
International Journal of Computer Science and Software Engineering

Volume 1, Number 1 (2015), pp. 39-48

© International Research Publication House

http://www.irphouse.com

Software Defects Prediction Using Support Vector

Machine

Rishu Gupta

Student, Department of CSE, Lovely Professional University

Phagwara, Punjab, (India) - 144411

rshgrg0@gmail.com

Abstract

In the field of software engineering, there are a number of prediction methods

that are fault estimation, security estimation, effort estimation, correlation cost

estimation, re-usability estimation, test effort estimation and quality

estimation. These methods are helps to reduce the cost of testing which

ultimately reduce the cost of the project. One of the most important stage is

testing of software which reduces the defects of the software. Software defects

are predicted by a software developers or testers at an early stage of software

development life cycle and it reduces the overall time, cost and effort of the

software development team. Nowadays, defect prediction methods are based

on an adequate quantity of historic project data. Many researchers are using

NASA’s PROMISE dataset to develop prediction techniques for various

phases of software development. We use the dataset available for defect

prediction. This work aims to achieve high prediction accuracy by applying

Support Vector Machine based technique. In this research work, our primary

target will be to focus on making a MATLAB based interface to predict

software defects. This interface will implement SVM as the underlying

algorithm and will be trained and tested using ANT-1.7 dataset.

1. Introduction

Software metrics are utilized to discover the Software faults in the Software

improvement life cycle before the testing procedure. Routines utilized are insights,

machine learning, machine adapting alongside measurable techniques and factual

models versus expert estimation [1]. Defects in programming frameworks prompts

significant issues in software. A large portion of programming frameworks are

conveyed to clients with intemperate issues. To discover the defect-prone parts of the

software and to focus on those parts for expanded quality control and testing is a

40 Rishu Gupta

compelling way to deal with decrease of faults. There are different characteristics like

deformity thickness, viability, issue inclination, standardized revamp and re-

convenience which focus the nature of the product.

Support Vector Machine (SVM) is introduced in COLT-92 by Boser,

Guyon&Vapnik. It is theoretically a very well motivated algorithm.

Vapnik&Chervonenkis (1960s) developed SVM from Statistical Learning Theory. In

SVM, information is being differentiated into two sets; training set and testing set.

Every record in the training set contains one target value or class name and contains a

few properties known as watched variables. SVM discovers a direct dividing hyper-

plane. The equation for partition is ax+by=c. SVM is utilized as a part of numerous

fields. SVM is utilized as a part of twofold arrangement errands. SVMs are another

promising non-direct, non-parametric order method. SVM is utilized as a part of the

restorative diagnostics, optical character recognition, electric load anticipating and

other numerous fields.

In this paper, we propose a multi-class SVM based technique to predict

software defects. The proposed technique has been implemented into a simple yet

effective graphical user interface to let the user easily input the required parameters

and predict the number of software defects that may arise in the future. This detection

leads to a very convenient phase in the software development life cycle, where the

user can make necessary changes in the software and/ or the methodology being

applied so that the faults can be avoided at later stages. Hence, it can save a huge sum

in the overall development cost of the software. For training and testing purposes,

dataset from NASA namely ANT 1.7 has been used. The detail of the dataset has been

given in the forthcoming sections of this paper. Experiments have shown a very

encouraging 89.0909% of accuracy in the prediction results.

The rest of the paper has been divided into 5 sections. Section 2 presents

review of literature. Section 3 explains proposed methodology including the insight to

dataset. Section 4 deals with implementation. Section 5 gives experimental results and

section 6 concludes the findings.

2. Literature Review

To predict the Software defects, researchers can also apply a machine learning

approach on real-time Software systems. Examples include telecontrol/ telepresence,

robotics and mission planning systems. There are number of prediction techniques

that are used like (Statistical models such as Stepwise Multi-linear Regression models

and multivariate models, and machine learning models, such as Artificial Neural

Networks, Instance-based Reasoning, Bayesian-Belief Networks, Decision Trees and

Rule Induction) but for all thedata sets there is no such a technique that gives accurate

result.

Fenton et al. have presented a dataset for only 31 software development

projects [2]. This datasetincorporates the set of quantitative and qualitative factors that

were previously built into a causal model of the software process. The factors include

values for code size, effort and defects, together with qualitative data values judged

by project managers using a questionnaire. They have used these data to evaluate the

Software Defects Prediction Using Support Vector Machine 41

causal model. They claim that good predictions of the defects can be achieved

byentering relatively few of the project factors.

Design [3] and code metrics [4] are used to compare the accuracy of fault

prediction models that are available before and after the system is implemented. Code

metrics and design metrics are available only after the system is implemented and

before the coding has started [5]. Models are based on the data from one release of a

large telecommunication system developed by Ericsson using linear regression. In

their study, prediction made after the system is 34% more accurate than before the

system. The variability of metrics available before the implementation is 43% and

after the implementation is 58% [5] but the performance of the system is same when

metrics are not used.

Specialists use Statistical strategies and Machine learning methods to

anticipate the shortcoming inclination of the code in their software. In their study,

execution of Lines of code (LOC) metric is well and accuracy of Lack of Cohesion on

Methods (LCOM) metric is great however its culmination quality is low. For fine

grained examination multivariate models perform better [6].

Song et al. propose and evaluate a general framework for software defect

prediction that supportsunbiased andcomprehensive comparison between competing

prediction systems [7].

Koru and Liu demonstrate that static measures and defect data collected at

class level can be used to build machine-learning models that predict top defect

classes in practice [8].

Okutan and Yıldız use Bayesian networks to determine the probabilistic

influential relationships among software metrics and defect proneness. In addition to

the metrics used in Promise data repository, they define two more metrics, i.e. NOD

for the number of developers and LOCQ for the source code quality. They extract

these metrics by inspecting the source code repositories of the selected Promise data

repository data sets [9].

Hierarchical, k-means clustering and neural network was used to find groups

of similar projects [10]. The obtained clusters were investigated with the discriminant

analysis. For each of the identified group a statistical analysis has been conducted in

order to distinguish whether thisgroup really exists. Two defect prediction models

were created for each of the identified groups. The first one was based on the projects

that belong to a given group, and the second one - on all the projects.

Li et al. describe three methods for selecting a sample: random sampling with

conventional machine learners, random sampling with a semi-supervised learner and

active sampling with active semi-supervised learner [11]. To facilitate the active

sampling, they propose a novel active semi-supervisedlearning method ACoForest

which is able to sample the modules that are most helpful for learning a good

prediction model.

Bibi et al. apply a machine learning approach to the problem of estimating the

number of defects calledRegression via Classification (RvC) [12]. RvC initially

automatically discretizes the number of defects into a number of fault classes, then

learns a model that predicts the fault class of a software system. Finally, RvC

transforms the class output of the model back into a numeric prediction.

42 Rishu Gupta

Fenton et al. use graphical probability models, known as Bayesian Belief

Networks as the appropriate formalism for representing this evidence [13]. They use

the subjective judgements of experienced project managers to build the probability

model and use this model to produce forecasts about the softwarequality throughout

the development life cycle. The causal or influence structure of the modelmore

naturally mirrors the real world sequence of events and relations than can be achieved

with otherformalisms. Their work focuses on the particular model that has been

developed for Philips Software Centre (PSC), using expert knowledge from Philips

Research Labs.

Challagulla et al. evaluate different predictor models on four different real-

time software defect datasets [14]. Their results show that a combination of 1R and

Instance-based Learning along with the Consistency based Subset Evaluation

technique provides a relatively better consistency in accuracy prediction compared to

other models. They also claim that size and complexity metrics are not sufficient for

accurately predicting real-time software defects.

Ratzinger et al. analyze the influence of evolution activities such as refactoring

on software defects [15]. In a case study of five open source projects they used

attributes of software evolution to predict defects in time periods of six months. They

use versioning and issue tracking systems to extract 110 data mining features, which

are separated into refactoring and non-refactoring related features. These features are

used as input into classification algorithms that create prediction models for software

defects.

3. Proposed Methodology

We propose the use of Multi-class Support Vector Machine (McSVM) to classify the

input set of parameters into one of the several classes to predict the number of faults

that may arise in software that is under construction. Figure 1 shows classification in

case of multi class SVM.

Fig. 1: Classification in Multi Class SVM.

Software Defects Prediction Using Support Vector Machine 43

The McSVM implementation uses an “all-together” multi-classification

approach, which is computationally more expensive yet usually more accurate than

“one-against-all” or “one-against-one” multi-classification methods. Comparisons of

these methods using large-scale problems have not been seriously conducted.

Especially for methods solving multi-class SVM in one step, a much

largeroptimization problem is required so up to now experiments are limited to small

data sets.

In the present research work, we use ANT 1.7 dataset given by NASA’s

Promise dataset repository. The dataset contains 745 records. We divided the dataset

into two subsets; training set containing 635 records (approx. 85% of total) and testing

dataset containing 110 records (approx. 15% of total). These two datasets are used to

train and test the tool, respectively. Each record of the dataset provides us with 18

input metrics and 1 target or output parameter. These metrics are explained in detail

by Chidamber and Kemerer [16]. Table 1 lists all the metrics used.

Table 1: Metric names and abbreviations used in ANT 1.7 dataset.

Sr. No. Metric Name Abbreviation used

1 Weighted methods per class WMC

2 Depth of Inheritance Tree DIT

3 Number of Children NOC

4 Coupling between object classes CBO

5 Response for a class RFC

6 Lack of cohesion in methods LCOM

7 Afferent Couplings Ca

8 Efferent Coupling Ce

9 Number of public methods NPM

10 Lack of cohesion in methods LCOM3

11 Lines of Code LOC

12 Data access metric DAM

13 Measure of Aggregation MOA

14 Measure of Functional Abstraction MFA

15 Cohesion Among Methods of Class CAM

16 Inheritance Coupling IC

17 Coupling Between Methods CBM

18 Average Method Complexity AMC

4. Implementation

4.1 User Friendly Tool

A user friendly tool using MATLAB R2015a has been developed. This tool allows the

user to train the McSVM. After the training is over, it lets the user input various

parameter values to predict the number of faults that may arise in the software being

developed. To test the accuracy of the proposed system, an option has been given

44 Rishu Gupta

which reads the test dataset and compares the predicted and actual outputs. Figure 2

shows the GUI with various input boxes and buttons to train, predict and test.

Fig. 2: User Friendly GUI.

4.2 Preparing the data

Data required to train and test the system has been taken from the PROMISE

repository. We chose ANT-1.7 dataset. This dataset contains a total of 745 records,

out of which 635 (nearly 85%) were used to train the McSVM and rest (110, nearly

15%) were used for testing the system. The selection of record for training and testing

was done on a pure random basis.

4.3 Train and then predict the Multiclass SVM

It is necessary to train the McSVM prior to making any use of it. Thus, an option is

provided on the panel to train McSVM. There is a file namely, traindata.txt available

for the tool to read and get trained. It reads all the 635 training records one by one and

accordingly gets trained. Once the McSVM training is finished, the tool is ready for

prediction or testing. It is wise to test the tool before deploying it for prediction. Thus,

we use the option to test the testing dataset. Again, there is a file namely, testdata.txt

available. The tool reads all the records one by one, applies the McSVM classification

process and gets the results. These results are then compared with the actual outputs

Software Defects Prediction Using Support Vector Machine 45

given in each record of the test dataset. Finally, when the authenticity of the tool has

been established, it can be put to actual use of prediction. The user may enter the

values using textboxes and drop down boxes and can get the predicted result on the

panel itself.

5. Experimental Results

Experiments have shown that the prediction accuracy of the proposed technique is

quite encouraging. We are able to achieve an accuracy of 89.0909%. As compared to

the proposed technique, the accuracy of one of the previously available work is given

in table 2. The highest accuracy that it achieved is 71.9%, which is far below the

accuracy achieved by the proposed technique.

Table 2: Accuracy of technique given in [17].

Technique used Dataset Accuracy percentage

Genetic Algorithm with SVM jE1 71.9%

jE2 63.7%

jE1&jE2 (inter-release) 58.0%

Table 3 shows the results of testing the test dataset. The last two columns of

the table show the predicted number of defects and actual number of defects,

respectively.

Table 3: Comparison of Predicted and Actual Defects in Proposed Technique.

Sr. No. Defects Sr. No. Defects

Predicted Actual Predicted Actual

1 0 0 56 0 0

2 0 0 57 0 0

3 0 0 58 4 3

4 0 0 59 0 0

5 0 0 60 0 0

6 0 0 61 0 0

7 1 0 62 0 0

8 0 0 63 0 0

9 0 0 64 2 0

10 0 0 65 0 0

11 0 0 66 0 0

12 0 0 67 0 0

13 0 0 68 5 5

14 0 0 69 0 0

15 1 0 70 0 0

46 Rishu Gupta

16 0 0 71 0 0

17 0 0 72 0 0

18 0 0 73 0 0

19 1 1 74 0 0

20 0 0 75 1 1

21 0 0 76 0 0

22 0 0 77 4 4

23 0 0 78 0 0

24 0 0 79 7 5

25 0 0 80 0 0

26 0 0 81 0 0

27 0 0 82 0 0

28 0 0 83 2 2

29 0 0 84 0 0

30 0 0 85 0 0

31 1 1 86 0 0

32 0 0 87 0 0

33 0 0 88 0 0

34 3 3 89 1 1

35 0 0 90 0 0

36 0 0 91 0 0

37 1 1 92 0 0

38 0 0 93 1 1

39 0 0 94 1 1

40 0 0 95 1 0

41 0 0 96 0 0

42 0 0 97 2 2

43 0 0 98 0 0

44 1 1 99 0 0

45 0 0 100 0 0

46 0 0 101 3 3

47 0 0 102 0 0

48 1 1 103 0 0

49 3 4 104 0 0

50 0 0 105 0 0

51 0 0 106 1 0

52 0 0 107 0 0

53 0 0 108 3 4

54 0 0 109 2 2

55 1 1 110 3 2

It is observed that in most of the cases, the technique has been accurately able

to predict the number of defects. In some of the cases, the results are not as expected.

Software Defects Prediction Using Support Vector Machine 47

The differences in predicted and actual number of defects are shown in bold. There

are a total of 12 differences. Thus, we calculate the error and accuracy percentage as

follows:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 =
|𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡𝑠 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡𝑠|

𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡𝑠
𝑋100

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 − 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟

Using the above two formulae, we calculate the percentage error as 10.9091%

and percentage accuracy as 89.0909%.

6. Conclusion

There can be a number of defects in software. To improve software quality, it is

fundamental to predictthe software defects at an early stage of software development.

The main objective of this paper is to study and understand the concept of software

defects prediction using the multiclass support vector machine. In this study, we have

used software metrics. This paper shows that the accuracy of the proposed system is

89.0909%, which is quite encouraging. In future, one can use other training

algorithms clubbed with the proposed technique to further increase the accuracy level

for predicting the software defects.

References

[1] Catal, C., &Diri, B. (2009). A systematic review of software fault prediction

studies. Expert Systems with Applications, 36(4), 7346-7354.

[2] Fenton, N., Neil, M., Marsh, W., Hearty, P., Radlinski, L., & Krause, P. (2007,

May). Project data incorporating qualitative factors for improved software

defect prediction. InProceedings of the Third International Workshop on

Predictor Models in Software Engineering(p. 2). IEEE Computer Society.

[3] El Emam, K., Melo, W., & Machado, J. C. (2001).The prediction of faulty

classes using object-oriented design metrics. Journal of Systems and Software,

56(1), 63-75.

[4] Zhao, M., Wohlin, C., Ohlsson, N., &Xie, M. (1998). A comparison between

software design and code metrics for the prediction of software fault content.

Information and Software Technology, 40(14), 801-809.

[5] Tomaszewski, P., Lundberg, L., &Grahn, H. (2005). The accuracy of early

fault prediction in modified code.In Proceedings of the Fifth Conference on

Software Engineering Research and Practice in Sweden (SERPS) (pp. 57-63).

[6] Gyimothy, T., Ferenc, R., &Siket, I. (2005). Empirical validation of object-

oriented metrics on open source software for fault prediction. Software

Engineering, IEEE Transactions on, 31(10), 897-910.

48 Rishu Gupta

[7] Song, Q., Jia, Z., Shepperd, M., Ying, S., & Liu, J. (2011). A general software

defect-proneness prediction framework. Software Engineering, IEEE

Transactions on, 37(3), 356-370.

[8] Koru, A. G., & Liu, H. (2005). Building effective defect-prediction models in

practice. Software, IEEE, 22(6), 23-29.

[9] Okutan, A., &Yıldız, O. T. (2014). Software defect prediction using Bayesian

networks. Empirical Software Engineering, 19(1), 154-181.

[10] Jureczko, M., &Madeyski, L. (2010, September). Towards identifying

software project clusters with regard to defect prediction. In Proceedings of

the 6th International Conference on Predictive Models in Software

Engineering (p. 9).ACM.

[11] Li, M., Zhang, H., Wu, R., & Zhou, Z. H. (2012). Sample-based software

defect prediction with active and semi-supervised learning.Automated

Software Engineering, 19(2), 201-230.

[12] Bibi, S., Tsoumakas, G., Stamelos, I., &Vlahavas, I. P. (2006, March).

Software Defect Prediction Using Regression via Classification.In AICCSA

(pp. 330-336).

[13] Fenton, N., Krause, P., & Neil, M. (2001). A probabilistic model for software

defect prediction.IEEE Trans Software Eng.

[14] Challagulla, V. U. B., Bastani, F. B., Yen, I. L., & Paul, R. A. (2008).

Empirical assessment of machine learning based software defect prediction

techniques. International Journal on Artificial Intelligence Tools, 17(02), 389-

400.

[15] Ratzinger, J., Sigmund, T., & Gall, H. C. (2008, May). On the relation of

refactorings and software defect prediction. In Proceedings of the 2008

international working conference on Mining software repositories (pp. 35-38).

ACM.

[16] Chidamber, S. R., &Kemerer, C. F. (1994). A metrics suite for object oriented

design.Software Engineering, IEEE Transactions on,20(6), 476-493.

[17] Di Martino, S., Ferrucci, F., Gravino, C., &Sarro, F. (2011). A genetic

algorithm to configure support vector machines for predicting fault-prone

components. In Product-Focused Software Process Improvement (pp. 247-

261).Springer Berlin Heidelberg.

