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Abstract 
 

In order to solve the load flow problem under uncertainty a novel algorithm is 
presented in this paper. The proposed method applies fuzzy arithmetic and 
fuzzy logic principle to solve the load flow problem. The proposed method has 
also been compared with other existing methods in the literature like Das et al. 
[19], Ghosh and Das [24] Ranjan and Das [25]. The proposed method has 
been tested with 29−node radial distribution networks. Constant power (CP), 
constant current (CI), constant impedance (CZ), composite and exponential 
load modellings for each of these examples are considered. The initial voltage 
of all nodes is taken 1+j0 and initial power loss of all branches are also taken 
zero.  
 
Terms: Distribution system, Fuzzy arithmetic Fuzzy logic. 

 
 
Introduction 
The load flow problem is an important tool for designing and operation of distribution 
systems. At the design stage it is applied to ensure that the voltage and the current 
standards are fulfilled under various conditions all over the network. At the operating 
stage, load flow is used to ensure that voltages and currents are within the predefined 
ranges for expected loads. 
 The variables for the load−flow analysis of distribution systems are different from 
that of transmission systems. This is because distribution network is radial in nature 
having high R/X ratio, whereas, the transmission system is loop in nature having high 
X/R ratio. The conventional Gauss−Seidel and Newton−Raphson method do not 
converge for the distribution networks. A number of efficient load−flow methods for 
transmission systems are available in literature. The analysis of distribution systems is 
an important area of activity as distribution systems is the final link between a bulk 
power system and consumers. 
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Representation of Network 
Network topology is an important aspect in distribution system analysis. One of the 
characteristics of the proposed algorithm is the fact that does not require of a 
numbering of nodes and branches by layers. For this algorithm the nodes and the 
branches can be numbered without a predetermined order, characteristic that does it 
more flexible and strong. In the revised algorithms in the literature the numbering of 
the nodes and branches should be performed for layers, in a similar way of the model 
proposed by Shirmohammadi, et al [26], being had that renumbering the nodes and 
the branches in the systems whose dates not possess this structure. For example Fig.1 
shows a radial distribution system with sequential numbering 

 

 
 

Figure 1: Sequential Numbering of the network. 
 
 

  Similarly, Fig.2 shows a radial distribution system where the node and branch 
numbering scheme are not sequential. 

 

 
 

Figure 2: Non Sequential Numbering of the network. 
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Solution of the Network 
The mathematical model of radial distribution system is derived from Fig.3. 

 
 

 
 

Figure 3: Mathematical model of radial distribution system. 
 
 

 From Fig.3.3, 
ሺ݆݆ሻܫ   ൌ ௏ሺ௠ଵሻסఋሺ௠ଵሻି௏ሺ௠ଶሻסఋሺ௠ଶሻ

௓ሺ௝௝ሻ  ሺ1ሻ 
   ܲሺ݉2ሻ െ ݆ܳሺ݉2ሻ ൌ ሺ݉2ሻכܸ ൈ   ሺ݆݆ሻ ሺ2ሻܫ
 
 Where, ܼሺ݆݆ሻ ൌ ܴሺ݆݆ሻ ൅ ݆ܺሺ݆݆ሻ 
 m1 and m2 are the sending end and receiving end nodes respectively. 

P(m2) is the sum of real power loads of all the nodes beyond node m2 plus real 
power load of the node m2 itself plus the sum of the real power losses of all the 
branches beyond node m2. 
 Q(m2) is the sum of reactive power loads of all the nodes beyond node m2 plus 
reactive power load of the node m2 itself plus the sum of the reactive power losses of 
all the branches beyond node m2. 
 I(jj) is the current flowing through the branch jj. 
 V(i) is the magnitude of the voltage of the ith node. 
 δ(m1) is the voltage angle of node m1 
 δ(m2) is the voltage angle of node m2 
 R(jj) is the resistance of the branch jj. 
 X(jj) is the reactance of the branch jj. 
 
 From equation (1) and equation (2), we get 
  ܸሺ݉2ሻ ൌ ඥܤሺ݆݆ሻ െ   ሺ݆݆ሻ ሺ3ሻܣ
 
 Where, 
ሺ݆݆ሻܣ   ൌ ܲሺ݉2ሻ ൈ ܴሺ݆݆ሻ ൅ ܳሺ݉2ሻ ൈ ܺሺ݆݆ሻ െ 0.5 ൈ ൫ܸሺ݉1ሻ൯ଶ ሺ4ሻ 

ሺ݆݆ሻܤ   ൌ ටܣଶሺ݆݆ሻ െ ൣܼଶሺ݆݆ሻ ൈ ൫ܲଶሺ݉2ሻ ൅ ܳଶሺ݉2ሻ൯൧ 
 
 The real and reactive power loss of branch jj is given by, 

I(jj) 
m2m1 

   

P(m2)‐jQ(m2) 

Branch (jj) 
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ሺ݆݆ሻܲܮ   ൌ ோሺ௝௝ሻൈൣ௉మሺ௠ଶሻାொమሺ௠ଶሻ൧
௏ሺ௠ଶሻమ  ሺ5ሻ 

ሺ݆݆ሻܳܮ   ൌ ௑ሺ௝௝ሻൈൣ௉మሺ௠ଶሻାொమሺ௠ଶሻ൧
௏ሺ௠ଶሻమ  ሺ6ሻ 

 
 These calculations are carried out successively until the convergence criterion is 
achieved, that is, the difference in voltage between the previous iteration and the 
present one be smaller to a certain defined value, for each nodes. That is, 
  max| ௜ܸሺ݈݀݋ሻ െ ௜ܸሺ݊݁ݓሻ| ൏  ሺ7ሻ ߝ
 
 Where, 
 ௜ܸሺ݈݀݋ሻ is the node i voltage in previous iteration.  
 ௜ܸሺ݊݁ݓሻ is the node i voltage in present iteration. 
 .in the maximum voltage mismatch ߝ 
 
 Although the data obtained by deterministic methods of measurement usually are 
reliable, the possible errors can always be expected. In order to represent these errors, 
all the local estimated (measured) are modeled as fuzzy variables, constrained by 
trapezoidal membership functions, with narrow interval of uncertainty. The 
fuzzification interface involves the following steps during an iterration.  
 Calculate in per unit the power parameter ∆FP and ∆FQ of each node. 
 The maximum power parameter determines the range of scale mapping that will 
transfer the input signal into the corresponding universe of discourse, at every 
iteration. 
 Then the input signal is fuzzified into corresponding fuzzy signals with several 
linguistic variables as shown in Fig.4 

 

 
 

Figure 4: Membership Function. 
 

 
 Where, 
 LN denotes Large negative 
 MN denotes Medium negative 

0 −∆Fmax  ∆Fmax 

LPMP SPZRSNMN LN 

µ 
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 SN denotes Small negative 
 ZE denotes Zero 
 LP denotes Large positive 
 MP denotes Medium positive 
 SP denotes Small positive 
 
 The same interval of uncertainty is adopted for node voltages and currents. 
The main structure of the process has been shown in Fig.5. 

 

 
 

Figure 5: Structure of the proposed method. 
 

 
Algorithm for Computation of Load−Flow 
Assumptions: To calculate the node voltages and branch currents and the total system 
loss, the real and reactive power losses of all the branches is assumed to be zero. Also 
flat voltage start is used. The convergence criteria is such that if Max|Vold[FN(i,j)] − 
VNew[FN(i,j)] | < ε, for i = 1,2,..,TN and j = 1,2,….,N(i) where, j = total number of 
nodes of FN(i).  
 The following are the steps for load flow calculation: 

 
 

Step 1 : Get the number of Feeder (A), lateral(s) (B) and sub−lateral(s) (C). 
Step 2  : TN = A + B + C 
Step 3 : Read the total number of nodes N(i) of feeder, lateral(s) and 

sub−lateral(s) for i = 1,2,…,TN 
Step 4 : Read the nodes and branch numbers of feeder, lateral(s) and 

sub−lateral(s) i.e., FN(i,j) for j =1,2,…,N(i) and i = 1,2,….,TN if these 
are not sequential.. 

Step 5 : Read real and reactive power load at each node i.e., PL[FN(i,j)] and 
QL[FN(i,j)] for j = 2,3,..,N(j) and i = 1,2,..,TN.  

Step 6 : Initialize PL[FN(1,1)] = 0.0 and QL[FN(1,1)] = 0.0 
Step 7 : Read the branches of feeder, lateral(s) and sub−lateral(s) i.e., FB(I,j) 

for j =1,2,…,N(i) − 1 and i = 1,2,….,TN. 
Step 8 : Read resistance and reactance of each branch i.e., R[FB(i,j)] and 

X[FB(i,j)] for j = 2,3,..,N(j) −1 and i = 1,2,..,TN. 
Step 9 : Read base kV and base MVA, Total number of iteration (ITMAX), ε 

(0.00001) 

Crisp

Fuzzifier  Fuzzy rules Fuzzy process

Defuzzifier

Fuzzy input

Fuzzy output 

Crisp input   
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Step 10 : Compute the per unit values of PL[FN(i,j)] and QL[FN(i,j)] for j = 
2,3,..,N(j) and i = 1,2,..,TN as well as R[FB(i,j)] and X[FB(i,j)] for j = 
1,2,3,..,N(j) −1 and i = 1,2,..,TN. 

Step 11 : Set PL1[FN(i,j)] = PL[FN(i,j)] and QL1[FN(i,j)] = QL[FN(i,j)] for j = 
2,3,..,N(j) and i = 1,2,..,TN 

Step 12 : Set LP[FB(i,j)] = 0.0 and LQ[FB(i,j)] = 0.0 for all j = 1,2,…,N(i) −1 
and i = 1,2,….,TN. 

Step 13 : Set V[FN(i,j)] = 1.0 + j0.0 for j =1,2,…,N(i) and i = 1,2,….,TN and set
V1[FN(i,j)] = V[FN(I,j)] for j =1,2,…,N(i) and i = 1,2,….,TN. 

Step 14 :  Use the step 7 to step 11 to calculate the branch currents of each 
feeder, lateral(s) and sub−lateral(s) respectively. 

Step 15 : Set IT = 1 
Step 16  Construct the membership functions for node voltages, load current, 

real and reactive power. 
Step 17 : Set PL[FN(i,j)] = PL1[FN(i,j)] and QL[FN(i,j)] = QL1[FN(i,j)] for j = 

2,3,..,N(j) and i = 1,2,..,TN 
Step 18 : Use proper load modelling. 
Step 19 : Compute voltage |V[FN(I,j)]| using the fuzzy rules. for j = 2,3,..,N(j) 

and i = 1,2,..,TN. 
Step 20 : Compute |ΔV[FN(i,j)]|  

= |V1[FN(i,j)]| − |V[FN(i,j)]| for j = 2,3,..,N(j) and i = 1,2,..,TN. 
Step 21 : Compute current |I[FB(i,j)]| using the fuzzy rules for j = 1,2,3,..,N(j)−1 

and i = 1,2,..,TN. 
Step 22 : Set |V1[FN(i,j)]| = |V[FN(i,j)]| for j = 1,2,3,..,N(j) and i = 1,2,..,TN. 
Step 23 : Compute LP[FB(i,j)] and LQ[FB(i,j)] for all j = 1,2,…,N(i)−1 and i = 

1,2,….,TN. 
Step 24 : Find ΔVmax from |ΔV[FN(i,j)]| for  

j = 2,3,..,N(j) and i = 1,2,..,TN. 
Step 25 : If ΔVmin ≤ 0.00001 go to step 26 else go to step 24. 
Step 26 : IT = IT + 1 
Step 27 : If IT ≤ ITMAX go to step 16 else write “NOT CONVERGED” , go to 

step 27. 
Step 28 :  Write “SOLUTION HAS CONVERGED” and display the results: 

Total Real and Reactive Power Losses, Voltages of each node, 
minimum value of voltage and its node number and total real and 
reactive power load for CP, CI, CZ, Composite and Exponential Load 
Modelling. 

Step 29 : Stop 
 
 
Fuzzy Rules 
The fuzzy rules are tabulated in the Table.1 and Table.2 
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Table 3.1: Fuzzy rules for calculation of voltage. 
 

                    I(fuz) 
V(fuz) 

LN MN SN ZR SP MP LP 

LN LN LP SP MP MN SN ZR 
MN SP MN ZR LN MP LP SN 
SN MP ZR SN MN LP SP LN 
ZR MN SP LP ZR SN LN MP 
SP LP MP LN SN SP MN ZR 
MP ZR SN LP SP LN MP MN 
LP SN LN SP MN MP ZR LP 

 
 

Table 3.2: Fuzzy rules for calculation of current. 
 

                 S(fuz) 
V(fuz) 

LN MN SN ZR SP MP LP 

LN SN SP LN LP ZR MP MN 
MN LP ZR SP MN SN LN MP 
SN SP SN MP ZR LN MN LP 
ZR LN LP MN SP MP ZR SN 
SP MN LN LP MP ZR SN SP 
MP MP LP ZR SN MN SP LN 
LP ZR SP SN LN LP MN MP 

 
 
An Example 
To demonstrate the effectiveness of the proposed method, the following example has 
been considered here: 
A 29−node radial distribution network (nodes have been renumbered with Substation 
as node 1) shown in Figure 6. Data for this system is given in Table A1 and Table A2. 
The voltage magnitude of each node for CP, CI, CZ, Composite and Exponential load 
modelling as well as the minimum voltage and its node number are shown in Table 
3.3, Table 3.4, Table 3.5, Table 3.6 and Table 3.7 respectively. Base values for this 
system are 11.00 kV and 100 MVA respectively. Composite Load = 40%CP + 30%CI 
+ 30% CZ has been considered in this example. 
 
Table 3.3: Voltage (pu) of Each Node of 29−Node Radial Distribution Network for 
Constant Power (CP) Load Modelling at Substation Voltage of 1.0 (pu). 
 

Node Number Voltage in (pu)
1(S/S) 1.000000 

2 0.948817 
3 0.894629 
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4 0.865232 
5 0.846434 
6 0.776218 
7 0.731741 
8 0.709771 
9 0.671963 
10 0.626105 
11 0.596746 
12 0.583914 
13 0.550833 
14 0.524335 
15 0.508877 
16 0.498557 
17 0.488797 
18 0.485532 
19 0.942728 
20 0.937642 
21 0.936342 
22 0.935212 
23 0.886007 
24 0.881791 
25 0.879809 
26 0.765959 
27 0.762208 
28 0.761026 
29 0.760534 

 
 
Table 3.4: Voltage (pu) of Each Node of 29−Node Radial DistributionNetwork for 
Constant Current (CI) Load Modelling at Substation Voltage of 1.0 (pu). 

 
Node Number Voltage in (pu)

1(S/S) 1.000000 
2 0.963894 
3 0.927782 
4 0.909062 
5 0.897322 
6 0.854504 
7 0.828786 
8 0.816378 
9 0.795524 
10 0.770814 
11 0.755347 
12 0.748715 
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13 0.731955 
14 0.718798 
15 0.711212 
16 0.706194 
17 0.701488 
18 0.699918 
19 0.958184 
20 0.953424 
21 0.952209 
22 0.951152 
23 0.920188 
24 0.916482 
25 0.914741 
26 0.846722 
27 0.843882 
28 0.842986 
29 0.842615 

 
 
Table 3.5: Voltage (pu) of Each Node of 29−Node Radial Distribution Network for 
Constant Impedance (CZ) Load Modelling at Substation Voltage of 1.0 (pu). 
 

Node Number Voltage in (pu)
1(S/S) 1.000000 

2 0.968118 
3 0.937109 
4 0.921449 
5 0.911777 
6 0.876990 
7 0.856922 
8 0.847543 
9 0.832094 
10 0.814421 
11 0.803898 
12 0.799556 
13 0.788780 
14 0.780747 
15 0.776336 
16 0.773509 
17 0.770916 
18 0.770071 
19 0.962684 
20 0.958170 
21 0.957018 
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22 0.956019 
23 0.930211 
24 0.926861 
25 0.925290 
26 0.870670 
27 0.868384 
28 0.867666 
29 0.867368 

 
 
Table 3.6: Voltage (pu) of Each Node of 29−Node Radial Distribution Network for 
Composite (CC) Load Modelling at Substation Voltage of 1.0 (pu). 
 

Node Number Voltage in (pu)
1(S/S) 1.000000 

2 0.962437 
3 0.924554 
4 0.904778 
5 0.892338 
6 0.846802 
7 0.819226 
8 0.805877 
9 0.783364 
10 0.756606 
11 0.739817 
12 0.732604 
13 0.714326 
14 0.699951 
15 0.691659 
16 0.686171 
17 0.681020 
18 0.679302 
19 0.956691 
20 0.951902 
21 0.950679 
22 0.949616 
23 0.916862 
24 0.913108 
25 0.911344 
26 0.838775 
27 0.835845 
28 0.834921 
29 0.834538 
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Table 3.7: Voltage (pu) of Each Node of 29−Node Radial Distribution Network for 
Exponential (EXP) Load Modelling at Substation Voltage of 1.0 (pu). 
 

Node Number Voltage in (pu)
1(S/S) 1.000000 

2 0.966722 
3 0.933907 
4 0.917135 
5 0.906691 
6 0.868847 
7 0.846637 
8 0.836159 
9 0.818806 
10 0.798687 
11 0.786525 
12 0.781438 
13 0.768757 
14 0.759171 
15 0.753838 
16 0.750381 
17 0.747167 
18 0.746113 
19 0.961230 
20 0.956665 
21 0.955499 
22 0.954484 
23 0.926801 
24 0.923332 
25 0.921712 
26 0.862030 
27 0.859554 
28 0.858773 
29 0.858444 

 
 
 The comparison of relative CPU Time of the proposed method with the other 
existing methods [Das et al. (1991), Ghosh and Das (1999), Ranjan and Das (2003)] 
for constant power oad modelling has been shown in Table 3.19. All simulation works 
have been carried out by Celeron Processor 1GHz. 
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Table 3.19: Comparison of Relative CPU Time of the Proposed Method with Other 
Existing Methods [Das et al. (1991), Ghosh and Das (1999), Ranjan and Das (2003)] 
for Constant Power Load Modelling. 
 

Method CPU Time
Proposed Method 0.99 
D.Das. et al (1995) 1.90 
S. Ghosh and D. Das (1999) 1.41 
Ranjan and D.Das (2003) 1.59 

 
 
Conclusion 
In this paper a new method of load−flow technique, using fuzzy logic concept, for a 
balanced radial distribution network has been presented. The proposed technique does 
not consider the flat voltage for all the nodes and does not reduce the network into its 
equivalent network. Also in the proposed method the method of sequential numbering 
of the network has also been eliminated. It is applicable to distribution network with 
any number of feeders, lateral(s) and sub−laterals having either sequential or non 
sequential branch or node numbering.  
 Effectiveness of the proposed method is presented considering 29−node, radial 
distribution network at different load models. The example have been considered at 
system voltage of 1.00 (pu) with base kV of 11 and 12.66 with base MVA of 100. The 
last node of the network bears the minimum voltage. 
 The proposed method of load−flow consume less CPU processing time. 
Comparative tabulation of CPU processing time with available techniques is being 
presented. 
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