambda_A(x), \lambda_A(y) \right\} \right\}$$

$$= \max \left\{ \max \left\{ \max \left\{ \mu_A(x), \mu_A(y) \right\}, \lambda_A(x) \right\}, \lambda_A(y) \right\} \right\}$$

$$= \max \left\{ \max \left\{ \max \left\{ \mu_A(x), \lambda_A(x) \right\}, \mu_A(y) \right\}, \lambda_A(y) \right\}$$

= max
$$\{\max\{\mu_A(x), \lambda_A(x)\}, \max\{\mu_A(y), \lambda_A(y)\}\}$$

$$= \max \{ (\mu_A \cup \lambda_A)(x), (\mu_A \cup \lambda_A)(y) \}$$

Therefore $(\mu_A \cup \lambda_A)(x \vee y) \leq \max \{(\mu_A \cup \lambda_A)(x), (\mu_A \cup \lambda_A)(y)\}$, for all $x, y \in R$

(iv)
$$(\mu_A \cup \lambda_A)(x \wedge y) = \max \left\{ \mu_A(x \wedge y), \lambda_A(x \wedge y) \right\}$$

$$\leq \max \left\{ \max \left\{ \mu_A(x), \mu_A(y) \right\}, \max \left\{ \lambda_A(x), \lambda_A(y) \right\} \right\}$$

$$= \max \left\{ \max \left\{ \max \left\{ \mu_A(x), \mu_A(y) \right\}, \lambda_A(x) \right\}, \lambda_A(y) \right\}$$

$$= \max \left\{ \max \left\{ \max \left\{ \mu_A(x), \lambda_A(x) \right\}, \mu_A(y) \right\}, \lambda_A(y) \right\}$$

$$= \max \left\{ \max \left\{ \mu_A(x), \lambda_A(x) \right\}, \max \left\{ \mu_A(y), \lambda_A(y) \right\} \right\}$$

$$= \max \left\{ (\mu_A \cup \lambda_A)(x), (\mu_A \cup \lambda_A)(y) \right\}$$
 Therefore
$$(\mu_A \cup \lambda_A)(x \wedge y) \leq \max \left\{ (\mu_A \cup \lambda_A)(x), (\mu_A \cup \lambda_A)(y) \right\}, \text{ for all } x, y \in R$$
 Thus
$$\mu_A \cup \lambda_A, \text{ is an } T - \text{anti fuzzy ideal of a } \ell - \text{ring } R.$$

Theorem: 4

The join of a family of an T – anti fuzzy ideal of ℓ – ring R is an T – anti fuzzy ideal of a ℓ – ring R.

Proof:

Let $\{u_{\alpha} : \alpha \in I\}$ be a family of T – anti fuzzy ideal of ℓ – ring R

Let
$$A = \bigvee u_{\alpha}$$
 and Let x and y in R . Then $\alpha \in I$

(i)
$$\mu_A(x-y) = T(\mu_A(x-y), \mu_A(x-y))$$

 $\leq T(T(\mu_A(x), \mu_A(y)), T(\mu_A(x), \mu_A(y)))$, (by definition)
 $= T(T(\mu_A(x), \mu_A(y)))$
 $= T(\mu_V(x), \mu_V(y))$

Therefore $\mu_A(x-y) \le T(\mu_A(x), \mu_A(y))$, for all $x, y \in R$

(ii) Since
$$\mu_A(xy) \le \mu_A(x)$$
 and $\mu_A(xy) \le \mu_A(y)$

Now
$$\mu_A(xy) \le T(\mu_A(xy), \mu_A(xy))$$

= $T(\mu_A(x), \mu_A(x))$, (by definition)
= $\mu_A(x)$

Therefore $\mu_A(xy) \leq \mu_A(x)$, for all $x, y \in R$

(iii)
$$\mu_A(x \vee y) = T(\mu_A(x \vee y), \mu_A(x \vee y))$$

 $\leq T(T(\mu_A(x), \mu_A(y)), T(\mu_A(x), \mu_A(y))), \text{ (by definition)}$
 $= T(T(\mu_A(x), \mu_A(y)))$

$$= T(\mu_A(x), \mu_A(y))$$

Therefore
$$\mu_A(x \vee y) \leq T(\mu_A(x), \mu_A(y))$$
, for all $x, y \in R$

(iv)
$$\mu_A(x \wedge y) = T(\mu_A(x \wedge y), \mu_A(x \wedge y))$$

$$\leq T\left(T(\mu_A(x), \mu_A(y)), T(\mu_A(x), \mu_A(y))\right)$$
, (by definition)

$$= T\left(T(\mu_A(x), \mu_A(y))\right)$$

$$= T(\mu_A(x), \mu_A(y))$$

Therefore
$$\mu_A(x \wedge y) \leq T(\mu_A(x), \mu_A(y))$$
, for all $x, y \in R$

Thus the join of a family of an T – anti fuzzy ideal of ℓ – ring R is an T – anti fuzzy ideal of a ℓ – ring R.

Theorem: 5

The union of a family of an T-anti fuzzy ideal of ℓ -ring R is an T-anti fuzzy ideal of a ℓ -ring R.

Proof:

Let
$$\{U_{\alpha} : \alpha \in I\}$$
 be a family of T – fuzzy ideal of R and let $A = \bigcup_{\alpha \in I} U_{\alpha}$.

Let x and y in R

Then

(i)
$$\mu_A(x-y) = \max \{\mu_A(x-y), \mu_A(x-y)\}$$

$$\leq \max \{ \max \{ \mu_A(x), \mu_A(y) \}, \max \{ \mu_A(x), \mu_A(y) \} \}$$

$$= \max \left\{ \max \left(\mu_A(x), \mu_A(y) \right) \right\}$$

$$= \max \{ \mu_A(x), \mu_A(y) \}$$

Therefore
$$\mu_A(x-y) \le \max\{\mu_A(x), \mu_A(y)\}$$
, for all $x, y \in R$

(ii). Since
$$\mu_A(xy) \le \mu_A(x)$$
 and $\mu_A(xy) \le \mu_A(y)$

Now
$$\mu_A(xy) \leq \max \{\mu_A(xy), \mu_A(xy)\}$$

$$\leq \max\{\mu_A(x), \mu_A(x)\}$$

$$\leq \mu_A(x)$$

Therefore $\mu_A(xy) \le \mu_A(x)$, for all $x, y \in R$

(iii)
$$\mu_A(x \lor y) = \max \{\mu_A(x \lor y), \mu_A(x \lor y)\}$$

$$\leq \max \left\{ \max \left\{ \mu_A(x), \mu_A(y) \right\}, \max \left\{ \mu_A(x), \mu_A(y) \right\} \right\}$$

$$= \max \{ \max \{ \mu_A(x), \mu_A(y) \} \}$$

$$= \max(\mu_A(x), \mu_A(y))$$

Therefore
$$\mu_A(x \lor y) \le \max\{\mu_A(x), \mu_A(y)\}$$
, for all $x, y \in R$

(iv)
$$\mu_A(x \wedge y) = \max \{\mu_A(x \wedge y), \mu_A(x \wedge y)\}$$

$$\leq \max \{ \max \{ \mu_A(x), \mu_A(y) \}, \max \{ \mu_A(x), \mu_A(y) \} \}$$

$$= \max \left\{ \max \left\{ \mu_A(x), \mu_A(y) \right\} \right\}$$

$$= \min\{\mu_A(x), \mu_A(y)\}\$$

Therefore $\mu_A(x \wedge y) \leq \max(\mu_A(x), \mu_A(y))$, for all $x, y \in R$

Thus union of a family of T – anti fuzzy ideal of ℓ – ring R is an T – anti fuzzy ideal of a ℓ – ring R.

REFERENCES

- [1] **W. Liu.** Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets and Systems, 59:205–210, 1993.
- [2] **Y.-D. Yu and Z.-D. Wang.** TL-subrings and TL-ideals part1: basic concepts. Fuzzy Sets and Systems, 68:93–103, 1994.
- [3] **M. T. Abu Osman,** On some product of fuzzy subgroups, Fuzzy Sets and Systems 24 (1987), 79-86.
- [4] **W. E. Barnes,** On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966), 411-422.
- [5] **W. E. Coppage and J. Luh,** Radicals of gamma-rings, J. Math. Soc. Japan 23 (1971), 40-52.
- [6] **N. Nobusawa,** On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
- [7] **B. Schweizer and A. Sklar,** Statistical metric spaces, Pacific Journal of Mathematics. 10 (No. 1) (1963), 313-334.
- [8] Y. Yu, J. N. Mordeson and S. C. Cheng, Elements of L-algebra, Lecture Notes in Fuzzy Math. and Computer Sciences, Creighton Univ., Omaha, Nebraska 68178, USA (1994).
- [9] **L. A. Zadeh,** Fuzzy sets, Inform. and Control, 8 (1965), 338-353.