Another Approach for Exponential Matrix

V. C. Borkar ${ }^{1}$ and Mohammed Abdullah Salman ${ }^{2}$
${ }^{1}$ Department of Mathematics \& Statistics, Yeshwant Mahavidyalaya, Swami Ramamnand Teerth Marthwada University, Nanded, India.
${ }^{2}$ Department of Mathematics \& Statistics, Yeshwant Mahavidyalaya, Swami Ramamnand Teerth Marthwada University, Nanded, India.

Abstract

The exponential matrix $e^{t A}$ is a very important subclass of matrix functions. It is a very useful tool on solving linear systems of first order which help us in the analysis of controllability and observability of a linear system from first order of differential equations and control theory. In this paper, we introduce new approach or method to calculate the matrix exponential $e^{t A}$ where the matrix $A \in C^{n \times n}$ has an eigenvalue $\lambda_{l}=0$. In the last part of this paper we provide some examples to show the effectiveness of this method.

Keywords: matrix theory, matrix exponential, eigenvalues, Vandermonde matrix.

1. INTRODUCTION

The exponential matrix $e^{t A}$ is a very important a particular matrix functions. It is a very useful tool for solving linear systems, which help us in the analysis of controllability and observability of a linear system and control theory .Basically, matrix functions are widely used in science area especially in matrix analysis. It provides a formula for closed solutions, which help us in the analysis of controllability and observability of a linear system [1,6]. There are several methods
for calculating the exponential matrix, some of these methods are effective and others not effective. The differential equation $x^{\prime}(t)=A x(t)$ has the solution $e^{t A} x(0)$, which plays an important role in linear system and control theory. It is well known that the exponential matrix $e^{A t}$ can be defined by a convergent power series $e^{t A}=\sum_{n=0}^{\infty} \frac{(t A)^{n}}{n!}$

However, calculating the powers of matrix A which is an infinite sum, makes the researchers design methods to get the accurate solution of $e^{t A}$. In recent years, there exist many methods for computing $e^{t A}$ for more details [2,3,4,5,7,8]. Among these methods, for example, the explicit formulae can overcome the truncation errors which are widely used in these papers [2, 4, 5,7,8], which are based on this paper [4]. In this paper, we introduce new method to compute the matrix exponential $e^{t A}$ where the matrix $A \in C^{n \times n}$ has an eigenvalues $\lambda_{l}=0$. This method compute the accurate solution of $e^{t A}$ where the matrix $A \in C^{n \times n}$ satisfy this condition $A^{n}=\omega_{1} A^{n-1}+\omega_{2} A^{n-2}$, Where ω_{1} and ω_{2} are parameters. When $\omega_{1}=0$ or $\omega_{2}=0$, then the matrix A is the same as the matrix in [4]. In the last part of this chapter, we provide examples to show the effectiveness of this method.

2. THE MAIN RESULTS

It is well known that the exponential matrix $e^{A t}$ can be defined by a convergent power series

$$
\begin{equation*}
e^{t A}=\sum_{n=0}^{\infty} \frac{(t A)^{n}}{n!}=I+t A+\frac{(t A)^{2}}{2!}+\ldots \ldots+\frac{(t A)^{n-1}}{(n-1)!}+\ldots \ldots \ldots \tag{1}
\end{equation*}
$$

Some authors and researchers gave explicit formulae to compute the exponential matrix, for example, Bernstein and So in his papers [2,7] found a new method to compute the exponential matrix $e^{t A}$ when $A^{2}=A, A^{2}=\omega I_{n}$ and $A^{3}=\omega A$ and Wu, B. B. [4] found a new method to compute the exponential matrix $e^{t A}$ when:

$$
A^{n+1}=\omega A^{n}, A^{n+2}=\omega^{2} A^{n} \text { and } A^{n+3}=\omega^{3} A^{n}
$$

In this paper, we will generalize a method which presented in Wu, B. B. [4] to compute the exponential matrix $e^{A t}$ when $A \in C^{n \times n}$ has this form

$$
A^{n}=\omega_{1} A^{n-1}+\omega_{2} A^{n-2}+\omega_{3} A^{n-3}+\ldots \ldots .+\omega_{k} A^{n-k}, k<n .
$$

Suppose $A^{n}=A^{n-1}+A^{n-2}$, then $A^{n+1}=2 A^{n-1}+A^{n-2}$ continue this process until we get $A^{n+k}=\alpha_{1} A^{n-1}+\alpha_{2} A^{n-2}$, by using this formulae, we rewrite equation (1) as follow

$$
\begin{equation*}
e^{A t}=I+t A+\frac{t^{2} A^{2}}{2!}+\ldots \ldots \ldots+\alpha_{1}(t) A^{n-2}+\alpha_{2}(t) A^{n-1} \tag{2}
\end{equation*}
$$

To compute the parameters $\alpha_{1}(t), \alpha_{2}(t)$ as the following process:
From equations $(1,2)$ and putting $A^{n}=A^{n-1}+A^{n-2}, A^{n+1}=2 A^{n-1}+A^{n-2}$ and so on in all terms and collect them in the same kind we get

$$
I+\frac{t A}{1!}+\ldots .+\frac{t^{n-2} A^{n-2}}{(n-2)!}+\frac{t^{n-1} A^{n-1}}{(n-1)!}+\ldots .=I+\frac{t A}{1!}+\ldots .+\alpha_{1}(t) A^{n-2}+\alpha_{2}(t) A^{n-1}
$$

By comparing all factors we get

$$
\begin{align*}
& \alpha_{1}(t)=\frac{t^{n-2}}{(n-2)!}+\frac{t^{n}}{(n)!}+\frac{t^{n+1}}{(n+1)!}+\frac{2 t^{n+2}}{(n+2)!}+\ldots \tag{3}\\
& \alpha_{2}(t)=\frac{t^{n-1}}{(n-1)!}+\frac{t^{n}}{(n)!}+\frac{2 t^{n+1}}{(n+1)!}+\frac{3 t^{n+2}}{(n+2)!}+\ldots \tag{4}
\end{align*}
$$

By looking to equations (3) and (4) we see that infinite series, so it is difficult to find the exact form for $\alpha_{1}(t), \alpha_{2}(t)$, which we will discuss them in next section.

Definition (1)

A matrix

$$
\left[\begin{array}{ccccc}
1 & s_{1} & s_{1}^{2} & \cdots & s_{1}^{n-1} \\
1 & s_{2} & s_{2}^{2} & \cdots & s_{2}^{n-1} \\
1 & s_{3} & s_{3}^{2} & \cdots & s_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & s_{n} & s_{n}^{2} & \cdots & s_{n}^{n-1}
\end{array}\right]
$$

is called Vandermonde matrix, and

$$
\left|\begin{array}{ccccc}
1 & s_{1} & s_{1}^{2} & \cdots & s_{1}^{n-1} \\
1 & s_{2} & s_{2}^{2} & \cdots & s_{2}^{n-1} \\
1 & s_{3} & s_{3}^{2} & \cdots & s_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & s_{n} & s_{n}^{2} & \cdots & s_{n}^{n-1}
\end{array}\right|=\prod_{1 \leq j<i \leq n}\left(s_{i}-s_{j}\right)
$$

is the determinant of the Vandermonde matrix .

Definition (2)

The characteristic polynomial of the matrix $A \in C^{n \times n}$ is $f(\lambda)$, then

$$
f(A)=A^{n}-c_{n-1} A^{n-1}-c_{n-2} A^{n-2}-\ldots \ldots \ldots-c_{1} I=0
$$

By applying definition (2) to equation (6.1) we have the following equation:

$$
\begin{equation*}
e^{A t}=c_{0}(t) I+c_{1}(t) A+c_{2}(t) A^{2}+\ldots .+c_{n-2}(t) A^{n-2}+c_{n-1}(t) A^{n-1} \tag{5}
\end{equation*}
$$

Because the matrix A satisfies the assumption $A^{n}=A^{n-1}+A^{n-2}$, then we find the characteristic polynomial of the matrix A and determine the eigenvalues of the matrix A, which are three distinct eigenvalues $\lambda_{1}=0$ and λ_{2}, λ_{3}. The first eigenvalue $\lambda_{l}=0$ of the matrix A is $(n-2)$ eigenvalues. To find the coefficients $c_{0}(t), c_{l}(t), \ldots, c_{n-l}(t)$ by comparing the equations (2) and (5) we have the matrix equation as the following:

$$
\begin{align*}
& \left(c_{0}(t)-1\right) I+\left(c_{1}(t)-\frac{t}{1!}\right) \lambda_{i}+\left(c_{2}(t)-\frac{t^{2}}{2!}\right) \lambda_{i}^{2}+\ldots+ \\
& +\left(c_{n-2}(t)-\alpha_{1}(t)\right) \lambda_{i}^{n-2}+\left(c_{n-1}(t)-\alpha_{2}(t)\right) \lambda_{i}^{n-1}=0 \tag{6}
\end{align*}
$$

As we mentioned above the matrix A has three eigenvalues and by using Vandermonde matrix and replace $\lambda_{i}=S_{i}$ we construct the matrix equation as the following:

$$
\left[\begin{array}{ccccc}
1 & \lambda_{1} & \lambda_{l}^{2} & \cdots & \lambda_{l}^{n-1} \tag{7}\\
1 & \lambda_{2} & \lambda_{2}^{2} & \cdots & \lambda_{2}^{n-1} \\
1 & \lambda_{3} & \lambda_{3}^{2} & \ldots & \lambda_{3}^{n-1}
\end{array}\right]\left[\begin{array}{c}
c_{0}(t)-1 \\
c_{l}(t)-\frac{t}{1!} \\
\vdots \\
c_{n-2}(t)-\alpha_{l}(t) \\
c_{n-1}(t)-\alpha_{2}(t)
\end{array}\right]=0, n>3
$$

By looking to the matrix equation (7), there are two or more than two solutions, so we can't obtain the exact form of $\alpha_{1}(t), \alpha_{2}(t)$ by using $c_{0}(t), c_{1}(t), c_{2}(t), \ldots \ldots c_{n-2}, c_{n-1}(t)$. To avoid this problem and compute $c_{0}(t), c_{l}(t), c_{2}(t), \ldots . c_{n-2}, c_{n-l}(t)$, we substitute $\lambda_{1}=0$ in (6), we get $c_{0}(t)=1$, and after the derivative of (6) with respect to λ_{l} we get

$$
\begin{align*}
& \left(c_{1}(t)-\frac{t}{1!}\right)+2\left(c_{2}(t)-\frac{t^{2}}{2!}\right) \lambda_{i}^{2}+\ldots+(n-2)\left(c_{n-2}(t)-\right. \\
& \left.-\alpha_{1}(t)\right) \lambda_{i}^{n-3}+(n-1)\left(c_{n-1}(t)-\alpha_{2}(t)\right) \lambda_{i}^{n-2}=0 \tag{8}
\end{align*}
$$

By substituting $\lambda_{l}=0$ in (8) we get $c_{l}(t)=\frac{t}{1!}$, continue this process (n-3) derivation and substitute $\lambda_{1}=0$ to get $c_{2}(t), \ldots \ldots \mathcal{c}_{n-3}(t)$. Finally, we get

$$
\begin{equation*}
\left(c_{n-2}(t)-\alpha_{I}(t)\right) \lambda_{i}^{n-2}+\left(c_{n-1}(t)-\alpha_{2}(t)\right) \lambda_{i}^{n-1}=0 \tag{9}
\end{equation*}
$$

Now, we construct the matrix equation as a linear system by taking λ_{2}, λ_{3} in (9) we get

$$
\left[\begin{array}{ll}
\lambda_{2}^{n-2} & \lambda_{2}^{n-1} \tag{10}\\
\lambda_{3}^{n-2} & \lambda_{3}^{n-1}
\end{array}\right]\left[\begin{array}{l}
c_{n-2}(t)-\alpha_{1}(t) \\
c_{n-1}(t)-\alpha_{2}(t)
\end{array}\right]=0
$$

Where determinate of (6.10) doesn't equal zero. Then, we conclude that $c_{n-2}(t)=\alpha_{1}(t)$ and $c_{n-1}(t)=\alpha_{2}(t)$.

Lemma (1)

Let $A \in C^{n \times n}$ and satisfies this condition $A^{n}=A^{n-1}+A^{n-2}$, then the exponential matrix computed by

$$
\begin{equation*}
e^{A t}=I+t A+\frac{t^{2}}{2!} A^{2}+\ldots+c_{n-2}(t) A^{n-2}+c_{n-1}(t) A^{n-1} \tag{11}
\end{equation*}
$$

Where $c_{n-2}(t)$ and $c_{n-1}(t)$ are computed by

$$
\begin{align*}
& \binom{c_{n-2}(t)}{c_{n-1}(t)}=\left[\begin{array}{ll}
\lambda_{2}^{n-2} & \lambda_{2}^{n-1} \\
\lambda_{3}^{n-2} & \lambda_{3}^{n-1}
\end{array}\right]^{-1}\binom{e^{\lambda_{2} t}-\sum_{i=0}^{n-3} \frac{t^{i} \lambda_{2}^{i}}{i!}}{e^{\lambda_{3} t}-\sum_{i=0}^{n-3} \frac{t^{i} \lambda_{3}^{i}}{i!}} \\
& \text { and } \lambda_{2}=\frac{1+\sqrt{5}}{2}, \lambda_{3}=\frac{1-\sqrt{5}}{2} \tag{12}
\end{align*}
$$

Proof

From equations (2) and (5) and we can rewrite them and get

$$
\begin{gathered}
e^{A t}=I+t A+\frac{t^{2} A^{2}}{2!}+\ldots \ldots \ldots+\alpha_{1}(t) A^{n-2}+\alpha_{2}(t) A^{n-1} \\
e^{A t}=c_{0}(t) I+c_{1}(t) A+c_{2}(t) A^{2}+\ldots .+c_{n-2}(t) A^{n-2}+c_{n-1}(t) A^{n-1}
\end{gathered}
$$

and from equation (8) we have from that process
$c_{0}(t)=I, c_{1}(t)=\frac{t}{1!}, c_{2}=\frac{t^{2}}{2!} \ldots \ldots .$. and $c_{n-2}(t)=\alpha_{1}(t), c_{n-1}(t)=\alpha_{2}(t)$, then after comparing them and substitution by $c_{n-2}(t)=\alpha_{1}(t), c_{n-1}(t)=\alpha_{2}(t)$ in equation (2) we get,

$$
e^{A t}=I+t A+\frac{t^{2} A^{2}}{2!}+\ldots \ldots \ldots .+c_{n-2}(t) A^{n-2}+c_{n-1}(t) A^{n-1}
$$

Now, replacing A by $\lambda_{i}, i=2,3$, we get the exponential matrix as following:

$$
\begin{equation*}
e^{\lambda_{t} t}=I+t \lambda_{1}+\frac{t^{2} \lambda_{i}^{2}}{2!}+\ldots \ldots \ldots+c_{n-2}(t) \lambda_{i}^{n-2}+c_{n-1}(t) \lambda_{i}^{n-1} \tag{13}
\end{equation*}
$$

To compute $c_{n-2}(t)$ and $c_{n-1}(t)$ from equation (6.13) after simplifying it we get,

$$
\begin{equation*}
e^{\lambda_{t} t}-\sum_{i=0}^{n-3} \frac{t^{i} \lambda_{i}^{i}}{i!}=c_{n-2}(t) \lambda_{i}^{n-2}+c_{n-1}(t) \lambda_{i}^{n-1} \tag{14}
\end{equation*}
$$

Take λ_{2} in (14) and take λ_{3} to construct the matrix equation to compute $c_{n-2}(t)$ and $c_{n-1}(t)$ as following:

$$
\binom{c_{n-2}(t)}{c_{n-1}(t)}=\left[\begin{array}{ll}
\lambda_{2}^{n-2} & \lambda_{2}^{n-1} \tag{15}\\
\lambda_{3}^{n-2} & \lambda_{3}^{n-1}
\end{array}\right]^{-1}\binom{e^{\lambda_{2} t}-\sum_{i=0}^{n-3} \frac{t^{i} \lambda_{2}^{i}}{i!}}{e^{\lambda_{t} t}-\sum_{i=0}^{n-3} \frac{t^{i} \lambda_{3}^{i}}{i!}} .
$$

Lemma (2)

Let $A \in C^{n \times n}$ and satisfies $A^{n}=\omega_{1} A^{n-1}+\omega_{2} A^{n-2}$, then the exponential matrix computed by,

$$
\begin{equation*}
e^{A t}=I+t A+\frac{t^{2}}{2!} A^{2}+\ldots .+c_{n-2}(t) A^{n-2}+c_{n-1}(t) A^{n-1} \tag{16}
\end{equation*}
$$

Where $c_{n-2}(t)$ and $c_{n-1}(t)$ are computed by,

$$
\binom{c_{n-2}(t)}{c_{n-1}(t)}=\left[\begin{array}{ll}
\lambda_{2}^{n-2} & \lambda_{2}^{n-1} \tag{17}\\
\lambda_{3}^{n-2} & \lambda_{3}^{n-1}
\end{array}\right]^{-1}\binom{e^{\lambda_{2} t}-\sum_{i=0}^{n-3} \frac{t^{i} \lambda_{2}^{i}}{i!}}{e^{\lambda_{3} t}-\sum_{i=0}^{n-3} \frac{t^{i} \lambda_{3}^{i}}{i!}}
$$

now, if ω_{1} and ω_{2} satisfy this equation $\omega_{1}^{2}+4 \omega_{2}>0$ then, we compute λ_{2} and λ_{3} as $\lambda_{2}=\left(\omega_{1}+\sqrt{\left(\omega_{1}^{2}+4 \omega_{2}\right)} / 2\right)$ and $\lambda_{3}=\left(\omega_{1}-\sqrt{\left(\omega_{1}^{2}+4 \omega_{2}\right)} / 2\right)$. now, if ω_{1} and ω_{2} satisfy this equation $\omega_{1}^{2}+4 \omega_{2}<0$ then, we compute λ_{2} and λ_{3} as $\lambda_{2}=\left(\omega_{1}+\sqrt{\left(-\omega_{1}^{2}-4 \omega_{2} i\right)} / 2\right)$ and $\lambda_{3}=\left(\omega_{1}-\sqrt{\left(-\omega_{1}^{2}-4 \omega_{2} i\right)} / 2\right)$.

Notation (1): If $\omega_{1}=\omega_{2}$ this mean $\omega_{1}^{2}+4 \omega_{2}=0$, in this case, we need to compute the $c_{n-2}(t)$ and $c_{n-1}(t)$ by derivative,

$$
e^{\lambda_{2} t}-\sum_{i=0}^{n-3} \frac{t^{i} \lambda_{2}^{i}}{i!}=c_{n-2}(t) \lambda_{2}^{n-2}+c_{n-1}(t) \lambda_{2}^{n-1}
$$

With respect to λ_{2} in Equation (6.8), we get,

$$
t e^{\lambda_{2} t}-\sum_{i=1}^{n-3} \frac{i t^{i} \lambda_{2}^{i-1}}{i!}=(n-2) c_{n-2}(t) \lambda_{2}^{n-3}+(n-1) c_{n-1}(t) \lambda_{2}^{n-2}
$$

Where $c_{n-2}(t)$ and $c_{n-1}(t)$ are computed by

$$
\binom{c_{n-2}(t)}{c_{n-1}(t)}=\left[\begin{array}{cc}
\lambda_{2}^{n-2} & \lambda_{2}^{n-1} \tag{18}\\
(n-2) \lambda_{2}^{n-3} & (n-1) \lambda_{2}^{n-2}
\end{array}\right]^{-1}\binom{e^{\lambda_{2} t}-\sum_{i=0}^{n-3} \frac{t^{i} \lambda_{2}^{i}}{i!}}{t e^{\lambda_{2} t}-\sum_{i=1}^{n-3} \frac{i t^{i} \lambda_{3}^{i-1}}{i!}}
$$

Lemma (3)

Let $A \in C^{n \times n}$ and satisfies this condition $A^{n}=A^{n-1}+A^{n-2}+A^{n-3}$, then the exponential matrix is computed by,

$$
\begin{equation*}
e^{A t}=I+t A+\frac{t^{2}}{2!} A^{2}+\ldots .+c_{n-3}(t) A^{n-3} c_{n-2}(t) A^{n-2}+c_{n-1}(t) A^{n-1} \tag{19}
\end{equation*}
$$

Where $c_{n-3}(t), c_{n-2}(t)$ and $c_{n-1}(t)$ are computed by,

$$
\left(\begin{array}{l}
c_{n-3}(t) \tag{20}\\
c_{n-2}(t) \\
c_{n-1}(t)
\end{array}\right)=\left[\begin{array}{lll}
\lambda_{2}^{n-3} & \lambda_{2}^{n-2} & \lambda_{3}^{n-1} \\
\lambda_{3}^{n-3} & \lambda_{3}^{n-2} & \lambda_{3}^{n-1} \\
\lambda_{4}^{n-3} & \lambda_{4}^{n-2} & \lambda_{4}^{n-1}
\end{array}\right]^{-1}\left(\begin{array}{l}
e^{\lambda_{2} t}-\sum_{i=0}^{n-4} \frac{t^{i} \lambda_{2}^{i}}{i!} \\
e^{\lambda_{3} t}-\sum_{i=0}^{n-4} \frac{t^{i} \lambda_{2}^{i}}{i!} \\
e^{\lambda_{4} t}-\sum_{i=0}^{n-4} \frac{t^{i} \lambda_{2}^{i}}{i!}
\end{array}\right)
$$

where λ_{2}, λ_{3} and λ_{4} are root of $\lambda^{3}-\lambda^{2}-\lambda-1=0$.

Lemma (4)

Let $A \in C^{n \times n}$ and satisfies $A^{n}=\omega_{1} A^{n-1}+\omega_{2} A^{n-2}+\omega_{3} A^{n-3}$, then the exponential matrix is computed by,

$$
\begin{equation*}
e^{A t}=I+t A+\frac{t^{2}}{2!} A^{2}+\ldots+c_{n-3}(t) A^{n-3} c_{n-2}(t) A^{n-2}+c_{n-1}(t) A^{n-1} \tag{21}
\end{equation*}
$$

Where $c_{n-3}, c_{n-2}(t)$ and $c_{n-1}(t)$ are computed by

$$
\left(\begin{array}{l}
c_{n-3}(t) \tag{22}\\
c_{n-2}(t) \\
c_{n-1}(t)
\end{array}\right)=\left[\begin{array}{lll}
\lambda^{n-3} & \lambda_{2}^{n-2} & \lambda_{3}^{n-1} \\
\lambda_{3}^{n-3} & \lambda_{3}^{n-2} & \lambda_{3}^{n-1} \\
\lambda_{4}^{n-3} & \lambda_{4}^{n-2} & \lambda_{4}^{n-1}
\end{array}\right]^{-1}\left(\begin{array}{l}
e^{\lambda_{2} t}-\sum_{i=0}^{n-4} \frac{t^{i} \lambda^{i}}{i!} \\
e^{\lambda_{3} t}-\sum_{i=0}^{n-4} \frac{t i \lambda_{2}^{i}}{i!} \\
e^{\lambda_{4} t}-\sum_{i=0}^{n-4} \frac{t^{i} \lambda_{2}^{i}}{i!}
\end{array}\right)
$$

where λ_{2}, λ_{3} and λ_{4} are the different roots of $\lambda^{3}-\omega_{1} \lambda^{2}-\omega_{2} \lambda-\omega_{3} 1=0$

Notation (2): If λ_{2}, λ_{3} and λ_{4} are not the different roots, we can also compute the parameters $c_{n-3}, c_{n-2}(t)$ and $c_{n-1}(t)$ by using the method as in notation (1).

Lemma (5)

Let $A \in C^{n \times n}$ and satisfies this condition

$$
A^{n}=\omega_{1} A^{n-1}+\omega_{2} A^{n-2}+\omega_{3} A^{n-3}+\ldots .+\omega_{k} A^{n-k}, k<n
$$

Then the exponential matrix is computed by,

$$
\begin{align*}
& e^{A t}=I+t A+\frac{t^{2}}{2!} A^{2}+\ldots .+\frac{t^{n-k-1}}{(n-k-1)!} A^{n-k-1}+c_{n-k}(t) A^{n-k}+ \\
& +c_{n-k+1}(t) A^{n-k+1}+\ldots+c_{n-1}(t) A^{n-1} \tag{23}
\end{align*}
$$

Where $c_{n-k}(t), \ldots \ldots ., c_{n-3}(t), c_{n-2}(t)$ and $c_{n-1}(t)$ are computed by,

$$
\left[\begin{array}{c}
c_{n-k}(t) \tag{24}\\
c_{n-k+1}(t) \\
\vdots \\
c_{n-1}(t)
\end{array}\right]=\left[\begin{array}{cccc}
\lambda_{2}^{n-k} & \lambda_{2}^{n-k+1} & \cdots & \lambda_{2}^{n-1} \\
\lambda_{3}^{n-k} & \lambda_{3}^{n-k+1} & \cdots & \lambda_{3}^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{k+1}^{n-k+1} & \lambda_{k+1}^{n-k+1} & \cdots & \lambda_{k+1}^{n-1}
\end{array}\right]\left[\begin{array}{c}
e^{\lambda_{2} t}-\sum_{i=0}^{n-k-1} \frac{t^{i} \lambda_{2}^{i}}{i!} \\
e^{\lambda_{3} t}-\sum_{i=0}^{n-k-1} \frac{t^{i} \lambda_{3}^{i}}{i!} \\
\vdots \\
e^{\lambda_{k+1} t}-\sum_{i=0}^{n-k-1} \frac{t^{i} \lambda_{k+1}^{i}}{i!}
\end{array}\right]
$$

$$
\begin{aligned}
& \lambda_{2}, \lambda_{3}, \ldots, \lambda_{k+1} \text { are the different roots of } \\
& \lambda^{k}-\omega_{1} \lambda^{k_{-}}-\ldots \ldots .-\omega_{k-1} \lambda-\omega_{k} 1=0
\end{aligned}
$$

3. APPLICATIONS OF METHOD

Here, we will give some example to show the procedure and effectiveness this method.

Example (1) :
Let A a matrix $(4 \times 4), \quad A=\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & -1\end{array}\right]$
After some calculations we get $A^{4}=A^{3}+2 A^{2}$, then, $\omega_{1}=1$ and $\omega_{2}=2$. From lemma (2), we have ω_{1} and ω_{2} satisfy $\omega_{1}+4 \omega_{2}^{2}>0$.then, we compute λ_{1} and λ_{2} as in lemma (2) which equals to $\omega_{1}=2$ and $\omega_{2}=-1$. Then, the exponential matrix will be as the following:

$$
\begin{aligned}
e^{A t} & =I_{4}+t A+c_{2}(t) A^{2}+c_{3}(t) A^{3} \\
& =I_{4}+t A+\left(\frac{1}{12} e^{2 t}+\frac{2}{3} e^{-t}+\frac{1}{2} t-\frac{3}{4}\right) A^{2}+\left(\frac{1}{12} e^{2 t}-\frac{1}{3} e^{-t}-\frac{1}{2} t+\frac{1}{4}\right) A^{3}
\end{aligned}
$$

Where $c_{2}=\left(\frac{1}{12} e^{2 t}+\frac{2}{3} e^{-t}+\frac{1}{2} t-\frac{3}{4}\right), c_{3}(t)=\left(\frac{1}{12} e^{2 t}-\frac{1}{3} e^{-t}-\frac{1}{2} t+\frac{1}{4}\right)$
then, the exponential matrix is

$$
e^{A t}=\left[\begin{array}{cccc}
1 & 2 t & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & e^{2 t} & 0 \\
-e^{-t} & 2 e^{-t}+2 t-2 & 0 & e^{-t}
\end{array}\right]
$$

Example (2) :

Let A a matrix $(4 \times 4), A=\left[\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & -1\end{array}\right]$

As is the above example, the matrix A satisfy $A^{4}=2 A^{3}+A^{2}-2 A$, then, $\omega_{1}=2, \omega_{2}=1$ and $\omega_{3}=-2$ from lemma (4), we compute λ_{2}, λ_{3} and λ_{4} then, the exponential matrix will be as the following:

$$
\begin{aligned}
e^{A t}= & I_{4}+c_{1}(t) A+c_{2}(t) A^{2}+c_{3}(t) A^{3} \\
= & I_{4}+\left(\frac{-1}{6} e^{2 t}+e^{t}-\frac{1}{3} e^{-t}-\frac{1}{2}\right) A+\left(\frac{1}{2} e^{t}+\frac{1}{2} e^{-t}-1\right) A^{2}+ \\
& +\left(\frac{1}{6} e^{2 t}-\frac{1}{2} e^{t}-\frac{1}{6} e^{-t}+\frac{1}{2}\right) A^{3}
\end{aligned}
$$

Where

$$
\begin{gathered}
c_{1}=\left(\frac{-1}{6} e^{2 t}+e^{t}-\frac{1}{3} e^{-t}-\frac{1}{2}\right), c_{2}=\left(\frac{1}{2} e^{t}+\frac{1}{2} e^{-t}-1\right) \\
\text { and } c_{3}(t)=\left(\frac{1}{6} e^{2 t}-\frac{1}{2} e^{t}-\frac{1}{6} e^{-t}+\frac{1}{2}\right)
\end{gathered}
$$

then the exponential matrix is

$$
e^{A t}=\left[\begin{array}{cccc}
e^{2 t} & 0 & 0 & 0 \\
0 & e^{t} & e^{t}-1 & e^{t}+e^{-t}-2 \\
0 & 0 & 1 & -2 e^{-t}+2 \\
0 & 0 & 0 & e^{-t}
\end{array}\right]
$$

4. CONCLUSIONS

In this chapter we presented new method to compute the exponential matrix $e^{A t}$ as accurate solution. The basic idea of this method is based on the matrix theory; the matrices satisfy the special case

$$
A^{n}=\omega_{1} A^{n-1}+\omega_{2} A^{n-2}+\omega_{3} A^{n-3}+\ldots .+\omega_{k} A^{n-k}, k<n .
$$

Furthermore, this method can be extended to the more general case

$$
A^{n}=\omega_{1} A^{k-1}+\omega_{2} A^{k-2}+\omega_{3} A^{k-3}+\ldots .+\omega_{k} A^{k-m}, k<n, m<k
$$

REFERENCES

[1]- P. J. Antsaklis \& A. N. Michel; A Linear Systems Primer. Birkhauser, Boston (2007).
[2]- D. S. Bernstein and W. So, some explicit formulas for the matrix exponential, IEEE transaction on Automatic control, vol38.No 8, 1228-1232.August 1993.
[3]- Cleve B. Moler and Charles F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev., 45(1),3-49, 2003.
[4]- Wu, Beibei. (2011). Explicit formulas for the exponentials of some special matrices. Applied Mathematics Letters, 24(5), 642-647.
[5]- Cheng, H. W., \& Yau, S. S.-T. (1997). More explicit formulas for the matrix exponential. Linear Algebra and Its Applications, 262(1), 131-163.
[6]- D. S. Bernstein, "Some open problems in matrix theory arising in linear systems and control," Linear Algebra its Appl., pp. 162-164, pp. 409- 432, 1992.
[7]- Wasin So, "Exponential Formulas and Spectral Indices," Ph.D. dissertation, University of California at Santa Barbara, 1991.
[8]- R. C. Thompson, "Special cases of a matrix exponential formula, Linear Algebra Its Appl., vol. 107, pp. 283-292, 1988.

