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Abstract 
 

The performance analysis of noncoherent M-ary Frequency Shift Keying 
(NMFSK) in noise and co-channel interference limited environment in mobile 
communication system is considered. The closed form expression for Symbol 
Error Probability (SEP) is derived employing equal gain combining for 
Nakagami fading channel. The effect of Symbol Interference Ratio (SIR) on 
SEP in presence of signal to noise ratio (SNR) is studied. The analysis is 
restricted to the case of equal interferer powers.  

 
 
Introduction  
The performance of mobile radio system is affected by noise, multipath fading and the 
co-channel interface [1]. Several techniques like diversity scheme, additive arrays, 
equalization etc. can be utilized to combat the effect of miultipath fading and to 
reduce the co-channel interference. In general space diversity is useful in mitigating 
the fading effect and Co-Channel Interference (CCI) by weighting and combining the 
received signals from all antenna branches [2]. There are three combining techniques 
namely, Maximum Ratio Combiner (MRC), Selective Combining (SC) and Equal 
Gain Combiner (EGC) for space diversity [3]. In MRC technique two receivers are 
employed for two branch diversity and the receiver circuit is very complicated .At the 
same time, although h in EGC there is only one dB degradation as compared to MRC 
but the circuit is relatively simple. The outage probability of cellular system for EGC 
with CCI in Nakagami fading channel was studied by Abu-Dayya and Beauliu [4] 
with equal interferer powers. The same study was performed by author [5] using mean 
signal using mean signal power to mean interferer powers.  
 EGC with co-channel interference for Rayleigh fading channel was studied by 
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Soug et. al. [6] for both equal and unequal power distributor, Chayan and Aalo [7] and 
Winter [8] have discussed the effect of CCI with MRC and OS combing technique.  
 The detection of Binary Phase Shift Keying (BPSK) in the presence of 
interference and noise has been presented by various authors [9-12]. 
 In this paper, we have derived the closed form expression using characteristics 
function for probability of error for noncoherent M-ary Frequency Shift Keying 
(NMFSK) with Post Detection EGC for correlated Nakagami fading channel in 
presence of noise and interference. Here, we have presented the effect of Signal to 
Noise Ratio (SNR) and Signal to Interference Ratio (SIR) both on the probability of 
error. The organization of paper is as follows. Section IInd contains the correlated 
Nakagami fading model and their characteristics function. Symbol Error Probability 
(SEP) expression have been derived in section III. Numerical results have been 
presented in section IV. Section V, contains the concluding remarks of paper.  
 
 
System Model 
Let us assume S(t) be a complex base band information bearing signal with average 
energy 2Es. The received signal at kth diversity branch is given as  
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 Where k= 1, 2, …….L; sTt ≤≤0  
  i=1, 2,………N; Ts is symbol interval Si(t) is the ith complex interfering signal. L 
is the number of channels. N is the number of interfering signals.  
 
Csk is the kth channel vector of desired signal and it is defined as  

  Csk = sk
j

esk

ϕ
α

−
  (2) 

 
 Where skα  is the random magnitude of fade Ci,k is the kth channel vector of ith 
interfering signal and it is expressed as  
   ik

ik eC ik

ϕα −
=   (3) 

 
 Where ikα  is the amplitude and ikϕ  is the phase of interfering user channel 
 We assume Ci and Cs are mutually independent. nk(t) represents the AWGN which 
is complex valued with zero mean and N0 variance. All the {nk(t)} are assumed to be 
independent. They are also independent of channel gain vectors. 
 We assume αsk’s and αik’s are correlated variables.  
 Nakagami probability density for fading amplitudes of desired and interfering 
signal can be written as  
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 Where msk and mik are fading parameters defined as  
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 Variances [ ]2

sksk Eα=Ω  
 
 And  
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 So, instantaneous Signal to Interference Pulse Noise Ratio (SINR) defined as  
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 Let KINγ  denote instantaneous SINR at the kth diversity branch  
 
 So 
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 Es and Ei are the energies of desired and interfering signals. 
 The average SINR of the kth branch is given as  
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 Now,  
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 Where kIγ is instantaneous SIR and kNγ  is instantaneous SNR and they can be 
written as  
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 kIγ  and kNγ  are independent  
 So,  
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 The average of 1−

kIγ  is given by  
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 For our analysis, we need the characteristics function of 
Totγ
1  Here, 

 [ ] KINKINE Γ=−1γ  
 
 Following the method [13], 
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 and  ( ) ( )111 −−− = kN
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kNkN XXγ   (16) 
 
 Where ( )1−

kIX  is (2mik X 1) vector and ( )1−
kNX  is (2msk X 1) vector. ( )T indicates 

the transpose of vector. 
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 These vectors are independent and identically distributed Gaussian random 
variables with zero mean and variables E [ ]1−

kIX  and [ ]1−
kNXE  

 Here,  
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 The covariance matrix for interfering signals with equal powers is given as  
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 From Karhunen – Loeve (KL) expansion of 1−
kIX  and 1−

kNX  we have  

 11

1

1 .
'

−−

=

− ∑= nn

N

n
nkI wX ξλ   (24) 

 
and  

 1'1'

1

'1 .
'

−−

=

− ∑= nn

N

n
nkn wX ξλ   (25) 

 
 Where 1−

nw and 1'−
nw  are independent Gaussian random variables with zero mean 

and unit variance. 
 From eqn. (11) and (12) we get  
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Symbol Error Probability  
The decision variables can be expressed as  
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 Where m=2, 3,……M 
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variables with variances 02 NEs and [ ]22 kimi EE α  or 22 iiE Ω  respectively. 
 For M-ary FSK, Um is the decision variable which is transmitted, the c.f. is given 
as  
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 The unconditional characteristic function can be obtained by averaging over the 
statistics  
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 Following the method [14], the probability density function of U2  
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 Thus, Joint probability after expansion may be written as.  
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 The conditional probability of error Pc is given by 
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 From the definition of characteristic function we have probability density  
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 Substituting eqn. (31) into eqn. (35) and solving the c.f. of UM-1 can be written as 
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 Using Cauchy’s integral formula for nth derivatives  
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 Into eqn. (46), we get the probability of symbol error as  
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 Let  
 HNak(z) = lnG(z) (50) 
 
 Using Faadi Bruno’s formula [16] 
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 Here,  
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 Substituting eqn. (52) and (49) into eqn. (51) we get the pth derivative of G(z) as  
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 So, symbol error probability can be obtained by substituting eqn. (53) for z=-i into 
eqn.( 48) 
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 All the calculations have been performed using equation (54).Numerical 
computation have been performed using MATLAB. 
 
 
Numerical results and discussion 
Symbol Error Probability (SEP) for different values of Symbol to Interference Ratio 
(SIR) for fixed SNR= 7, 9, and 12 dB for diversity order L=2 and M=4 is presented in 
fig. (1a). Here parameters used are 2m1=1, 2m2=2, δ=1, ρSNR =0.9 ρSIR=0.8, 'N =3 and 
number of interferers N=2. The same is presented using the above parameters for N=6 
in fig. (1b). From the fig. (1a), we infer that SEP decreases with the increase of SIR 
for a fixed value of SNR. For fixed value of SIR, SEP also decreases with the increase 
of SNR. From fig.(1b) we find the value of SEP is large for N=6 as compared to N=2. 
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(a)                                                                    (b) 

 
Figure 1: Symbol Error Probability for different values of SIR for fixed SNR =7, 9 
and12dB. [a] for number interferers N=2 [b] for number interferers N=6 

 
 

 SEP is computed for the number of interferers N=2, 4 and 6 by selecting the L=2, 
M=4, 2m1=1, 2m2 = 2, 'N =6, SNR =12dB, ρSNR =0.5, ρSIR=0.8 for different values of 
SIR and depicted in fig. (2). From the curves, we see that for large N, SEP is large. 
SEP is numerically calculated for L=3, M=4 with SNR =2dB, 5dB and 7dB for 
different values of SIR and produced in fig. (3). Parameters selected in this 
calculation are as follows.  
 The average value SIR and SNR i.e. kIΓ  or kNΓ  is defined as  

 kΓ = δike−Γ1  where k=1, 2, 3 ……. L, δ>0 
 δ is a parameter  
 
 Symbol error probability for L=2, 3 for SNR =5dB SIR= 10dB, M=4; and SNR 
=12dB, SIR= 8dB, M=4 for different values of δ is illustrated in figure SEP increases 
with the increase of δ for different values of L.  
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Figure 2: SEP versus SIR for interferers N=2, 4 and 6 for SNR =12dB. 
 

 
 

Figure 3: SEP versus SIR with SNR = 2, 5 and 7dB. 

0.001

0.01

0.1

1

0 10 20 30 40

SIR (dB)

Sy
m

bo
l E

rr
or

 P
ro

ba
bi

lit
y 

(P
e)

N=6

N=4

N=2

0.001

0.01

0.1

1

0 10 20 30

SIR(dB)

Sy
m

bo
l E

rr
or

 P
ro

ba
bi

lit
y 

(P
e)

SNR=

     5dB

      7dB

2 dB



334  Shailendra Jain and M. Tiwari 
 

 

 
 

Figure 4: SEP versus delta (δ) with SNR =5dB, SIR = 10dB; and SNR =12dB, 
SIR=8dB with L=2, 3. 

 
 
Conclusion  
The closed form expression for symbol Error Probability provides direct solution for 
arbitrary SIR and SNR. The numerical analysis through this expression is simple. 
There is no need for any iteration and integration process. Thus, it saves 
computational time as well as space. At the same time, no approximation is employed 
during the derivation of expression. So, we get exact analysis of SEP through the 
expression. With the flexibility in the choice of parameters like SIR, SNR and number 
of interferers; co- channel reduction factor i.e. the ratio of radius of cell and distance 
between two cochannel cell and transmitted power at each co-channel cell can be 
adjusted as practical designer requires. 
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