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Abstract 
 

The versatile features like universal function approximation ability to model 
non-linear and complex systems, learning and fault tolerance have resulted in 
widespread applications of Artificial Neural Networks (ANN) in diverse 
fields. The universal function approximation ability of ANNs depends upon 
the number of neurons in its hidden layer. There is no standard algorithm to 
determine the optimal number of hidden layer neurons. Small number of 
hidden neurons compromise with approximation ability of the network. On the 
other hand, large numbers of hidden layer neurons make the network more 
complex and increase training and execution times. In this paper, an attempt 
has been made to evolve a strategy for identifying the optimal number of 
hidden layer neurons based on Optimality Factor (OPF) obtained by varying 
the ratio of Error Weight and Network Complexity Weight. On the basis of per 
unit acceptability of network, optimal ANN structure is identified. Further, the 
evolved optimal ANN structure is used for performance analysis of Self-
Excited Induction Generator (SEIG) with varying terminal conditions. The 
closeness of results with the experimental data validates the optimal ANN 
structure and its applicability to model the behaviour of SEIG.  

 
Keywords: Artificial Neural Networks, Optimal ANN Strucure, Optimality 
Factor and Self-Excited Induction Generator.  

 
 
Introduction 
The growth of the industrial sector has resulted in a phenomenal increase in the 
demand for power. The power generation could not be stepped up correspondingly 
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due to constraints in the availability of fossil fuels. Hence, the gap between demand 
and supply of power is increasing. Non-conventional sources of power generation 
offer a long-term solution to meet the power requirements. Wind, solar, biomass, 
mini-hydro power, geothermal and tidal waves cover the spectrum of the known 
renewable energy sources. Wind Energy has enormous potential in nature and the 
study confirms that the SEIG, Reluctance Generator and Permanent-Magnet 
Generator have emerged as suitable candidates for utilizing wind energy [1] in 
isolated and remote areas, where power distribution is not possible by conventional 
means of transmission and distribution.  
 Analysis of SEIG can be classified into two major groups: the first that deals with 
various aspects for steady-state operation and the other deals with the transient 
behaviour of the generator under different operating conditions. In the past, analysis 
of SEIG has been carried by analytical techniques based on loop impedance or nodal 
admittance method that involves solution of higher order polynomial in terms of 
frequency and magnetizing reactance to predict machine behaviour with varying 
terminal conditions [2-4]. Sandhu and Jain have developed a simple equivalent circuit 
model with voltage source that resulted in quadratic equation for slip instead of fourth 
or higher order polynomial solutions to evaluate generated frequency and magnetizing 
reactance of SEIG [5]. Thus, computational effort is reduced to the extent that 
calculations for the analysis can be carried on scientific calculator. 
 The Induction machine does not have the ability to control voltage, frequency and 
reactive power as is exhibited in synchronous generators. The generated frequency, 
voltage and output power of the SEIG depend upon prime mover speed, exciting 
capacitance and load, apart from the parameters of machine. Self-excited induction 
generator also suffers from inherent poor voltage regulation due to the difference 
between the VARs supplied by the shunt capacitors and the VARs required by the 
load and machine. The poor voltage regulation of SEIG results in reduction of loading 
capacity and under utilization. However, it can be improved by the use of voltage 
regulators based on fully controlled converter [6]. Singh et al. [7] have given an 
algorithm for calculating the number of capacitor steps to load the machine to its rated 
capacity while maintaining the load voltage within the specified upper and lower 
limit. Approximate analysis for long shunt SEIG has been used to calculate the value 
of shunt and series capacitors from the magnetizing characteristic and compounding 
effect of series capacitance is shown by graphical interpolation [8]. 
 In modern times the main thrust of research is oriented towards applying artificial 
intelligence techniques in various scientific and industrial applications. Expert 
systems are one of the solution techniques more frequently adopted. Wollenberg 
suggested its use for alarm treatment [9]. Its main drawbacks are the incapacity of 
generalization and the difficulty of validating and maintaining large rule bases. 
Nowadays, new AI techniques like Artificial Neural Networks, Fuzzy logic and 
Genetic Algorithms are finding increased applications in the field of power system 
operation, protection, control, load forecasting and fault diagnosis etc. ANNs have an 
ability to learn, perceive and compute like human brain. These have the capacity to 
store knowledge about the problem domain and belong to the category of 
computationally intelligent systems. Hierarchical nets are proposed to reduce the 
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dimension of the neural network, its computational effort, and training time [10]. 
Application of ANNs has been reported for estimation of bus bar voltage in 
distribution systems and to model the behavior of electric machines [12]-[13]. ANNs 
find a wide variety of applications in diverse areas including functional 
approximation, non-linear system identification, and control [14-16]. This paper deals 
with the identification of optimal neural network and its implementation for steady 
state analysis of SEIG. 
 
 
Conventional Technique for Performance Analysis Of SEIG 
The Induction machine connected to infinite bus and driven with the external prime 
mover at speed higher than synchronous speed corresponding to the grid frequency 
has the capability to generate active power. In this mode of operation of machine as 
generator, the power bus supplies the magnetizing current to meet reactive power 
requirements. The voltage and frequency of the machine are not affected by the speed 
or the slip of machine. But, active power generated is a function of slip, which is 
always negative in this case. Excitation to the induction machine when supplied by 
the capacitor bank makes the operation of machine as self-excited induction 
generator. The output power, voltage and frequency of SEIG are a function of speed, 
exciting capacitance, load and parameters of the machine. The steady-state equivalent 
circuit of SEIG with load impedance is shown in Fig. 1. 

 

 
 

Figure 1: Equivalent circuit of self- excited induction generator. 
 

 
Nomenclature for machine parameters and other variables 

e, ,Rs rR R   per phase stator, rotor and core loss branch resistance referred to stator  

,ls lrX X  per phase stator and rotor leakage reactance referred to stator 

,m cX X  per phase magnetizing and exciting capacitive reactance 
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,L LR X  per phase load resistance and reactance 

,b a  speed and generated frequency 

, ,s r LI I I  per phase stator, rotor and load current  

1, tE V  per phase air gap voltage and terminal voltage at rated frequency. 

oP   3-phase output power. 

 
 Values referred above are in per unit and reactance values are w.r.t. base 
frequency basef . 
 Branch impedance is obtained as under referring to equivalent circuit of Fig. 1. 
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 The equivalent circuit results into a single loop equation: 
  0s sI Z =    (1) 
 
 For successful voltage build up;  
  0sI ≠  and hence 0sZ =   (2) 
 
 By separating the real and imaginary components of equation (2) and putting each 
equation equal to zero, we get two non-linear simultaneous equations with 
magnetizing reactance mX  and generated frequency ‘ a ’ as unknown variables: 
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 A(s) and B(s) are the polynomial coefficients in terms of machine parameters and 
other variables i.e. capacitive reactance cX , Speed b , load resistance 

LR  and reactance 
LX  and core loss branch resistance 

eR .  
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 The equations (3) and (4) are solved by Newton-Raphson method for two 
variables i.e. per unit magnetising reactance ‘ mX ’ and per unit frequency ‘ a ’. It 
involves tedious computer programming. The magnetizing characteristics of machine 
are determined experimentally by running the machine at synchronous speed 
corresponding to rated frequency. The expression for air gap voltage ‘ 1E ’ in terms of 
magnetizing reactance ‘ mX ’ is given below:  
 
Magnetizing characteristics of machine 
   12.6930   1.3818 -  0.2117m mX E X< =  
  1 2.8386 &    2.6930   = 2.1697 -  0.5057m m mX X E X< >=  
  1 2.9716  &    2.8386    = 3.8732 -  1.1057m m mX X E X< >=  
  12.9716 0  mX E> =  

 
 With known values of magnetizing reactance ‘ mX ’, frequency ‘ a ’ and air gap 
voltage ‘ 1E ’ the performance of machine can be determined for any terminal 
conditions by solving the equivalent circuit of SEIG. 
 
 
Artificial Neural Networks  
An artificial neural network is an information-processing paradigm that is inspired by 
the way biological nervous systems such as the brain process information. The key 
element of this paradigm is the neurons. Large numbers of these neurons, the 
elementary processing elements, are highly interconnected and work in unison to 
solve complex problems. ANNs, like human being, learn by example. An ANN is 
configured for a specific application, such as pattern recognition or data classification, 
through a learning process. Learning in ANNs involves adjustments to the synaptic 
interconnection weights that exist between the neurons.  
 The neurons in ANNs are grouped into layers. The input layer neurons receive 
input to form the external environment. The output layer neurons communicate the 
output of the system to the user or external environment. The layers of neurons 
between these two layers are called hidden layers. A simple structure of Multi-Layer 
Perceptron (MLP), an artificial neural network with one hidden layer is shown in Fig. 
2. When the input layer receives the input, its neurons produce output; this becomes 
input to the next layer of the system. The process continues until a certain conditions 
are satisfied or until the output layer is invoked and fires their output to the external 
environment. There is no set algorithm to determine the optimal number of hidden 
layer neurons or the number of hidden layers. Single hidden layer is sufficient to 
approximate any function to any degree of accuracy. Therefore, in this paper, it is 
proposed to use single hidden layer ANN only. 
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Figure 2: Feed forward artificial neural network. 
 
 

 Usually hit and trial method is applied to find the suitable ANN structure that 
depends on the input and output neurons. With lesser number of hidden layer neurons, 
network execution becomes faster but accuracy in terms of function approximation 
suffers. On the other hand, with more number of hidden layer neurons, though 
accuracy improves but network complexity increases. Thus, it necessitates identifying 
the optimum number of hidden layer neurons to establish sense of balance between 
function approximation accuracy and network complexity. 
 In this paper, an attempt is made to evolve a strategy for identifying the optimum 
number of hidden layer neurons based on Optimality Factor (OPF) obtained by 
varying the ratio of Error Weight (EW) and Network Complexity Weight (NCW). 
The optimal ANN structure is identified by comparing the acceptability of the 
network for different EW: NCW ratios, and is discussed in detail in section V. 
Further, the evolved optimal ANN architecture is used for performance analysis of 
SEIG with varying terminal conditions. 
 
 
Algorithm for Identification of Optimal Ann 
For identification of optimal ANN architecture, input-output data samples are taken 
from the analytical solution of SEIG operating at variables speed, capacitance and 
load. The input layer has three neurons accounting for three inputs namely: speed ‘ b ’, 
capacitance ‘ C ’ and load ‘ LR . The output layer has four neurons that account for the 
four outputs namely: generated frequency ‘ a ’, output voltage ‘ tV ’ and output power ‘

oP ’and stator current ‘ sI ’. Varying the hidden layer neurons from 4 to 16, the 
performance of different networks is compared. The step-wise procedure adopted to 
identify optimal ANN architecture is detailed as under: 
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• From the analytical solution of SEIG, one thousand input-output samples are 
generated with randomly chosen input variables for the training of different 
networks. 

• For identification of optimal ANN structure, thirteen ANN architectures are 
chosen with 4-16 neurons in hidden layer.  

• Twenty-five sets of weights and biases are randomly chosen initially to train 
each ANN structure. ANN architectures are first trained for 200 epochs using 
Levenberg Marquardt (LM) algorithm. 

• The performance of each trained ANN structure is recorded using validation 
data (15% of the input-output training samples, other than training data).  

• Out of the 25 sets of weights of each network structure, weights of ten sets were 
selected that give minimum sum-squared error with validation data. The rest of 
the sets of weights for each network are ignored.  

• With 10 sets of selected weights, each ANN architecture is further trained for 
300 epochs to reduce training SSE.  

• The performance of each network is recorded in terms of average SSE and 
network complexity for validation samples. 

• Optimality factor of each network structure is evaluated by varying the EW and 
NCW ratio from 20:80 to 80:20. 

• On the basis of optimality factor and per unit acceptability of each network for 
different EW: NCW ratios, the optimal ANN structure is identified. 

 
 
Identification Of Optimal Ann Architecture and Its Implementation  
In this work, emphasis is given to identify optimal ANN architecture for a specific 
application for analysis of SEIG. The algorithm described in section IV is used to 
determine the optimal ANN network. The ANN networks having different neurons (4 
to 16) in hidden layer are trained with 1000 randomly generated input-output training 
samples obtained from analytical solution of SEIG with varying speed, capacitance 
and load. The performance of trained ANNs is recorded using validation data samples 
(other than training samples). After giving training at each stage, the values of 
average value of SSE and network complexity are computed for each network. The 
SSE and network complexity both are normalized to obtain Normalized Sum-Square 
Error (NSSE) and Normalized Network Complexity (NNC). Optimality Factor (OPF) 
of each network is evaluated by varying the ratio of Error Weight (EW) and Network 
Complexity Weight (NCW) from 20:80 to 80:20. The results obtained for different 
networks with varying ratio (EW: NCW) are given in Table 1. 
 In practical situations, the requirements of a user may differ considerably. One 
user may give more significance to accuracy i.e. smaller value of SSE while another 
user may require small training times to employ on-line learning which may 
necessitate smaller network complexity. These two factors act opposite to each other 
and need to be judiciously balanced depending upon the requirement of the user. 
Thus, to determine the optimal number of hidden layer neurons in the network, the 
term Optimality Factor (OPF) is introduced which is expressed in terms of EW and 
NCW. 
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Table I: Optimality Factor of Different ANN Networks with Varying Ratio (EW: 
NCW). 
 

RATIO 
(EW: NCW) 

 

20:80 30:70 40:60 50:50 60:40 70:30 80:20 

Hidden  Layer
Neurons 

Optimality Factor 

4 0.2600 * 0.3400 0.4200 0.5000 0.5800 0.6600 0.7400 
5 0.2763 0.3312 0.3860 0.4408 0.4957 0.5505 0.6053 
6 0.2975 0.3296 * 0.3617 * 0.3938 * 0.4259 0.4580 0.4901 
7 0.3416 0.3625 0.3833 0.4041 0.4249 0.4457 0.4666 
8 0.4010 0.4182 0.4354 0.4525 0.4697 0.4869 0.5040 
9 0.4263 0.4228 0.4193 0.4158 0.4122 0.4087 0.4052 
10 0.4745 0.4617 0.4490 0.4362 0.4235 0.4107 0.3979 
11 0.5177 0.4932 0.4687 0.4443 0.4198 0.3953 0.3708 
12 0.5491 0.5070 0.4649 0.4228 0.3807 0.3386 0.2965 
13 0.5891 0.5336 0.4781 0.4226 0.3672 * 0.3117 * 0.2562 
14 0.6427 0.5806 0.5186 0.4566 0.3946 0.3326 0.2706 
15 0.6878 0.6151 0.5423 0.4696 0.3968 0.3240 0.2513* 
16 0.7400 0.6600 0.5800 0.5000 0.4200 0.3400 0.2600 

*minimum value of optimality factor of different ANN structures with fixed ratio 
(EW: NCW) 

 
 

  Optimality Factor = NSSE*EW + NNC*NCW   (5) 
 
 From the results, it is observed that OPF is lowest for network with 15 neurons in 
hidden layer having almost zero importance given to complexity and nearly complete 
emphasis given to SSE. The next lowest OPF is observed in case of 4 hidden layer 
neural network for almost nil significance to SSE and complete significance attached 
to complexity. But, these are extreme situations and are seldom desirable in practical 
applications. On the other hand, considering per unit value of acceptability of other 
networks, the ANN with 6 hidden neurons proves to be most acceptable. Its 
performance based on OPF is optimal three times for a particular EW:NCW ratios of 
30:70, 40:60 and 50:50. Thus, its per unit acceptability is highest i.e. 0.4286 per unit. 
ANN structure with 13 hidden layer neurons is acceptable twice with EW: NCW 
ratios of 60:40 and 70:30 and attains 0.2857 per unit acceptability. Per unit 
acceptability of networks with different hidden layer neurons is shown in Fig. 3. 
 In practical situations, the requirements of a user may differ considerably. One 
user may give more significance to accuracy i.e. smaller value of SSE while another 
user may require small training times to employ on-line learning which may 
necessitate smaller network complexity. These two factors act opposite to each other 
and need to be judiciously balanced depending upon the requirement of the user. 
Thus, to determine the optimal number of hidden layer neurons in the network, the 
term Optimality Factor (OPF) is introduced which is expressed in terms of EW and 
NCW. 
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Figure 3: Per unit acceptability of network with different hidden layer neurons. 
 
 

 Networks with 4 and 15 neurons in hidden layer have the least acceptability of 
0.1428 per unit, where as rest of the ANN structures have zero acceptability. From the 
results, it is noticeable that ANN network with 6 hidden layer neurons has wider 
acceptability and can be considered to optimal for performance analysis of SEIG 
under the given set of terminal conditions 
 The optimal ANN architecture (3-6-4) identified is further trained with Successive 
Over-relaxation Resilient Backpropagation (SOR-RPROP) algorithm [16] using same 
training data. The training SSE goal is fixed at 0.01. Learning rates for hidden and 
output layers is set at 0.01. The error goal is achieved in 9635 epochs. The trained 
ANN model is implemented for analysis of SEIG under varying speed, terminal 
capacitance and load situations. The results obtained from ANN model of SEIG are 
also verified with experimental data of machine with specifications given in 
Appendix-I. The closeness of the results confirms the validity of model. The graphical 
representation of results is shown in Fig. 4 to 7. 

 

 
 

Figure 4: Out-put power and stator current v/s load admittance. 
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Figure 6: Out-put power and stator current v/s speed. 
 

 
 

Figure 7: Terminal voltage and generated frequency v/s load admittance. 
 
 
Conclusions 
In this paper, a strategy for exploring optimal network structure for ANN based model 
of SEIG is presented. It is a well-known fact that with small number of hidden layer 
neurons, the network becomes quicker in training and execution times. But, small 
networks may not be able to approximate the function to desired level of accuracy. 
With more number of hidden layer neurons, function approximation accuracy 
improves but network complexity increases. Thus, to establish balance between 
function approximation accuracy and network complexity, it is essential to identify 
the optimum number of neurons in hidden layer. In this paper, an attempt has been 
made to explore a strategy for identifying the optimal number of hidden layer neurons 
based on optimality factor obtained by varying the ratio of EW and NCW. The 
network with minimum OPF for a particular ratio of EW:NCW and having overall 
highest per unit acceptability is considered to be optimal.  
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 Optimal network does not mean that it provides the best solution. Optimal 
indicates that the network is the best amongst the networks explored in this work for 
the specific application. Therefore, there still exists considerable scope for 
improvement in identification of optimal ANN structure. The issue of number of 
hidden layers in the network has not been considered in this paper. Therefore, the 
strategy of identifying the optimal network structure can be further extended to 
include multiple hidden layers.  
 The evolved single hidden layer optimal ANN architecture is used for 
performance analysis of SEIG with sufficient accuracy. To validate the results of 
ANN based model of SEIG, the results are compared with those obtained from 
classical Newton-Raphson method and experimental data. The closeness of results 
confirms the validity of the ANN model and justifies the strategy adopted for 
identification of the optimal neural network. 
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Appendix-I 
Machine Specifications: 
    5.0HP =     4P =  
   415baseV Volts=    4.33 baseI Amp=  
   base base baseP V I=     1500 baseN RPM=   
    95.84 baseZ = Ω   50  baseF Hz=  
  33.21 baseC Fμ=  
 
Machine parameters in ohms  
    5.76 sR = Ω     4.19  rR = Ω   
   9.37  lsX = Ω   9.37 lrX = Ω  
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