
International Journal of Electronics and Communication Engineering. 
ISSN 0974-2166 Volume 4, Number 5 (2011), pp. 517-525 
© International Research Publication House 
http://www.irphouse.com 

 

 
 

Evolutionary Algorithm for Connection Weights in 
Artificial Neural Networks 

 
 

1G.V.R. Sagar and 2Dr. S. Venkata Chalam 
 

1Assoc. Professor, 
G.P.R. Engg. College (Autonomous), Kurnool, A.P., India 

E-mail: nusagar@gmail.com 
2Principal, A C E Engineering College, Ghatkesar, R.R. District, AP, India 

E-mail: sv_chalam2003@yahoo.com 
 
 

Abstract 
 

A neural network may be considered as an adaptive system that progressively 
self-organizes in order to approximate the solution, making the problem solver 
free from the need to accurately and unambiguously specify the steps towards 
the solution. Moreover, Evolutionary Artificial Neural Networks (EANNs) 
have the ability to progressively improve their performance on a given task by 
executing learning. An evolutionary computation gives adaptability for 
connection weights using feed forward architecture. In this paper, the use of 
evolutionary computation for feed-forward neural network learning is 
discussed. To check the validation of proposed method, XOR benchmark 
problem has been used. The accuracy of the proposed model is more 
satisfactory as compared to gradient method. 
 
Keywords: Evolutionary algorithm, Gradien decent, Back-Propagation, Mean 
square error. 

 
 
Introduction 
Architectures: An ANN consists of a set of processing elements, also known as 
neurons or nodes, which are interconnected.  
 It can be described as a directed graph in which each node performs a transfer 
function of the form 
  yi = fi ( ∑  ௡

௝ୀଵ wij xj - ԕI )  (1) 
 
where yi is the output of the node i, xj is the th input to the node, and is the connection 
weight between nodes i and j, ԕi. is the threshold (or bias) of the node. 



518  G.V.R. Sagar and Dr. S. Venkata Chalam 
 

 

Learning in ANN’s: Learning is achieved by adjusting the connection weights in 
ANN’s iteratively so that trained (or learned) ANN’s can perform certain tasks. 
Learning in ANN’s can roughly be divided into supervised, unsupervised, and 
reinforcement learning. Supervised learning is based on direct comparison between 
the actual output of an ANN and the desired correct output, also known as the target 
output. It is often formulated as the minimization of an error function such as the total 
mean square error between the actual output and the desired output summed over all 
available data.  
 
 
Evolutionary Artificial Neural Network 
Evolutionary artificial neural networks (EANN’s) refer to a special class of artificial 
neural networks (ANN’s) in which evolution is another fundamental form of 
adaptation in addition to learning [2] – [5]. Evolutionary algorithms (EA’s) are used 
to perform various tasks, such as connection weight training, architecture design, 
learning rule adaptation, input feature selection, connection weight initialization, rule 
extraction from ANN’s, etc. One distinct feature of EANN’s is their adaptability to a 
dynamic environment. The two forms of adaptation, i.e., evolution and learning in 
EANN’s, make their adaptation to a dynamic environment much more effective and 
efficient.  
 Evolution has been introduced into ANN’s at roughly three different levels: 
connection weights, architectures, and learning rules. The evolution of connection 
weights introduces an adaptive and global approach to training, especially in the 
reinforcement learning and recurrent network learning paradigm where gradient-based 
training algorithms often experience great difficulties. The evolution of architectures 
enables ANN’s to adapt their topologies to different tasks without human intervention 
and thus provides an approach to automatic ANN design as both ANN connection 
weights and structures can be evolved. 
 
Feed forward ANN Architecture 
ANN’s can be divided into feed-forward and recurrent classes according to their 
connectivity. An ANN is feed-forward if there exists a method which numbers all the 
nodes in the network such that there is no connection from a node with a large number 
to a node with a smaller number. The feed-forward neural networks allow only for 
one directional signal flow. Furthermore, most of feed-forward neural networks are 
organized in layers. An example of the three layer feed-forward neural network is 
shown in fig.2.0  
 This network consists of input nodes, two hidden layers and an output layer. 
Typical activation functions are shown in fig.2.1. These continuous activation 
functions allow for the gradient based training of multilayer networks. A single 
neuron can divide only linearly separated patterns. In order to select just one region in 
n-dimensional input space more than n+1 neurons should be used. If more input 
clusters should be selected than the number of neurons in the input(hidden) layer 
should be properly multiplied. If not limited, than all classification problems can 
solved using the three layer network. 



Evolutionary Algorithm for Connection Weights 519 
 

 

 
 

Figure 2.0: Feed-forward neural network. 
 
 
 Neurons in the first hidden layer create the separation lines for input clusters. 
Neurons in the second hidden layer perform AND operation, output neurons perform 
OR operation for each category. The linear separation property of neurons makes 
some problems especially difficult for neural networks, such as Ex-OR, parity 
computation for several bits, or to separable patterns laying on two neighboring 
spirals. The feed-forward neural network is also used for nonlinear transformation 
(mapping) of a multi-dimensional input variable into another multi-dimensional 
variable in the output. Any input –output mapping should be possible if neural 
network has enough neurons in hidden layers. Practically, it is not an easy task. 
Presently, there is no satisfactory method to define how many neurons should be used 
in hidden layers. Usually this is found by try and error method. In general, it is known 
that if more neurons are used, more complicated shapes can be mapped. On the other 
side networks with large number of neurons lose their ability for generalization, and it 
is more likely that such network will try to map noise supplied to the input also. 
 
Gradient descent learning 
Gradient descent is a first order optimization algorithm. To find a local minimum of a 
function using gradient descent, one takes steps proportional to the negative of the 
gradient (or of the approximate gradient) of the function at the current point. If instead 
one takes steps proportional to the positive of the gradient, one approaches a local 
maximum of that function; the procedure is then known as gradient ascent. Gradient 
descent is also known as steepest descent, or the method of steepest descent 
 A gradient descent based optimization algorithm such as back-propagation (BP) 
[6] can then be used to adjust connection weights in the ANN iteratively in order to 
minimize the error. The Gradient descent back-propagation algorithm [7] is a gradient 
descent method minimizing the mean square error between the actual and target 
output of multilayer perceptron. Assuming sigmoidal nonlinear function shown in 
fig2.1  

Hidden nodes 

+1 +1 +1

Input 
nodes  
x

Output 
nodes T 

 



520  
 

 

  

Figu

 The Back-propagation
of networks and sometime
neurons are used the Er
required training error. Th
process and to reduce the
neurons than required. Suc
used for training[10].  
 Gradient descent is rel
to its use of gradient desce
error function and is inca
multimodal and/or non d
algorithms can be found in
 
 
Proposed Work 
The validation of the gra
mark problem due to the
 
The back-propagation al
The back propagation algo

1. Initialization: Set a
2. Presentation of in

X(1), X(2),….,X(

 
  f(neti) =

G.V.R. Sagar and Dr. S. Ve

 
 

 
 

ure 2.1: Sigmodal nonlinear function. 
 
 

n [8], [9] networks tend to be slower to train t
es require thousands of epochs. When a redu
rror Back-propagation algorithm cannot co
he most common mistake is in order to speed
e training errors, the neural networks with la
ch networks would perform very poorly for n

latively slow close to the minimum. BP has 
ent [11, [12]. It often gets trapped in a local m
apable of finding a global minimum if the e
differentiable. A detailed review of BP and
n [13], [14], and [15]. 

adient descent and proposed method are usin
eir ‘simplicity’ and not so high computation r

lgorithm  
orithm consists of the following steps: 
all the weights and thresholds to small random
nput and desired (target) outputs Present th
(N) and corresponding desired (target) r

  1 

 1 – e‐ net 
=    1

enkata Chalam 

than other types 
uced number of 
onverge to the 

d up the training 
arger number of 
new patterns nor 

drawbacks due 
minimum of the 
error function is 
d other learning 

ng XOR bench 
equirements. 

m values. 
he input vector 
response T(1), 



Evolutionary Algorithm for Connection Weights 521 
 

 

T(2),….T(N), one pair at a time, where N is the total number of training 
patterns. 

3. Calculation of actual outputs 
4. Adaptation of weights and thresholds 

 
 To demonstrate back-propagation here we considered three layer, 7 neuron (2 
input, 4 hidden, 1 output) feedforward network Since back-propagation and training 
requires thousands of steps the network would be initialized with random weights 
(The weights can be anything between -1 and 1),  
 
The initial random weights for hidden layer are given by 

 0.8147  0.9134  0.2785  0.9649 
 0.9058  0.6324  0.5469  0.1576 
 0.1270  0.0975  0.9575  0.9706 

 
The optimal trained hidden layer weights are 
  3.6970  1.8908  -7.1525  -6.9605 
  -7.3006  1.3526  3.4763  -7.0262 
  -1.0437  -1.5517  -0.9703  2.4692 
 
The optimal Trained outer layer weights are 

 9.5114  -5.9792  8.7807  -10.3960 
 
 The fig 3.0 shows mean square error results of Back-propagation Artificial Neural 
Network (BP-ANN) in number of iterations. The table 3.0 gives the comparison of 
desired output and output of BP-ANN method. In this method the mean square error 
does not converge. So the accuracy is poor.  

 
 

Table 3.0 Performance of xor using BP-ANN. 
 

Input data Desired output Output by BP_ANN
0 0 0 0.0032 
0 1 1.0000 0.9951 
1 0 1.0000 0.9949 
1 1 0 0.0076 

 



522  G.V.R. Sagar and Dr. S. Venkata Chalam 
 

 

 
 

Figure 3.0: Performance of xor using BP-ANN. 
 
 

Evolution of Connection weights 
Weight training in ANN’s is usually formulated as minimization of an error function, 
such as the mean square error between target and actual outputs averaged over all 
examples, by iteratively adjusting connection weights. Most training algorithms, such 
as BP [1], [2] given above and conjugate gradient algorithms [16], [17]–[19], are 
based on gradient descent. There have been some successful applications of BP in 
various areas [20], [21], [22]. 
 One way to overcome gradient-descent-based training algorithms’ shortcomings is 
to adopt EANN’s, i.e., to formulate the training process as the evolution of connection 
weights in the environment determined by the architecture and the learning task. EA’s 
can then be used effectively in the evolution to find a near-optimal set of connection 
weights globally without computing gradient information. The fitness of an ANN can 
be defined according to different needs. Two important factors which often appear in 
the fitness (or error) function are the error between target and actual outputs and the 
complexity of the ANN. Unlike the case in gradient-descent-based training 
algorithms, the fitness (or error) function does not have to be differentiable or even 
continuous since EA’s do not depend on gradient information. Because EA’s can treat 
large, complex, non-differentiable, and multimodal spaces, which are the typical case 
in the real world, considerable research and application has been conducted on the 
evolution of connection weights [23], [24], [25] 
 The aim of the proposed work is to find a near-optimal set of connection weights 
globally for an ANN with a fixed feed-forward architecture with three layer, 7 neuron 
(2 input, 4 hidden, 1 output) as shown in fig2.0 using Evolutionary Algorithm (EA). 
Various methods of encoding connection weights and different search operators used 
in EA. Comparisons between the evolutionary approach and conventional training 
algorithms, such as BP, have been made. In general, no single algorithm is an overall 
winner for all kinds of networks. The best training algorithm is problem dependent  
 



Evolutionary Algorithm for Connection Weights 523 
 

 

Evolutionary algorithm: 
1. Generate the initial population of μ individuals 
2. Evaluate the fitness value for each individual of the population 
3. Create λ offspring 
4. Evaluate the fitness of each offspring 
5. Sort offspring (or parents and offspring) and select μ best individuals to be 

parents of the next generation 
6. Stop if stopping criterion is satisfied; Otherwise go to the step 3 

 
 

Table 3.1: Performance of EA-ANN For XOR 
 

Input data Desired output Output by GA_ANN
0 0 0 0.0000 
0 1 1.0000 1.0000 
1 0 1.0000 1.0000 
1 1 0 0.0000 

 

 
 

Figure 3.1: Best Chromosome Mean Square Error Plot for EA- ANN connection 
weights 
 
 
 The Fig.3.1 shows the mean square error for the best chromosome in the given 
population and table 3.1 shows the EX-OR truth table with high accuracy.  
 On comparison of two algorithms, the back-propagation takes 6684 iterations, 
total time taken is 9.4890 seconds and error minimization is 0.0178 to complete the 
task. But the evolutionary genetic algorithm takes 352 iterations, time taken is 9.4888 
seconds, and error minimization is zero. 



524  G.V.R. Sagar and Dr. S. Venkata Chalam 
 

 

Conclusion 
Evolutionary computation provides a powerful method for determination of weights, 
individual ANN architectures . A evolutionary algorithm is different form other 
classical search and optimization methods in a number of ways, It is a stochastic 
search and optimization procedure. A evolutionary genetic algorithm does not use 
gradient information, it works with a set of solutions instead of one solution in each 
iteration. The EA-ANN approach gave zero mean square error than the gradient-
descent method datasets, and the results did not depend on the initial choice of 
weights. The objective of this research gave the increased performance of the network 
in terms of accuracy. 
 
 
References 
 

[1] X. Yao, “Evolution of connectionist networks,” in Preprints Int. Symp. AI, 
Reasoning & Creativity, Queensland, Australia, Griffith Univ., pp. 49–52. 
1991. 

[2] --- “A review of evolutionary artificial neural networks,” Int. J. Intell. Syst., 
vol. 8, no. 4, pp. 539–567, 1993. 

[3] ----, “Evolutionary artificial neural networks,” Int. J. Neural Syst., vol. 4, no. 3, 
pp. 203–222, 1993. 

[4] ----, “The evolution of connectionist networks,” in Artificial Intelligence and 
Creativity, T. Dartnall, Ed. Dordrecht, The Netherlands: Kluwer, pp. 233–243, 
1994. 

[5] ---- , “Evolutionary artificial neural networks,” in Encyclopedia of Computer 
Science and Technology, vol. 33, A. Kent and J. G. Williams, Eds. New York: 
Marcel Dekker, pp. 137–170, 1995. 

[6] G. E. Hinton, “Connectionist learning procedures,” Artificial Intell., vol. 40, no. 
1–3, pp. 185–234, Sept. 1989 

[7] Rumelhart D. E., Hinton G. E., Williams R. J. “Learning representations by 
back propagating errors”, .Nature, 323, 533-536, 1986. 

[8] Rumclhart D. E., Hinton G. E., Williams R. J.: “ Learning errors” , Nature, Vol. 
323, pp. 533-536, 1986. 

[9] Wcrobs P. J,: ” Back-propagation: Past and Future”, Proc. Neural Networks, 
San Diego, CA, 1, 343-354, 1988. 

[10] Wilamowski B. M,: “ Neural Network Architectures and Learning Algorithms: 
How not to be Frustrated with Neural Networks, IEEE Industrial Electronics 
Magazine “, Vol. 3 No. 4, pp. 56-63, Dec. 2009. 

[11] R. S. Sutton, “Two problems with back-propagation and other steepest-descent 
learning procedures for networks,” in Proc. 8th Annual Conf. Cognitive Science 
Society. Hillsdale, NJ: Erlbaum, pp. 823–831, 1986 

[12] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and neural 
networks: Optimizing connections and connectivity,” Parallel Comput., vol. 
14, no. 3, pp. 347–361, 1990 



Evolutionary Algorithm for Connection Weights 525 
 

 

[13] J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural 
Computation. Reading, MA: Addison-Wesley, 1991. 

[14] D. R. Hush and B. G. Horne, “Progress in supervised neural networks,” IEEE 
Signal Processing Mag., vol. 10, pp. 8–39, Jan. 1993. 

[15] Y. Chauvin and D. E. Rumelhart, Eds., Back-propagation: Theory, 
Architectures, and Applications. Hillsdale, NJ: Erlbaum, 1995. 

[16] J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural 
Computation. Reading, MA: Addison-Wesley, 1991. 

[17] D. R. Hush and B. G. Horne, “Progress in supervised neural networks,” IEEE 
Signal Processing Mag., vol. 10, pp. 8–39, Jan. 1993. 

[18] Y. Chauvin and D. E. Rumelhart, Eds., Backpropagation: Theory, 
Architectures, and Applications. Hillsdale, NJ: Erlbaum, 1995. 

[19] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised 
learning,” Neural Networks, vol. 6, no. 4, pp. 525–533, 1993. 

[20] K. J. Lang, A. H. Waibel, and G. E. Hinton, “A time-delay neural network 
architecture for isolated word recognition,” Neural Networks, vol. 3, no. 1, pp. 
33–43, 1990. 

[21] S. Knerr, L. Personnaz, and G. Dreyfus, “Handwritten digit recognition by 
neural networks with single-layer training,” IEEE Trans. Neural Networks, vol. 
3, pp. 962–968, Nov. 1992. 

[22] S. S. Fels and G. E. Hinton, “Glove-talk: A neural network interface between a 
data-glove and a speech synthesizer,” IEEE Trans. Neural Networks, vol. 4, pp. 
2–8, Jan. 1993. 

[23] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and neural 
networks: Optimizing connections and connectivity,” Parallel Comput., vol. 
14, no. 3, pp. 347–361, 1990. 

[24] D. Whitley, “The GENITOR algorithm and selective pressure: Why rank-based 
allocation of reproductive trials is best,” in Proc. 3rd Int. Conf. Genetic 
Algorithms and Their Applications, J. D. Schaffer, Ed. San Mateo, CA: Morgan 
Kaufmann, pp. 116–121, 1989. 

[25] P. Zhang, Y. Sankai, and M. Ohta, “Hybrid adaptive learning control of 
nonlinear system,” in Proc. 1995 American Control Conf. Part 4 (of 6), pp. 
2744–2748, 1995. 



 
 
 
 
 
 
 
 


	b.pdf
	International Journal of Networking and Computer Engineering 
	 
	Reza Malekian 
	Chair and Head of Computer Department 
	Azad University, Tonekabon Branch, 
	Iran 
	Prof. Aggelos K. Katsaggelos 
	Dr. Marlien Herselman 
	Dr. Shihab Jimaa 
	                Editorial Board         dri 
	 
	Prof. Hussain Al-Ahmad 
	Prof. G.S. Tomar 
	Prof. Safaa S. Mahmoud 
	Dr. Nazanin Malekian 
	Dr. S. Jeevananthan 
	Dr. Ghulam Ali 
	AIM AND SCOPE 
	Submission of Manuscripts 
	SUBSCRIPTION INFORMATION 




	Analysis of Frequency Reuse and Throughput Enhancement in  1--20 WiMAX systems 
	J. Jackson Juliet Roy and V. Vaidehi 
	Suleiman Abu-Ein, Sayel M. Fayyad, Ghazi Al-Marahleh,  
	Naser Al-Kloub and Mohammad Al-Hasan 
	B. Ramesh, Member IEI and D. Manjula 
	R. Deepa and K. Baskaran 
	Md. Dulal Haque, Shaikh Enayet Ullah, Md. Mahbubar Rahman and A.F.M. Zainul Abadin 
	Rakesh Kumar jha and Ajay Sharma 
	J. Jackson Juliet Roy and V. Vaidehi 
	M. Bheemalingaiah, M.M. Naidu, D. Sreenivasa Rao and G.Varaprasad 






