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Abstract 

 

In the field of software engineering, there are a number of prediction methods 

that are fault estimation, security estimation, effort estimation, correlation cost 

estimation, re-usability estimation, test effort estimation and quality 

estimation. These methods are helps to reduce the cost of testing which 

ultimately reduce the cost of the project. One of the most important stage is 

testing of software which reduces the defects of the software. Software defects 

are predicted by a software developers or testers at an early stage of software 

development life cycle and it reduces the overall time, cost and effort of the 

software development team. Nowadays, defect prediction methods are based 

on an adequate quantity of historic project data. Many researchers are using 

NASA’s PROMISE dataset to develop prediction techniques for various 

phases of software development. We use the dataset available for defect 

prediction. This work aims to achieve high prediction accuracy by applying 

Support Vector Machine based technique. In this research work, our primary 

target will be to focus on making a MATLAB based interface to predict 

software defects. This interface will implement SVM as the underlying 

algorithm and will be trained and tested using ANT-1.7 dataset. 

 

 

1. Introduction 

Software metrics are utilized to discover the Software faults in the Software 

improvement life cycle before the testing procedure. Routines utilized are insights, 

machine learning, machine adapting alongside measurable techniques and factual 

models versus expert estimation [1]. Defects in programming frameworks prompts 

significant issues in software. A large portion of programming frameworks are 

conveyed to clients with intemperate issues. To discover the defect-prone parts of the 

software and to focus on those parts for expanded quality control and testing is a 
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compelling way to deal with decrease of faults. There are different characteristics like 

deformity thickness, viability, issue inclination, standardized revamp and re-

convenience which focus the nature of the product. 

Support Vector Machine (SVM) is introduced in COLT-92 by Boser, 

Guyon&Vapnik. It is theoretically a very well motivated algorithm. 

Vapnik&Chervonenkis (1960s) developed SVM from Statistical Learning Theory. In 

SVM, information is being differentiated into two sets; training set and testing set. 

Every record in the training set contains one target value or class name and contains a 

few properties known as watched variables. SVM discovers a direct dividing hyper-

plane. The equation for partition is ax+by=c. SVM is utilized as a part of numerous 

fields. SVM is utilized as a part of twofold arrangement errands. SVMs are another 

promising non-direct, non-parametric order method. SVM is utilized as a part of the 

restorative diagnostics, optical character recognition, electric load anticipating and 

other numerous fields. 

In this paper, we propose a multi-class SVM based technique to predict 

software defects. The proposed technique has been implemented into a simple yet 

effective graphical user interface to let the user easily input the required parameters 

and predict the number of software defects that may arise in the future. This detection 

leads to a very convenient phase in the software development life cycle, where the 

user can make necessary changes in the software and/ or the methodology being 

applied so that the faults can be avoided at later stages. Hence, it can save a huge sum 

in the overall development cost of the software. For training and testing purposes, 

dataset from NASA namely ANT 1.7 has been used. The detail of the dataset has been 

given in the forthcoming sections of this paper. Experiments have shown a very 

encouraging 89.0909% of accuracy in the prediction results. 

The rest of the paper has been divided into 5 sections. Section 2 presents 

review of literature. Section 3 explains proposed methodology including the insight to 

dataset. Section 4 deals with implementation. Section 5 gives experimental results and 

section 6 concludes the findings. 

 

 

2. Literature Review 

To predict the Software defects, researchers can also apply a machine learning 

approach on real-time Software systems. Examples include telecontrol/ telepresence, 

robotics and mission planning systems. There are number of prediction techniques 

that are used like (Statistical models such as Stepwise Multi-linear Regression models 

and multivariate models, and machine learning models, such as Artificial Neural 

Networks, Instance-based Reasoning, Bayesian-Belief Networks, Decision Trees and 

Rule Induction) but for all thedata sets there is no such a technique that gives accurate 

result. 

Fenton et al. have presented a dataset for only 31 software development 

projects [2]. This datasetincorporates the set of quantitative and qualitative factors that 

were previously built into a causal model of the software process. The factors include 

values for code size, effort and defects, together with qualitative data values judged 

by project managers using a questionnaire. They have used these data to evaluate the 
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causal model. They claim that good predictions of the defects can be achieved 

byentering relatively few of the project factors. 

Design [3] and code metrics [4] are used to compare the accuracy of fault 

prediction models that are available before and after the system is implemented. Code 

metrics and design metrics are available only after the system is implemented and 

before the coding has started [5]. Models are based on the data from one release of a 

large telecommunication system developed by Ericsson using linear regression. In 

their study, prediction made after the system is 34% more accurate than before the 

system. The variability of metrics available before the implementation is 43% and 

after the implementation is 58% [5] but the performance of the system is same when 

metrics are not used. 

Specialists use Statistical strategies and Machine learning methods to 

anticipate the shortcoming inclination of the code in their software. In their study, 

execution of Lines of code (LOC) metric is well and accuracy of Lack of Cohesion on 

Methods (LCOM) metric is great however its culmination quality is low. For fine 

grained examination multivariate models perform better [6]. 

Song et al. propose and evaluate a general framework for software defect 

prediction that supportsunbiased andcomprehensive comparison between competing 

prediction systems [7]. 

Koru and Liu demonstrate that static measures and defect data collected at 

class level can be used to build machine-learning models that predict top defect 

classes in practice [8]. 

Okutan and Yıldız use Bayesian networks to determine the probabilistic 

influential relationships among software metrics and defect proneness. In addition to 

the metrics used in Promise data repository, they define two more metrics, i.e. NOD 

for the number of developers and LOCQ for the source code quality. They extract 

these metrics by inspecting the source code repositories of the selected Promise data 

repository data sets [9]. 

Hierarchical, k-means clustering and neural network was used to find groups 

of similar projects [10]. The obtained clusters were investigated with the discriminant 

analysis. For each of the identified group a statistical analysis has been conducted in 

order to distinguish whether thisgroup really exists. Two defect prediction models 

were created for each of the identified groups. The first one was based on the projects 

that belong to a given group, and the second one - on all the projects. 

Li et al. describe three methods for selecting a sample: random sampling with 

conventional machine learners, random sampling with a semi-supervised learner and 

active sampling with active semi-supervised learner [11]. To facilitate the active 

sampling, they propose a novel active semi-supervisedlearning method ACoForest 

which is able to sample the modules that are most helpful for learning a good 

prediction model. 

Bibi et al. apply a machine learning approach to the problem of estimating the 

number of defects calledRegression via Classification (RvC) [12]. RvC initially 

automatically discretizes the number of defects into a number of fault classes, then 

learns a model that predicts the fault class of a software system. Finally, RvC 

transforms the class output of the model back into a numeric prediction. 



42  Rishu Gupta 

 

Fenton et al. use graphical probability models, known as Bayesian Belief 

Networks as the appropriate formalism for representing this evidence [13]. They use 

the subjective judgements of experienced project managers to build the probability 

model and use this model to produce forecasts about the softwarequality throughout 

the development life cycle. The causal or influence structure of the modelmore 

naturally mirrors the real world sequence of events and relations than can be achieved 

with otherformalisms. Their work focuses on the particular model that has been 

developed for Philips Software Centre (PSC), using expert knowledge from Philips 

Research Labs. 

Challagulla et al. evaluate different predictor models on four different real-

time software defect datasets [14]. Their results show that a combination of 1R and 

Instance-based Learning along with the Consistency based Subset Evaluation 

technique provides a relatively better consistency in accuracy prediction compared to 

other models. They also claim that size and complexity metrics are not sufficient for 

accurately predicting real-time software defects. 

Ratzinger et al. analyze the influence of evolution activities such as refactoring 

on software defects [15]. In a case study of five open source projects they used 

attributes of software evolution to predict defects in time periods of six months. They 

use versioning and issue tracking systems to extract 110 data mining features, which 

are separated into refactoring and non-refactoring related features. These features are 

used as input into classification algorithms that create prediction models for software 

defects. 

 

 

3. Proposed Methodology 

We propose the use of Multi-class Support Vector Machine (McSVM) to classify the 

input set of parameters into one of the several classes to predict the number of faults 

that may arise in software that is under construction. Figure 1 shows classification in 

case of multi class SVM. 

 
 

Fig. 1: Classification in Multi Class SVM. 
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The McSVM implementation uses an “all-together” multi-classification 

approach, which is computationally more expensive yet usually more accurate than 

“one-against-all” or “one-against-one” multi-classification methods. Comparisons of 

these methods using large-scale problems have not been seriously conducted. 

Especially for methods solving multi-class SVM in one step, a much 

largeroptimization problem is required so up to now experiments are limited to small 

data sets. 

In the present research work, we use ANT 1.7 dataset given by NASA’s 

Promise dataset repository. The dataset contains 745 records. We divided the dataset 

into two subsets; training set containing 635 records (approx. 85% of total) and testing 

dataset containing 110 records (approx. 15% of total). These two datasets are used to 

train and test the tool, respectively. Each record of the dataset provides us with 18 

input metrics and 1 target or output parameter. These metrics are explained in detail 

by Chidamber and Kemerer [16]. Table 1 lists all the metrics used. 

 

Table 1: Metric names and abbreviations used in ANT 1.7 dataset. 

 

Sr. No. Metric Name Abbreviation used 

1 Weighted methods per class WMC 

2 Depth of Inheritance Tree DIT 

3 Number of Children NOC 

4 Coupling between object classes CBO 

5 Response for a class RFC 

6 Lack of cohesion in methods LCOM 

7 Afferent Couplings Ca 

8 Efferent Coupling Ce 

9 Number of public methods NPM 

10 Lack of cohesion in methods LCOM3 

11 Lines of Code LOC 

12 Data access metric DAM 

13 Measure of Aggregation MOA 

14 Measure of Functional Abstraction MFA 

15 Cohesion Among Methods of Class CAM 

16 Inheritance Coupling IC 

17 Coupling Between Methods CBM 

18 Average Method Complexity AMC 

 

 

4. Implementation 

4.1 User Friendly Tool 

A user friendly tool using MATLAB R2015a has been developed. This tool allows the 

user to train the McSVM. After the training is over, it lets the user input various 

parameter values to predict the number of faults that may arise in the software being 

developed. To test the accuracy of the proposed system, an option has been given 
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which reads the test dataset and compares the predicted and actual outputs. Figure 2 

shows the GUI with various input boxes and buttons to train, predict and test. 

 

 
 

Fig. 2: User Friendly GUI. 

 

 

4.2 Preparing the data 

Data required to train and test the system has been taken from the PROMISE 

repository. We chose ANT-1.7 dataset. This dataset contains a total of 745 records, 

out of which 635 (nearly 85%) were used to train the McSVM and rest (110, nearly 

15%) were used for testing the system. The selection of record for training and testing 

was done on a pure random basis. 

 

4.3 Train and then predict the Multiclass SVM 

It is necessary to train the McSVM prior to making any use of it. Thus, an option is 

provided on the panel to train McSVM. There is a file namely, traindata.txt available 

for the tool to read and get trained. It reads all the 635 training records one by one and 

accordingly gets trained. Once the McSVM training is finished, the tool is ready for 

prediction or testing. It is wise to test the tool before deploying it for prediction. Thus, 

we use the option to test the testing dataset. Again, there is a file namely, testdata.txt 

available. The tool reads all the records one by one, applies the McSVM classification 

process and gets the results. These results are then compared with the actual outputs 
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given in each record of the test dataset. Finally, when the authenticity of the tool has 

been established, it can be put to actual use of prediction. The user may enter the 

values using textboxes and drop down boxes and can get the predicted result on the 

panel itself. 

 

 

5. Experimental Results 

Experiments have shown that the prediction accuracy of the proposed technique is 

quite encouraging. We are able to achieve an accuracy of 89.0909%. As compared to 

the proposed technique, the accuracy of one of the previously available work is given 

in table 2. The highest accuracy that it achieved is 71.9%, which is far below the 

accuracy achieved by the proposed technique. 

 

Table 2: Accuracy of technique given in [17]. 

 

Technique used Dataset Accuracy percentage 

Genetic Algorithm with SVM jE1 71.9% 

jE2 63.7% 

jE1&jE2 (inter-release) 58.0% 

 

 

Table 3 shows the results of testing the test dataset. The last two columns of 

the table show the predicted number of defects and actual number of defects, 

respectively. 

 

Table 3: Comparison of Predicted and Actual Defects in Proposed Technique. 

 

Sr. No. Defects Sr. No. Defects 

Predicted Actual Predicted Actual 

1 0 0 56 0 0 

2 0 0 57 0 0 

3 0 0 58 4 3 

4 0 0 59 0 0 

5 0 0 60 0 0 

6 0 0 61 0 0 

7 1 0 62 0 0 

8 0 0 63 0 0 

9 0 0 64 2 0 

10 0 0 65 0 0 

11 0 0 66 0 0 

12 0 0 67 0 0 

13 0 0 68 5 5 

14 0 0 69 0 0 

15 1 0 70 0 0 
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16 0 0 71 0 0 

17 0 0 72 0 0 

18 0 0 73 0 0 

19 1 1 74 0 0 

20 0 0 75 1 1 

21 0 0 76 0 0 

22 0 0 77 4 4 

23 0 0 78 0 0 

24 0 0 79 7 5 

25 0 0 80 0 0 

26 0 0 81 0 0 

27 0 0 82 0 0 

28 0 0 83 2 2 

29 0 0 84 0 0 

30 0 0 85 0 0 

31 1 1 86 0 0 

32 0 0 87 0 0 

33 0 0 88 0 0 

34 3 3 89 1 1 

35 0 0 90 0 0 

36 0 0 91 0 0 

37 1 1 92 0 0 

38 0 0 93 1 1 

39 0 0 94 1 1 

40 0 0 95 1 0 

41 0 0 96 0 0 

42 0 0 97 2 2 

43 0 0 98 0 0 

44 1 1 99 0 0 

45 0 0 100 0 0 

46 0 0 101 3 3 

47 0 0 102 0 0 

48 1 1 103 0 0 

49 3 4 104 0 0 

50 0 0 105 0 0 

51 0 0 106 1 0 

52 0 0 107 0 0 

53 0 0 108 3 4 

54 0 0 109 2 2 

55 1 1 110 3 2 

 

 

It is observed that in most of the cases, the technique has been accurately able 

to predict the number of defects. In some of the cases, the results are not as expected. 
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The differences in predicted and actual number of defects are shown in bold. There 

are a total of 12 differences. Thus, we calculate the error and accuracy percentage as 

follows: 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 =  
|𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡𝑠 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡𝑠|

𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡𝑠
𝑋100 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 − 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 
 

Using the above two formulae, we calculate the percentage error as 10.9091% 

and percentage accuracy as 89.0909%. 

 

 

6. Conclusion 

There can be a number of defects in software. To improve software quality, it is 

fundamental to predictthe software defects at an early stage of software development. 

The main objective of this paper is to study and understand the concept of software 

defects prediction using the multiclass support vector machine. In this study, we have 

used software metrics. This paper shows that the accuracy of the proposed system is 

89.0909%, which is quite encouraging. In future, one can use other training 

algorithms clubbed with the proposed technique to further increase the accuracy level 

for predicting the software defects. 
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