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Abstract

The performance analysis of noncoherent M-ary Frequency Shift Keying
(NMFSK) in noise and co-channel interference limited environment in mobile
communication system is considered. The closed form expression for Symbol
Error Probability (SEP) is derived employing equal gain combining for
Nakagami fading channel. The effect of Symbol Interference Ratio (SIR) on
SEP in presence of signal to noise ratio (SNR) is studied. The analysis is
restricted to the case of equal interferer powers.

Introduction
The performance of mobile radio system is affected by noise, multipath fading and the
co-channel interface [1]. Several techniques like diversity scheme, additive arrays,
equalization etc. can be utilized to combat the effect of miultipath fading and to
reduce the co-channel interference. In general space diversity is useful in mitigating
the fading effect and Co-Channel Interference (CCI) by weighting and combining the
received signals from all antenna branches [2]. There are three combining techniques
namely, Maximum Ratio Combiner (MRC), Selective Combining (SC) and Equal
Gain Combiner (EGC) for space diversity [3]. In MRC technique two receivers are
employed for two branch diversity and the receiver circuit is very complicated .At the
same time, although h in EGC there is only one dB degradation as compared to MRC
but the circuit is relatively simple. The outage probability of cellular system for EGC
with CCI in Nakagami fading channel was studied by Abu-Dayya and Beauliu [4]
with equal interferer powers. The same study was performed by author [5] using mean
signal using mean signal power to mean interferer powers.

EGC with co-channel interference for Rayleigh fading channel was studied by
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Soug et. al. [6] for both equal and unequal power distributor, Chayan and Aalo [7] and
Winter [8] have discussed the effect of CCI with MRC and OS combing technique.

The detection of Binary Phase Shift Keying (BPSK) in the presence of
interference and noise has been presented by various authors [9-12].

In this paper, we have derived the closed form expression using characteristics
function for probability of error for noncoherent M-ary Frequency Shift Keying
(NMFSK) with Post Detection EGC for correlated Nakagami fading channel in
presence of noise and interference. Here, we have presented the effect of Signal to
Noise Ratio (SNR) and Signal to Interference Ratio (SIR) both on the probability of
error. The organization of paper is as follows. Section IInd contains the correlated
Nakagami fading model and their characteristics function. Symbol Error Probability
(SEP) expression have been derived in section III. Numerical results have been
presented in section IV. Section V, contains the concluding remarks of paper.

System Model
Let us assume S(t) be a complex base band information bearing signal with average
energy 2Es. The received signal at kth diversity branch is given as

yk(o:Re{{cm>+§ciks.(t>+nk(o}emfct} 0

Wherek=1, 2, ....... L; 0<t<T,

i=1,2,......... N; T; is symbol interval Si(t) is the ith complex interfering signal. L
is the number of channels. N is the number of interfering signals.

Cq 1s the kth channel vector of desired signal and it is defined as

Co—age ' )

Where a4 is the random magnitude of fade Ciy is the kth channel vector of ith
interfering signal and it is expressed as
Cik = 05i|<e_(pik 3)

Where «;, is the amplitude and ¢;, is the phase of interfering user channel

We assume C; and Cg are mutually independent. ni(t) represents the AWGN which
is complex valued with zero mean and Ny variance. All the {ny(t)} are assumed to be
independent. They are also independent of channel gain vectors.

We assume oy s and aj’s are correlated variables.

Nakagami probability density for fading amplitudes of desired and interfering
signal can be written as
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Where mg and mjy are fading parameters defined as

Variances Qg = E|_ask2J

And
Qg = Elaisz

So, instantaneous Signal to Interference Pulse Noise Ratio (SINR) defined as

S
SINR=—————

D1 +N,
i=1

Let y,,y denote instantaneous SINR at the kth diversity branch

So

E(ay)’
YKIN =N )
Y Ela| +N,
i=1

E; and E; are the energies of desired and interfering signals.

The average SINR of the kth branch is given as

E.Q
FKIN = E[]’KlN] =N —
inQik +N,

i=l
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(11)

Where y,, is instantaneous SIR and p,, is instantaneous SNR and they can be
written as

S 2 S 2
Z(Esask ) z Esai
/4 > Vin T kZIN—

Z(Z Eiaikzj ’
k=1 \i=1

L:ZL+ZL (12)

(13)

2
Where E[aizk] =M
E[

Here, we have assumed m, = m,

Similarly,

T = Bl o e (14)

D> E.2m,
k=1

. i . 1
For our analysis, we need the characteristics function of — Here,
vV Tot

E[yKIN% ] =Ty

Following the method [13],
_ oY _
Y 1:(Xkl 1) (xkl 1) (15)
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and 7/|<N_1 :(XkN_l)T(XkN_l) (16)

Where (Xk, 71) 1s (2my X 1) vector and (Xk,\fl) is (2mg X 1) vector. ()" indicates
the transpose of vector.

X - :I_Xkl,l_lﬂxkl,z_l’ """" Xklszmk'_IJ "
and

)(kr\f1 = lka,1715 ka,zil’ """" XkN’kas%J "

k:l, 27 """" L

These vectors are independent and identically distributed Gaussian random
variables with zero mean and variables E [X " 71] and E[X l:hl,]
Here,

7kN71 :(kail )T '(XkNil) (19)

L
where = indicates equal in their respective distribution.

and
V4 o= (X ki B )T (X K B ) (20)

The covariance matrix for interfering signals with equal powers is given as

(&j for k=1, i=j
N

R I=E[x;ix”]=% T,T, fork#l, buti=j=1,2,3,....

Xig I,j

0 otherwise (21)

and
2m T fori=j, k=l E[Xgt,, Xt | = pr)/2MeTe 2M.Ly for kA
buti=j=1,2, 3,.......
0 otherwise (22)

Here, 0< p,, = p, <1 for k#|
Let the eigen values of RX,, be A, A, A3y einnnnnn. A,

and the eigen values of R, be 4,4, 45,cceceecs A,

L L
Where, N =2> " m =2>"m, (23)
k=1 k=1
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Let &7,& .. f; are orthogonal vectors corresponding to eigen values A, Az,

A3y e Ay and &7LE 95,:,1 are orthogonal vectors corresponding to

From Karhunen — Loeve (KL) expansion of X,' and X, we have
y

Xy =2 Ay W (24)
n=1

and

Xp =S Jamer i @)
n=1

Where W,'andw,' are independent Gaussian random variables with zero mean
and unit variance.
From eqn. (11) and (12) we get

N

Vi =D AW, (26)
n=1

and

N‘ 1 1

Vi = D AaWs” (27)
n=1

So,
N' N’ o

Vi = D A Wyo + D AW, (28)
n=1 n=1

Now,

Vi i ()= Elbe ) Eleio [Elee by (j0).v, (o) @9)

Equation (29) may be written as

1 1 1
V(w2 ew2) ~ 1° T ; (30)

From eqn. (21), we get find that

N '
‘//7151 (J a)) - lgl//(w;2+w;{2) J w(ﬁ“n + ﬁ“n)
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- (1)
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Symbol Error Probability
The decision variables can be expressed as
L N 2
U, :Z (ZEsaks+nk1)+22 By, (32)
k=1 i=1

2ZN: E 2y
i1

u_- j%nmr '
k=1

} (33)

2
are complex valued zero mean Gaussian random

Where m=2, 3,...... M

2%, So-

i=1

Where |nkm| and

variables with variances 2E.N, and 2E, E[aém] or 2EQ’ respectively.

For M-ary FSK, U,, is the decision variable which is transmitted, the c.f. is given
as

7&)

‘//um(ja)

N
. 4jaEN, + 4joE QY
- - - X ex o X Voot (34)
{1—4jaESN0—Z4jaJEiQi} 14BN, Y 4jaE QY
i=1

i=1

The unconditional characteristic function can be obtained by averaging over the
statistics

N
| 4JeEN, +) 4jaEQ,
Yo, (Ja)): N L Vior I=1N (33)
{1—4jaJESNO—Z4jaJEiQi 1-4jaEN, - > 4jaEQ,
i=1 =l
Following the method [14], the probability density function of U,
k
_u1 L1 1 ul
AU, <ulU, =u)=1-ex 93y (36)

Kl

N | N
4EN,+DUEQ] | I 4EN, + Y UEC
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Joint probability P(U,<U; U3<U,........ Un<U))
M -1
:[P(uz < u1|U1 =U, )]
- KM
—u, < 1 u,
=|1-exp . x Z— - (37)
2 k 2
4EN, + ) 4EQ 4EN, + ) 4EQ
i=l i=1
Thus, Joint probability after expansion may be written as.
M -1
[P(uz <y |U1 =y )]
—iy, K\
4EN -+ % 4EQ?
-I'M =1 sNo+. i L-1
— - ( , je = z%x U (38)
il 0T T4EN, + ) 4EQ]
The conditional probability of error P, is given by
P = J' u, <u U, =u )" Py, )du, (39)
From eqn. (38) and (39) we get
—iLi :
N
N
+ ) 4ECP
M—l M 1 |_1 I L-1 1 Ul
P :F _ e = x| ¥ —x uldu  (40)
R = | K=0k! N 1
4ENy+ 2 4EQP
i=1
" i
. . . = U 1
The multinominal expansion of N x o [13, 15] can be
| 4EgNg + T 402 '
i=1
written as
k I
L-1 1 Uy
= k' N
T | 4EgNy + 3 4E Q2
i=1
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From the definition of characteristic function we have probability density

P()=——[ p(jv)ecv 42)
2 o=
Substituting eqn. (42) into (40) together with (41) we find
Y
N P
AEN+ > 4ECP
MH(M-1 Esl\b-a e | u
R=|1-21 . |e 1= xi! z Hﬁ e
=] 1 q
- AP +YUED
A - =
1 = . -
x —J v, (jo)e ™ du, tdu, 43)
27 e TN
N
2
M-1'M =1 Ci(L-1) | L1 1 p!(4EsN0+Z4EiQij
w5 e S
i=1 1 p=0 q=0 |q !(q !) q 27[
- Yo, (jo
<[ 2ulie) do (44)
{1+4waSNO +Z4ja)EiQf}
i=1
Symbol Error Probability = P, =1-P,
N
2
M -1 _ Ci(L=1) | LA p! 4EsN0 +Z4EiQi
M l i+1 . i=1
- (-1) ! H i
i=1 1 p=0 q=0 Iq '( ')q 27
Xj‘_"c Yuy(ie) dow (45)

N p+l1
{1+4waSNO +Z4ja)EiQf}

i=1

Substituting eqn. (31) into eqn. (35) and solving the c.f. of Uy;.; can be written as
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WUNH (J a)) = N L X N
{1—4]@%—241@5@2} [ aieEN Y aE
. 1= I:lN X(ﬂh +ﬂh)
Y| | 1-4ieEN, - 4jeEQ
i=1
N N-L
{1 —(4waSNO + Y 4jwEQ, H
v, (j0)=— . (46)
H[l ~li+20a, +/1n')]><(4ja)EsN0 +Y 4j0EQ, H
n=1 i=1
Using Cauchy’s integral formula for n™ derivatives
n! f(2)

f'z )= dz 47

( 0) 27Ti§(Z—ZO)n+1 ( )
Into eqn. (46), we get the probability of symbol error as

M-1'M =1 " i(L—1)_ L-1 1 dr z
R= Z( , j(—l) 2 h oL }@ Vo, N (48)
i =0 [ a0 lq 0 4EN, +> 4EQ,
i=l 7=i
From eqn. (46) replacing jo by ZN we have
(4ESN0 + Z4Eiij
i=1
z 1-2N*
Yo, N = (-2 =G(2) (49)
(4ESNO + Z4Eiij [T10-2t+2(2 +4))
i=1 n=1

Let
Hya(z) = InG(z) (50)

Using Faadi Bruno’s formula [16]
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|
dr Pl HU (Z) q
——G(z)=G(2) L}
dzp ( ) (Iol’ll ----- IILZI):() j(|i—!|: q' (51)
i

L+2hL+..(L-DI__;=p

Here,
~(N- L)(q N (q-1)fi+2(2, + 4, )f

H @

)= (1-2) & 21: =z(1+2(2, + 4, 62
Substituting eqn. (52) and (49) into eqn. (51) we get the pth derivative of G(z) as
dr
i Ol

(1-2"* q A A (N-Og-t) 1]
T (53)
e o WA ey
5425; t‘Euu -

So, symbol error probability can be obtained by substituting eqn. (53) for z=-i into
eqn.( 48)

M M =1 |+ i(L-1) L-1 1
SR TR TR A
i=1 p=0 I(Io Jp e IIL l)>0 g=0 | '( ')

Lo+l +... +f =i
l+20+... (L l)I,_] p

(1) F{Z{ D+ +4 ] (N- L)(ql)!}xlllq .
H[m (14204, +4)] 'o'v-;lu , L (422,44 () ) a

Hih H =
|1+2|2+ LDI=p

All the calculations have been performed using equation (54).Numerical
computation have been performed using MATLAB.

Numerical resultsand discussion

Symbol Error Probability (SEP) for different values of Symbol to Interference Ratio
(SIR) for fixed SNR= 7, 9, and 12 dB for diversity order L=2 and M=4 is presented in
fig. (1a). Here parameters used are 2m;=1, 2m,=2, 6=1, psnr =0.9 psr=0.8, N '=3 and
number of interferers N=2. The same is presented using the above parameters for N=6
in fig. (1b). From the fig. (1a), we infer that SEP decreases with the increase of SIR
for a fixed value of SNR. For fixed value of SIR, SEP also decreases with the increase
of SNR. From fig.(1b) we find the value of SEP is large for N=6 as compared to N=2.
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Figure 1. Symbol Error Probability for different values of SIR for fixed SNR =7, 9
and12dB. [a] for number interferers N=2 [b] for number interferers N=6

SEP is computed for the number of interferers N=2, 4 and 6 by selecting the L=2,

M=4, 2m;=1, 2m, =2, N =6, SNR =12dB, psxg =0.5, psir=0.8 for different values of
SIR and depicted in fig. (2). From the curves, we see that for large N, SEP is large.
SEP is numerically calculated for L=3, M=4 with SNR =2dB, 5dB and 7dB for
different values of SIR and produced in fig. (3). Parameters selected in this
calculation are as follows.

The average value SIR and SNR i.e. I, or I, is defined as

I=Te"™ wherek=1,2,3....... L, 50

d 1s a parameter

Symbol error probability for L=2, 3 for SNR =5dB SIR= 10dB, M=4; and SNR
=12dB, SIR= 8dB, M=4 for different values of 9 is illustrated in figure SEP increases
with the increase of 6 for different values of L.
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Figure 2: SEP versus SIR for interferers N=2, 4 and 6 for SNR =12dB.
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Figure 3: SEP versus SIR with SNR =2, 5 and 7dB.
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Figure 4. SEP versus delta (6) with SNR =5dB, SIR = 10dB; and SNR =12dB,
SIR=8dB with L=2, 3.

Conclusion

The closed form expression for symbol Error Probability provides direct solution for
arbitrary SIR and SNR. The numerical analysis through this expression is simple.
There is no need for any iteration and integration process. Thus, it saves
computational time as well as space. At the same time, no approximation is employed
during the derivation of expression. So, we get exact analysis of SEP through the
expression. With the flexibility in the choice of parameters like SIR, SNR and number
of interferers; co- channel reduction factor i.e. the ratio of radius of cell and distance
between two cochannel cell and transmitted power at each co-channel cell can be
adjusted as practical designer requires.
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