
International Journal of Electronics and Communication Engineering. 
ISSN 0974-2166 Volume 6, Number 2 (2013), pp. 187-197 
© International Research Publication House 
http://www.irphouse.com 

 
 

A Hybrid Fault Detection and Correction AES for 
Space Application 

 
 

Kalaiarasi P.1, N.D. bobby2, C. Jayashree3 and R. Lavanya4 

 

1,2,3,4Assistant Professor, Department of ECE, 
Vel Tech High Tech Engineering College 

kalaiarasivlsi.12@gmail.com, ndbobby@gmail.com, 
 jaisrime80@gmail.com, lavanya_ecnics@yahoo.co.in 

 
 

ABSTRACT 
 

The demand to protect the sensitive and valuable data transmitted from 
satellites to ground has increased and hence the need to use encryption on 
board. The Advanced Encryption Standard, which is a very popular choice in 
terrestrial communications, is slowly emerging as the preferred option in the 
aerospace industry including satellites. Satellites operate in harsh radiation 
environment and therefore any electronic systems used onboard satellites such 
as processors, memories etc. are very susceptible to faults induced by 
radiation. So the encryption processor should be robust enough to faults in 
order to avoid corruption of valuable data and subsequent transmission to 
ground. This paper presents a novel model to detect and correct Single Event 
Upsets in on-board implementations of the AES algorithm, which is based on 
Hamming error correcting code. An FPGA implementation of the proposed 
model is carried out. 
 
Keywords - Encryption, Advanced Encryption Standard, Hamming Code, 
Fault Tolerant. 

 
 
INTRODUCTION 
Recent unauthorized intrusions into satellite data have raised the importance of using 
security services on board [1]. Encryption, by far the most widely adopted security 
service in terrestrial networks, is used to protect data from unauthorized users. 
Although there are many encryption products and algorithms, the use of these 
products and algorithms on-board satellites has been overlooked until recently. But 
now satellite manufacturers are realizing the importance of on-board encryption to 
protect valuable data, especially after cases, which have proved that intrusion into 



188  Kalaiarasi P. et al 
 

 

satellite data is not an impossible task [2, 3]. At present, more and more EO satellites 
are equipped with on-board encryption to protect the data transmitted to the ground 
station. However due to confidentiality and security reasons the coverage of this topic 
in the open literature is very limited. Examples of EO satellites that include on-board 
data encryption are the following: Space Technology Research Vehicle (STRV) -1d, 
Korea Multipurpose Satellite-II (KOMPSAT-2), MeteoSat Second Generation (MSG) 
Spacecraft, MetOp-A Polar Orbiting Spacecraft, Canadian satellite RADSAT-2 [4, 5, 
6, 7]. The STRV, MetOp and RADSAT employ the Data Encryption Standard (DES) 
whereas KOMSAT uses the International Data Encryption Algorithm (IDEA). It can 
be seen from these examples that the encryption algorithms used in present satellite 
missions are proprietary or outdated algorithms like DES, rather than algorithms 
based on the latest encryption standards. The Rijndael algorithm approved as the 
Advanced Encryption Standard (AES) by the US National Institute of Standards and 
Technology (NIST) is a block cipher, which encrypts one block of data at a time.  
 To encrypt multiple blocks, modes of operation have been defined by NIST. AES 
is being adopted by many organizations across the world. Because of its simplicity, 
flexibility, easiness of implementation, and high throughput AES is used in many 
different applications ranging from smart cards to big servers, however at the time of 
the writing of this paper no use of AES on board satellites has been reported. In fact, 
hardware implementations of AES are well suited to resource-constrained embedded 
applications like satellites [8]. There are various hardware implementations of the 
AES algorithm on platforms like application specific integrated circuits (ASICs) and 
field programmable gate arrays (FPGAs) that achieve a significant throughput ranging 
from a few Mbit/s to Gbit/s [2, 9]. Thus the requirements of small EO satellites for 
high-rate data transmission are met by existing AES implementations. However, in 
addition to high throughput, immunity of the encryption process against faults is very 
important in satellites. Satellites operate in a harsh radiation environment and 
consequently any electronic system used on board, including the encryption 
processor, is susceptible to radiation-induced faults. Most of the faults that occur in 
satellite on-board electronic devices are radiation-induced bit flips called single event 
upsets (SEUs) [10, 11]. If faulty data is transmitted to the ground station, the user’s 
request for data retransmission has to wait until the next satellite revisit period, with 
revisit time varying from a couple of hours to weeks. In order to prevent faulty during 
data transmissions, there is a need for an error detection and correction scheme during 
transmission. Satellite data can further get corrupted during transmission to ground 
due to noise in the transmission channel. The impact of radiation on semiconductor 
devices on board depends on orbit altitude, orientation, and time. In low Earth orbit 
(LEO) SEU rates of the order of 10¡6 bit¡1 day¡1 can be expected [12]. Static random 
access memory (SRAM) based FPGAs are particularly susceptible to SEUs [16].  
 For example, the estimated SEU rate of the XILINX Virtex FPGA device 
XQVR1000 placed in a satellite at an altitude of 1000 km and 60± inclination ranges 
from 0.4/h to 12.6/h depending on the solar flare activities [14]. Reliability is the most 
important issue in avionics design. SEUs must be detected and corrected on board 
before sending the data to ground. The triple modular redundancy (TMR) technique is 
one of the most widely used redundancy-based SEU mitigation techniques in 



A Hybrid Fault Detection and Correction AES for Space Application 189 
 

 

satellites. A TMR design consists of three identical modules, which are connected by 
a majority voting circuit to determine the output [11]. However, with the TMR 
technique the area and power overheads triplicate in comparison with the original 
module. The paper is organized as follows. Section II gives details about the AES 
algorithm.  In Section III error detection and correction method is given. Section IV 
software simulation of AES algorithm and hamming codes is given. Section V 
concludes the paper. 
 The general over view of the proposed system in this paper is given bellow as a 
flow chart: 

 

 
Figure 1. block diagram of proposed system 

 
 
AES ALGORITHM 
The AES algorithm is a symmetric block cipher that can encrypt and decrypt 
information. Encryption converts data to an unintelligible form called cipher-text. 
Decryption of the cipher-text converts the data back into its original form, which is 
called plain-text. 
 
AES encryption 
The AES algorithm operates on a 128-bit block of data and executed Nr - 1 loop 
times. A loop is called a round and the number of iterations of a loop, Nr, can be 10, 
12, or 14 depending on the key length. The key length is 128, 192 or 256 bits in 
length respectively. The first and last rounds differ from other rounds in that there is 
an additional Add Round Key transformation at the beginning of the first round and 
no Mix Coulmns transformation is performed in the last round. In this paper, we use 
the key length of 128 bits (AES-128) as a model for general explanation. An outline 
of AES encryption is given in Fig. 1. 
 
SubBytes phase 
Each byte of the state is substituted with a 8-bit value from the S-box. The S-box 
contains a permutation of all possible 256 8-bit values. It is a nonlinear operation and 
the only non-linear transformation in this procedure. The S-box is gained by a 
multiplicative inverse over GF(28 ) and an affine transform .The sub bytes operation 
is required for both encryption and key expansion and its inverse is done for 
decryption. Its implementation has a direct impact on the overall throughput. 

 



190  Kalaiarasi P. et al 
 

 

 
 

Figure 2.The AES-128 Encryption Algorithm 
 

 
Figure 3.subbytes applies the sbox to each byte of the state 

 
 

Shift Rows phase 
In shift row operation, each row of the state is shifted cyclically to the left. The 
number of shift depends on the number of the row. The top row is not shifted and the 
last three rows are cyclically shifted over 1, 2, and 3 bytes, respectively. 



A Hybrid Fault Detection and Correction AES for Space Application 191 
 

 

MixColumn phase  
MixColumn operation performs on the state column by column, and each column is 
treated as a four-term Polynomial over GF(28 ) . 

 

 
Figure 4.Shift rows cyclically shifts the last three rows in the state 

 
 

 As a result of this multiplication, the new four bytes in a column are generated as 
follows 
 A’=({02}.A)^({03}.B)^({01}.C)^({01}.D) 
 B’=({01}.A)^({02}.B)^({03}.C)^({01}.D) ------------>     (1) 
 C’=({01}.A)^({01}.B)^({02}.C)^({03}.D) 
 D’=({03}.A)^({01}.B)^({01}.C)^({02}.D) 
 
 The operation of ‘^’ is XOR operation modulo 2 and the ‘.’ is a multiplication of 
polynomials modulo an irreducible polynomial m(x)=x8+x4+x3+x+1.The operation 
of {02}. X can be computed using Verilog HDL language: 
 {02}. X = {X [6: 0],1' b0}^(8 ' h1B&{8{ X[7]}})------->  (2) 
 
 So {03}_ X can be generated as follows: 
 {03}. X =({02}. X )+{01}. X (3) 

 

 
Figure 5.  Mix columns operates on the state column-by-column 



192  Kalaiarasi P. et al 
 

 

AddRoundKey phase 
AddRoundKey operation is only a simple logical XOR of the state using a round key 
which is produced by the key expansion operation. 

 

 
Figure 6. Add Round Key XORs each column of the state with a word from the key 
schedule 
 
 
Key expansion phase 
The key expansion operation generates a key schedule of 11 round-key of 16 bytes. 
Each of four consecutive bytes form a word, denoted wi .Taking this into account that 
the first round-key is the initial key and to generate every wi (except w0 -w3 ) the 
routine uses the previous w i-1 XOR w i-4 (except i mod 4 = 0 ).To get the wi, when 
the I mod 4 = 0,the operation has four stages, RotWord, SubWord, XOR Rcon[ i / 4 ] 
and XOR w i-4. For the function RotWord a word [a0,a1,a2,a3] is the input, then 
performs a cyclic permutation, and returns the word [a1,a2,a3, a0]  SubWord is a 
function that takes a four byte input word and applies the S-box to each of the four 
bytes to produce an output word. Rcon [ i / 4 ],contains the values given by[ xi / 4-1 
,{00},{00},{00}], with xi / 4-1 being powers of x  is denoted as {02}) in the field 
GF(28)[5].Every following word, w[i],is obtained by performing XOR of the previous 
word, w[i-1],and the word Nk (Number of 32-bit words comprising the Cipher Key) 
positions earlier, w[i-Nk]. 
 
AES decryption 
Decryption is a reverse of encryption which inverse round transformations to 
computes out the original plaintext of an encrypted cipher-text in reverse order. The 
round transformation of decryption uses the functions AddRoundKey, 
InvMixColumns, InvShiftRows, and InvSubBytes successively. 



A Hybrid Fault Detection and Correction AES for Space Application 193 
 

 

 
Figure 7.the AES decryption algorithm. 

 
 
AddRoundKey: 
AddRoundKey is its own inverse function because the XOR function is its own 
inverse. The round keys have to be selected in reverse order. The description of the 
other transformations will be given as follows. 
 
InvShiftRows Transformation: 
InvShiftRows exactly functions the same as ShiftRows, only in the opposite direction. 
The first row is not shifted, while the second, third and fourth rows are shifted right 
by one, two and three bytes respectively. 



194  Kalaiarasi P. et al 
 

 

InvSubBytes transformation: 
The InvSubBytes transformation is done using a once-precalculated substitution table 
called InvS-box. That InvS-box table contains 256 numbers (from 0 to 255) and their 
corresponding values.  
 
InvMixColumns Transformation: 
In the InvMixColumns transformation, the polynomials of degree less than 4 over 
GF(28), which coefficients are the elements in the columns of the state, are multiplied 
modulo (x4 + 1) by a fixed polynomial d(x) = {0B}x3 + {0D}x2 + {09}x + {0E}, 
where {0B}, {0D}; {09}, {0E} denote hexadecimal values. 
 
HAMMING CODES 
When data is transmitted from one location to another there is always the possibility 
that an error may occur. There are a number of reliable codes that can be used to 
encode data so that the error can be detected and corrected. With this project you will 
explore a simple error detection-correction technique called a Hamming Code. A 
Hamming Code can be use to detect and correct one-bit change in an encoded code 
word. This approach can be useful as a change in a single bit is more probable than a 
change in two bits or more bits. Here is an example of how this process works. 
Consider the table below which has 12 positions. Data is represented (stored) in every 
position except 1, 2, 4 and 8. These positions (which are powers of 2) are used to store 
parity (error correction) bits. 

 

 
Figure 8. table with 4 parity position and 8 input positions. 

 
 

 Using the four parity (error correction bits) positions we can represent 12 values 
(1- 12). Using the format given, data is represented by the 8 non-parity bits. After 
placing the data in the table we find that in positions 3, 6, 9, 10 and 12 we have a ‘1’ 
we obtain the binary representation for each of these values. We then exclusive OR 
the resulting values (essentially setting the parity bit to 1 if an odd # of 1’s else setting 
it to 0). The parity bits are then put in the proper locations. This is the encoded code 
word that would be sent. The receiving side would re-compute the parity bits and 
compare them to the ones received. If they were the same no error occurred – if they 
were different the location of the flipped bit is determined. The parity bits re-
calculation is done at the receiving end. The re-calculated parity information is then 
compared to the parity information sent / received. If they are both the same the result 
(again using an XOR – even parity) will be all 0’s. If a single bit was flipped the 
resulting number will the position of the errant bit . 
 
 



A Hybrid Fault Detection and Correction AES for Space Application 195 
 

 

SOFTWARE SIMULATION 
The design has been coded by Verilog HDL. All the results simulated in ModelSim – 
Altera 6.6d (Quartus II 11.0) software. 
 The results of simulating the encryption, hamming encoding, hamming decoding 
and decryption algorithm from the ModelSim simulator are shown in Fig.9, Fig.10, 
Fig.11 and Fig.12. 

 

 
Fig.9. Output of encryption 

 

 
Fig.10. Output of hamming encoding. 

 

 
Fig.11. Output of hamming decoding. 

 



196  Kalaiarasi P. et al 
 

 

 
Fig.12. Output of decryption. 

 
 

CONCLUSION 
In the first phase of our paper, AES algorithm is used and encryption & decryption are 
performed. 128 bit cipher key used for encryption &decryption and ten rounds are 
performed to improve the security. In the second phase we are going to detect the 
errors occurring during transmission of the data and correct it .The third phase is 
implementing the fault detection and correction code and the original plain text is 
derived. All the above steps are simulated with ModelSim software and the output is 
got. 
 
 
REFERENCES 
 

[1] Consultative Committee for Space Data Systems Security threats against space 
missions. Informational Report CCSDS 350.1-G-1, Green book, NASA, 
Washington, D.C., Oct. 2006. 

[2] Vladimirova, T., Banu, R., and Sweeting, M. N. On-board encryption in 
satellites. In Proceedings of the 8th Military and Aerospace Applications of 
Programmable Logic Devices and Technologies International Conference 
(MAPLD’2005), F-184, NASA, Washington, D.C., Sept. 2005. 

[3] Sweet, K. The increasing threat to satellite communications. Online Journal of 
Space Communication, 6 (Nov. 2003) 

[4] Weiss, H., and Stanier, J. Space mission communications security. In 5th 
Ground System Architecture Workshop (GSAW) 2001, 
http://sunset.usc.edu/events/GSAW/gsaw2001/SESSION9/Shave.pdf (last 
accessed 18th June 2007). 

[5] Guttlich, J., Sinander, N., and Schaffner, E.MeteoSat second generation (MSG) 
ground segment–LRIT/HRIT mission specific implementation. Document 
EUM/MSG/SPE/057, 4.0, Sept. 21, 1999. 

[6] Michalik, H., Hinsenkamp, L., and Schonenberg, A. Secure space links–
Impacts on on-board link data processing. Data Systems In Aerospace (DASIA 
2006), Berlin,Germany, May 22—25, 2006. 



A Hybrid Fault Detection and Correction AES for Space Application 197 
 

 

[7] Consultative Committee for Space Data Systems The application of CCSDS 
protocols to secure systems. Informational Report CCSDS 350.0-G-2, Green 
Book, NASA, Washington, D.C., Jan. 2006. 

[8] Daemen, J., and Rijmen, R. The Design of Rijndael: AES–The Advanced 
Encryption Standard. New Yrok: Spriger-Verlag, 2002. 

[9] Zhang, X., and Parhi, K. K.High-speed VLSI architecture for the AES 
algorithm. IEEE Transaction on VLSI Systems, 12, 9 (Sept. 2004), 957—967. 

[10] Gussenhoven, M. S., and Mullen, E. G.Space radiation effects program: An 
overview. IEEE Transactions on Nuclear Science, 40, 2 (Apr. 1993), 221—
227. 

[11] Kastensmidt, F. L., Carro, L., and Reis, R. Fault-Tolerance Techniques for 
SRAM-Based FPGAs. New York: Springer, 2006. 

[12] Underwood, C. I. The single-event effect behaviour of commercial-off-the-
shelf memory devices–A decade in low Earth orbit. IEEE Transactions on 
Nuclear Science, 45, 3, Pt. 3 (June 1998), 1450—1457. 

[13] Leon, A. F. Field programmable gate arrays in space. IEEE Instrumentation 
and Measurements Magazine, 6, 4 (Dec. 2003), 42—48. 

[14] Fuller, E., Caffrey, M., Salazar, A., Carmichael, C., and Fabula, J. Radiation 
testing update, SEU mitigation, and availability analysis of the virtex FPGA for 
space reconfigurable computing. In Proceedings of Military and Aerospace 
Applications of Programmable Logic Devices and Technologies International 
Conference (MAPLD 2000), Sept. 26—28, 2000. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



198  Kalaiarasi P. et al 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


